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In the paper, we use the Caputo fractional derivative to consider general single-term and multiterm fractional-order SEIAR models
for the outbreak of Norovirus. Then, the inverse problem about parameter estimation for these fractional-order SEIAR models of
the Norovirus outbreak is studied firstly. To provide the numerical solution of the single-term (or multiterm) fractional-order
nonlinear differential equation, the GMMP scheme and Newton method are introduced. Then, we make use of the modified
hybrid Nelder-Mead simplex search and particle swarm optimization (MH-NMSS-PSO) algorithm to obtain the fractional
orders and parameters for these fractional-order SEIAR models of Norovirus outbreak. To guarantee the correctness and
effectiveness of the methods, the data of a 2007 Norovirus outbreak in a middle school in one city is used as the real data to
solve the inverse problem of the parameter estimation. With the new parameters, all numerical studies illustrate that the
numerical solutions fit very well with the real data, which reveals that the single-term and multiterm fractional-order SEIAR
models of Norovirus outbreak all can predict the number of the infectious people accurately. And it also shows that the GMMP
scheme and the MH-NMSS-PSO method are efficient and valid for estimating the parameters of the single-term (or multiterm)
fractional-order nonlinear equations. Then, we research the impact of changes in each parameter on the amount of infected
humans IðtÞ when the remaining parameters are unchanged. All results of numerical simulation reveal that the single-term and
multiterm fractional-order SEIAR model of Norovirus can provide better results than other models. And we also study the effect
of the isolation on different days. The conclusion is obtained that the earlier the isolation is taken, the less the infected people
are. Hence, for a fractional-order application in the SEIAR model of Norovirus outbreak, we establish the effective parameter
estimation methods.

1. Introduction

Norovirus is one of the most important pathogens of infec-
tious diarrhea and outbreaks of all ages [1–3]. In the United
States, Norovirus gives rise to approximately 21 million cases
each year [2], 71 thousand hospitalizations [4], and 8 hun-
dred deaths [2, 5]. In developing countries, there are frequent
outbreaks of medical institutions and schools [6], which have
a great impact on the health of residents. The disease is
mainly transmitted by means of the fecal-oral route, and
the infection dose is very low. Ingestion of 18 viruses at a time
can cause infection [7]. Therefore, it is easy to cause trans-
mission, usually by human contact and water or food spread.

School outbreaks can also lead to absenteeism or even sus-
pension of classes, affecting normal teaching order and
increasing the burden of family care for children. Therefore,
in-depth study of the dynamic characteristics of Norovirus
infectious diarrhea outbreaks and the evaluation of the effects
of various types of prevention and control measures have
important public health significance.

These are difficult to analyze through traditional epide-
miological methods, and mathematical modeling has become
a crucial research tool for studying the dynamics of infectious
diseases [8, 9]. Based on the natural history of Norovirus-
infected diarrhea, the authors established the integer-order
SEIAR model of Norovirus transmission in schools. Taking
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an outbreak event in a city in 2007 as an example, the
dynamic characteristics of Norovirus were studied and the
key prevention and control was quantitatively evaluated.
But the results indicate that the match between the number
of infections derived by the model and the real data needs
to be upgraded further to give expression to the spread of
Norovirus, especially the transmission speed before the
intervention.

During the last three decades or so, fractional calculus is
the focus of almost all dynamic researchers as we often see it
in the fields of chemistry physics [10], engineering [11], biol-
ogy [12, 13], and image processing [14]. Fractional-order
derivatives can be called a superb tool which depicts the
memory and hereditary properties of all kinds of materials
and processes [14, 15]. Fractional differential equations are
more adequate than integer-order derivatives to describe
some phenomena associated with nonlocality. Hence, the
fractional-order systems are also used to deal with some
problems of infectious disease [16–18]. The fractional-order
derivative can offer a better infectious disease model com-
pared to the integer-order derivative [19]. There are many
advantages of fractional differential equation for describing
infectious disease. One is that the fractional derivatives are
nonlocal operations, i.e., the fractional-order differential
equation can establish a powerful tool for integration of
memory and hereditary properties of the systems, while the
integer-order derivatives are local operations, i.e., the effects
are ignored or tough to incorporate in the integer-order dif-
ferential equation. Another one is that it is precisely because
the fractional-order model has one more degree of freedom
compared to the integer order when we fit the model to the
real data; the fractional-order model is more suitable for
studying infectious diseases.

As we know, some parameters are unknown in the
fractional-order model, which need to be determined from
the real data. Thus, the fractional inverse problem [20] is gen-
erated which has aroused worldwide attention on account of
the extensive applications [21]. And there are many researches
for classical problems [22, 23]. The two-dimensional nonlin-
ear reaction-subdiffusion equation is solved via the novel
compact numerical method [24]. Utilizing a Haar wavelet
operational matrix, literature [25] considered an identification
method aimed at the fractional-order linear system. In [26],
aiming at the one-dimensional fractional diffusion equation,
the authors discussed the uniqueness result with regard to
deciding the fractional order and the space-dependent diffu-
sion coefficient. Literature [27] proposed a feasible parameter
estimation method based on hybrid Nelder-Mead simplex
search and particle swarm optimization to perform the curve
fitting for the multiterm time-fractional Bloch equations. In
[10], the authors applied a parameter fitting approach to the
classical monoexponential model, a previously developed
anomalous relaxation model, and the extended time-
fractional relaxation model. They find that the extended
time-fractional model is able to fit the experimental data with
smaller mean-squared error than the classical monoexponen-
tial relaxation model and the anomalous relaxation model.
Aside from the parameter estimation method we used in the
article, there are also the Bayesian method put forward by

Fan et al. [28], the modified quasiboundary value method
[29], and so on. Nowadays, coronavirus is a pandemic that
has become a concern for the whole world. Scholars at home
and abroad predict [30], analyze [31, 32], and intervene [33]
the spread of the coronavirus according to the infectious dis-
ease models of coronavirus outbreak. It can be seen that the
analysis of infectious diseases based on infectious disease
models is of great significance for understanding the trend of
infectious diseases, reducing the number of infections, and
preventing recurrence.

In this paper, we mainly use the single-term and multi-
term fractional-order SEIAR model to describe the outbreak
of Norovirus explained by the Caputo fractional derivatives.
These SEIAR models are general models with different frac-
tional orders. For the sake of maintaining the same units on
both sides of the models, some new parameters are intro-
duced which have different dimensions. This makes certain
that both sides of the models have the same dimension. The
GMMP schemes are modified to acquire an implicit differ-
ence equation which can be identified as nonlinear equations
solved by the Newton method. Thus, the problem of numer-
ical solution is derived. There are some other numerical
methods, such as q-Homotopy Analysis Transform Method
(q-HATM) [34–37], Fractional Euler Method (FEM) [38],
Discretized Collocation Method [39], Variational Iteration
Method (VIM) [40], and Fractional Natural Decomposition
Method (FNDM) [41]. Then, the corresponding inverse
problem of parameter estimation is studied by the MH-
NMSS-PSO. Using the statistics from the Norovirus outbreak
in a middle school in 2007 [42], the fractional-order SEIAR
model we proposed can be determined. Based on these new
parameters and orders, the numerical results provided by
two fractional-order SEIAR models are very closer to the real
data.

The content of this paper is introduced as follows: the
integer-order Susceptible-Exposed-Infectious/Asymptomatic-
Removed (SEIAR) Model of Norovirus outbreak is introduced
in Section 2. The fractional derivatives and the single-term
fractional-order SEIAR model and its numerical method are
introduced in Section 3. In Section 4, the MH-NMSS-PSO
algorithm is described. In Section 5, the application of the
parameter estimation in the single-term fractional SEIAR
model is presented. The multiterm fractional-order SEIAR
model is introduced, and the application of the parameter esti-
mation is presented in Section 6. In Section 7, the conclusion is
derived.

2. The Classical SEIAR Model of
Norovirus Outbreak

The SEIAR model is the most common method for studying
the dynamic characteristics of some infectious disease, such
as Norovirus, influenza, and worm propagation [42, 43]. It
is better to divide the total human population N into five
subpopulations: SðtÞ susceptible humans, EðtÞ exposed
humans (infected but not yet fully contagious), IðtÞ infected
humans, AðtÞ asymptomatic humans, and RðtÞ recovered
(or removed) humans. Hence, the Norovirus classical differ-
ential equation is as follows:
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dS
dt

= −βS I + kAð Þ, ð1Þ

dE
dt

= βS I + kAð Þ − μω′E − 1 − μð ÞωE, ð2Þ

dI
dt

= 1 − μð ÞωE − γI, ð3Þ

dA
dt

= μω′E − γ′A, ð4Þ

dR
dt

= γI + γ′A: ð5Þ

In this model (1), the parameters denote different mean-
ings, respectively:

(i) β is the probability of transmission per contact

(ii) k is the relative transmissibility of asymptomatic to
symptomatic individuals

(iii) μ is the proportion of asymptomatic individuals

(iv) 1/ω is the incubation period of the disease

(v) 1/ω′ is the latent period of the disease

(vi) γ is the removal rate of the infectious individuals

(vii) γ′ is the removal rate of the asymptomatic
individuals

In practice, the quarantine measures were applied to all
patients I, that is, all patients I were quarantined when the
health department intervened on the first day. And one
patient was quarantined in the subsequent treatment, that
is, all patients were quarantined once they were found.
Because patient I is quarantined, quarantined patients can-
not transmit the disease because they are not in contact with
susceptible persons. During isolation, the disease progression
of the patient was the same as that of the unquarantined, and
the removal rate coefficient from the quarantined remained.
But people with latent infections can still contract the disease
through person-to-person contact. The differential equation
of the quarantine patient model is as follows:

dS
dt

= −βkSA,

dE
dt

= βkSA − μω′E − 1 − μð ÞωE,
dI
dt

= 1 − μð ÞωE − γI,

dA
dt

= μω′E − γ′A,

dR
dt

= γI + γ′A,

ð6Þ

where the parameters of this model are the same as the
model (1).

In reference [42], they study the data about a Norovirus
infectious diarrhea incident reported in a middle school in
a city. The information includes the number of people
affected, the onset time of all cases, the intervening time of
the department of the centers for disease control and preven-
tion, and the preventive and control measures. The details of
the outbreak are as follows: on March 8, the department of
the centers for disease control and prevention of a city
received a telephone report from a middle school, saying that
there were more than ten cases of vomiting, abdominal pain,
and diarrhea in the school recently. The following case defi-
nitions were established: vomiting or diarrhea and other
symptoms such as abdominal pain, fever, headache, and diz-
ziness have occurred among the students and staff of the
school since March 5. There are 93 classes in 5 grades in
the school, with 5225 students and 430 teachers. The number
of cases reached a peak on 8March. After the intervention on
8 March, isolation measures were taken. The epidemic situa-
tion began to decline gradually.

The authors use the integer-order SEIAR model to pre-
dict the number of the infected people. The parameters were
selected as β = 8:3452 × 10−4, k = 3:9065 × 10−11, ω = 1, ω′
= 1, μ = 0:3, γ = 0:3333, and γ′ = 0:03846; the number of
infected humans is shown in Figure 1. Based on the results
and Figure 1, we find that the root-mean-square error among
the numerical solution and the real data is g = 7:9138, which
identifies that the numerical solutions we obtained should be
closer to the real data to reflect the spread of Norovirus, espe-
cially the speed of the spread before the intervention. Hence,
we should find some new model to make the numerical
results fit well with the real data. We could predict the change
in the number of people infected more correctly.
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Figure 1: Quantity of the Norovirus infections IðtÞ compare with
the numerical results of integer-order SEIAR model (1) obtained
by the MGAM method and g = 7:9138.

3Advances in Mathematical Physics



3. Fractional-Order SEIAR Model of Norovirus
Outbreak and Its Numerical Method

3.1. The Definitions and Properties of the Fractional
Derivatives. Fractional calculus has a great influence on the
development of scientific research [14, 44]. The most influen-
tial definitions for fractional-order derivatives include
Riemann-Liouville (R-L), Caputo, and Grünwald-Letnikov
(G-L) definition [15].

Definition 1. The fractional integral is introduced as

aD
−α
t f tð Þ = 1

Γ αð Þ
ðt
a
t − τð Þα−1 f τð Þdτ, ð7Þ

where the order is α > 0 and ΓðzÞ = Ð∞0 tz−1e−tdt is the gamma
function.

Definition 2 (see [24]). The expression of Caputo derivative
definition is explained in this way:

C
a D

α
t f tð Þ= 0D

− n−αð Þ
t

dn

dtn
f tð Þ = 1

Γ n − αð Þ
ðt
a
t − τð Þn−α−1 f nð Þ τð Þdτ,

ð8Þ

where n − 1 < α < n, n ∈ Z+.

Definition 3. In 1847, the German mathematician Riemann
made further additions on this basis and formed the first
more complete definition of fractional calculus—the
Riemann-Liouville definition.

RL
a Dα

t f tð Þ = dn

dtna
D− n−αð Þ
t f tð Þ = 1

Γ n − αð Þ
dn

dtn

ðt
a
t − τð Þn−α−1 f τð Þdτ,

ð9Þ

where n − 1 < α < n, n ∈ Z+.

Definition 4. The Grünwald-Letnikov derivative is consid-
ered as

GL
a Dα

t f tð Þ = lim
h⟶0
mh=t

h−α 〠
m

r=0
−1ð Þr

α

r

 !
f t − rhð Þ

= 〠
n−1

k=0

f kð Þ 0ð Þtk−α
Γ k + 1 − αð Þ +

1
Γ n − αð Þ

·
ðt
a
t − τð Þn−α−1 f nð Þ τð Þdτ,

ð10Þ

where n − 1 < α < n.
Depending on the above definitions, we know that the G-

L and R-L fractional derivatives can be transformed into each
other; in other words, they are equivalent while the R-L and
Caputo definitions are not, in which the difference can be
shown as

C
aD

α
t f tð Þ= RL

a Dα
t f tð Þ − 〠

n−1

k=0

t − að Þk−α f kð Þ að Þ
Γ k − α + 1ð Þ : ð11Þ

If the initial condition is chose as f ðkÞðaÞ = 0, k = 0, 1,⋯,
n − 1, depending on (11), the Caputo and R-L derivatives are
equivalent.

Lemma 5. Assumed function f ðtÞ ∈ Cn½a, T�, then

C
aD

α
t f tð Þ= RL

a Dα
t f tð Þ − 〠

n−1

k=0

t − að Þk f k að Þ
k!

 !
, ð12Þ

where n − 1 < α ≤ n:

Proof. Suppose

h tð Þ = f tð Þ − 〠
n−1

k=0

t − að Þk f kð Þ að Þ
k!

, ð13Þ

where hðkÞðaÞ = 0, k = 0, 1,⋯, n − 1: On the basis of (11),
C
a D

α
t hðtÞ= RL

a Dα
t hðtÞ, i.e.,

C
a D

α
t h tð Þ= RL

a Dα
t h tð Þ= RL

a Dα
t f tð Þ − 〠

n−1

k=0

t − að Þk f kð Þ að Þ
k!

 !
:

ð14Þ

We can obtain C
a D

α
t ðt − aÞk = 0 under the condition of

0 ≤ k < α by the definition of the Caputo derivative. The
left side of equation (14) can be presented as

C
aD

α
t h tð Þ= C

a D
α
t f tð Þ: ð15Þ

Hence, the result (12) is found. ☐

3.2. Single-Term Fractional-Order SEIAR Model of the
Norovirus Outbreak. On the basis of the interorder SEIAR
model, the fractional-order SEIAR model and quarantine
SEIAR model are as follows:

λα1
C
0D

α1
t S = −βS I + kAð Þ, ð16Þ

λα2
C
0D

α2
t E = βS I + kAð Þ − μω′E − 1 − μð ÞωE, ð17Þ

λα3
C
0D

α3
t I = 1 − μð ÞωE − γI, ð18Þ

λα4
C
0D

α4
t A = μω′E − γ′A, ð19Þ

λα5
C
0D

α5
t R = γI + γ′A, ð20Þ

λα1
C
0D

α1
t S = −βkSA, ð21Þ

λα2
C
0D

α2
t E = βkSA − μω′E − 1 − μð ÞωE, ð22Þ

λα3
C
0D

α3
t I = 1 − μð ÞωE − γI, ð23Þ
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λα4
C
0D

α4
t A = μω′E − γ′A, ð24Þ

λα5
C
0D

α5
t R = γI + γ′A, ð25Þ

where C
0D

αi
t represents the Caputo fractional derivative with

order αi, i = 1, 2,⋯, 5. The parameters β, k, μ, ω, ω′, γ, γ′
are defined in model (1). In these fractional-order models,
we can see that the units on the left of system (16) and (21)
maintaining the dimensions of ðdaysÞ−αi are not same as
the right, in which the dimension is ðdaysÞ−1. If we take the
left-hand side of system (16) and (21) by λαiði = 1, 2,⋯,5Þ
which has the dimension of ðdaysÞαi−1, then we can have
the same units ðdaysÞ−1 on both sides of this system.

3.3. Numerical Result of the Fractional-Order Differential
Equation. There are all kinds of numerical methods which
have been confirmed to deal with equations (21), covering
the Power Series Method [14], the Predictor-Corrector
Method [14, 15, 45], the Mellin Transform Method [14], and
others. In this article, we adopted the GMMP scheme [46]
and Newton method to carry out the equations (21), which
are much more efficient than other numerical methods.

Next, we converted equations (21) to the form of

λ ⊙ C
a D

α
t x tð Þ = f t, x tð Þð Þ, ð26Þ

where xðtÞ = ðSðtÞ, EðtÞ, IðtÞ, AðtÞ, RðtÞÞT and λ =
ðλα1 , λα2 , λα3 , λα4 , λα5Þ

T . For the sake of establishing the
numerical solution of (21), the uniform grids with 0 < α < 1
are applied to discretize in time, that is, t j = a + jh, j = 0, 1, 2,
⋯,N, Nh = t − a. As we know, the R-L and G-L fractional
derivatives can be approximated applying this equation:

RL
a Dα

t x tð Þ= GL
a Dα

t x tð Þ = lim
h⟶0

1
hα

〠
N

k=0
cαkx tN−kð Þ ≈ 1

hα
〠
N

k=0
cαkx tN−kð Þ:

ð27Þ

Similarly, the Caputo fractional derivatives can be
explained as

C
a D

α
t x tð Þ ≈ 1

hα
〠
N

k=0
cαk x tN−kð Þ − 〠

n−1

j=0

t − að Þjx jð Þ að Þ
j!

 !
, ð28Þ

where,

cαk = −1ð Þk
α

j

 !
, ð29Þ

are binomial coefficients.
This method appears for the first time in [46] and is

widely used by people. In [47], researchers call it the GMMP
scheme. Based on it, the numerical solutions of the
fractional-order differential equations are revealed. For intro-
ducing this method, equation (21) can be written as

λ ⊙ C
a D

α
t x tð Þ = f t, x tð Þð Þ, 0 ≤ t ≤ T ,

x kð Þ að Þ = x kð Þ
0 , k = 0, 1,⋯, n − 1,

ð30Þ

where C
a D

α
t represents the Caputo fractional derivative.

It follows from (28) that

λ ⊙ 〠
N

k=0
cαk x tN−kð Þ − 〠

n−1

j=0

t − að Þjx jð Þ að Þ
j!

 !
= hαf tN , x tNð Þð Þ,

ð31Þ

i.e.,

x tNð Þ = hα⊘λ ⊙ f tN , x tNð Þð Þ + 〠
n−1

j=0

t − að Þjx jð Þ að Þ
j!

− 〠
N

k=1
cαk x tN−kð Þ − 〠

n−1

j=0

t − að Þjx jð Þ að Þ
j!

 !
:

ð32Þ

In particular, if 0 < α ≤ 1, (32) should be written as

x tNð Þ = hα⊘λ ⊙ f tN , x tNð Þð Þ + x að Þ − 〠
N

k=1
cαk x tN−kð Þ − x að Þð Þ:

ð33Þ

In line with the Grünwald-Letnikov formula, the solution
form (33) of the fractional-order nonlinear equation has been
obtained which can be considered as an equation regarding
an unknown variable xðtNÞ. We choose the Newton algo-
rithm to gain the value of xðtNÞ via equation (33) which is
expressed as

xn+1 = xn − JF xnð Þ−1F xnð Þ, n = 0, 1, 2,⋯, ð34Þ

where JFðxnÞ is the Jacobian matrix at xn. The LU factoriza-
tion of JFðxnÞ can be used to solve the above equations. It is
worth mentioning that any other factorization can be pre-
sented as well such as QR or Cholesky. Firstly, we should
input the initial iterate x0, the nonlinear map F, and termina-
tion tolerances ε into the program.

Step 1. Compute and factor the Jacobian matrix JFðx0Þ = LU.

Step 2. Solve the linear equation LUs = −Fðx0Þ, x = s + x0.

Step 3. While x satisfies the condition kx − x0k > ε, then
(3a) Let x0 = x, then factor the Jacobian matrix JFðx0Þ =

LU
(3b) Solve the linear equation LUs = −Fðx0Þ, x = s + x0
(3c) Compute and evaluate kx − x0k. Ifkx − x0k > ε, goto

step (3a)

Then, we can get the output x = xðtNÞ, i.e., the solution of
equation (33).
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4. The Technique for Obtaining the
Parameters of Fractional-Order
Nonlinear Systems

In order for the numerical solution presented by the
fractional-order model to be closer to the real number of
infected people, we must estimate and correct the original
parameters. Regarding the unknown parameters, this prob-
lem will become more difficult in the dilemma of the
bounded parameters and highly nonlinear on function f .
Next, a technique is proposed for estimating parameters.
The system (26) can be described as the model.

λ ⊙ C
aD

α
t x tð Þ = f t, x tð Þ, Pð Þ, 0 ≤ t ≤ T , ð35Þ

x kð Þ að Þ = x kð Þ
0 , k = 0, 1,⋯, n − 1, ð36Þ

where x = ðx1, x2,⋯,xnÞT are state variables, f =
ð f1, f2,⋯,f nÞT are n-dimensional vector functions, and every
f iði = 1, 2,⋯,nÞ represent uncertain parameters P =
ðp1, p2,⋯,pmÞT and m is the amount of parameters.

As we know, many researches adopted the NMSSmethod
[48] and the PSO [49] method to identify parameters. The
NMSS concentrates on “exploitation” and PSO concentrates
on “exploration.” We can distinguish these two methods
according to the following two points. One is how to choose
the initial point. The initial point of the former is predeter-
mined while the latter is a collection of random points. Sec-
ond, it depends on the conditions and direction of the
proceeding steps. The former moves to points with better
function values while the latter moves from points with the
worst performance. The MH-NMSS-PSO method has been
applied to estimate parameters for integer and fractional
models, which fully combines the merits of the NMSS and
PSO methods. The idea of combining the NMSS and PSO
methods is applied not only to parameter estimation [50–
52] but also to engineering design [53–55], image processing
[56], and economic [57].

In the following, in this paper, we need to find the opti-
mal parameters to make the numerical solution of the
fractional-order Norovirus system as close as possible to the
number of people infected with Norovirus adopting the
MH-NMSS-PSO algorithm. Its steps are as follows.

We suppose that P = ðp1, p2,⋯,pmÞT ∈Ω, where Ω =
½pðminÞ

1 , pðmaxÞ
1 � × ½pðminÞ

2 , pðdÞ2 � ×⋯ × ½pðminÞ
m , pðmaxÞ

m � is a
bounded domain. Let xðt jÞ be one of numerical solutions of
equation (35) with the given parameters P = ðp1, p2,⋯,pmÞ
∈Ω (such as IðtÞ); this result cannot be used as our final data.
What we want is the approximation of the unknown param-
eter vector ðp∗1 , p∗2 ,⋯,p∗mÞ determined by the root-mean-
square error function (RMSEF):

g P∗ð Þ =min
P∈D

g Pð Þ =min
p∈D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

j=0 x t j
� �

− xj
� �� �2
N + 1

s
, ð37Þ

where xj are real data.

A potential global minimum gðP∗Þ in equation (37) with
the parameters P ∈Ω will be confirmed by the MH-NMSS-
PSO method. It initiates with 3m + 1 initial particles consist-
ing of two parts. First of all, the predetermined points are
derived to organize an initial simplex with m + 1 particles
which is used in the NMSS method, and the 2m particles
are optionally created with the help of the PSO method.
Then, we sorted the total 3m + 1 particles from smallest to
largest via the function values gðPÞ in equation (37). In the
following, the NMSS method will deal with the best m + 1
particles while the task of adjusting the last 2m particles is
taken care of by the PSO method.

Specifically, it can be divided into the following points.

Step 1. Initialization. Produce a population with size 3m + 1.
For the minimization of the functions gðPÞ ofm variables

(unknown parameters), create m + 1 vertex points Pi = ðp1,i
, p2,i,⋯,pm,iÞ ∈D, ði = 1, 2,⋯,m + 1Þ to form an initial m
-dimensional simplex, i.e.,

Pi = p1,i, p2,i,⋯,pm,i
� �

∈D, i = 1, 2,⋯,m + 1, ð38Þ

where

pj,i = p minð Þ
j +

i − 1ð Þ × p maxð Þ
j − p minð Þ

j

� �
m + 1

,

 j = 1, 2,⋯,m, i = 1, 2,⋯,m + 1:
ð39Þ

Two particles are randomly generated in each dimension
for the PSO part:

Pi = p1,i, p2,i,⋯,pm,i
� �

∈D, i =m + 2,⋯, 3m + 1, ð40Þ

where

pj,i = p minð Þ
j + Rand × p maxð Þ

j − p minð Þ
j

� �
,

 j = 1, 2,⋯,m, i =m + 2,⋯, 3m + 1,
ð41Þ

and Rand is a random number in the range ð0, 1Þ. The parti-
cle’s initial velocities in each dimension are selected by

V j,i =
V maxð Þ

j −V minð Þ
j

Lj
, j = 1, 2,⋯,m, i =m + 2,⋯, 3m + 1,

ð42Þ

where Ljðj = 1, 2,⋯,mÞ are selected integers.

Step 2. For num = 1 : N iter do.
(2a) Evaluation ranking: the function value gðPÞ of each

particle is different. Rank them by evaluating the objective
function values

g P1ð Þ ≤ g P2ð Þ ≤⋯ ≤ g P3m+1ð Þ: ð43Þ

(2b) The NMSS method is applied to the best m + 1
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particles and the ðm + 1Þth particle. Calculate PO, the center
of gravity of all points except Pm+1:

PO = p1,O, p2,O,⋯,pm,O
� �

∈D, ð44Þ

where pj,O =∑m
i=1pj,i/m, j = 1, 2,⋯,m: And the reflected

point

Pr = 1 + αð ÞPO − αPm+1, ð45Þ

where α is the reflection coefficient (α > 0). Nelder and Mead
suggest using α = 1 [48]. Then, there are three cases in the
following:

Case 1: gðP1Þ ≤ gðPrÞ ≤ gðPmÞ, then Pr replaces Pm+1.
Case 2: gðPrÞ ≤ gðP1Þ, then compute the expanded point.

Pe = γPr + 1 − γð ÞPO: ð46Þ

If gðPeÞ ≤ gðP1Þ, Pe replaces Pm+1; otherwise Pr replaces
Pm+1. Nelder and Mead suggest using γ = 2 [48].

Case 3: gðPrÞ ≥ gðPmÞ, if gðPrÞ ≤ gðPm+1Þ, Pr replaces
Pm+1. Compute the contracted point:

Pc = βPm+1 + 1 − βð ÞPc: ð47Þ

If gðPcÞ ≤ gðPm+1Þ, Pr replaces Pm+1; otherwise, let

Pi = σPi + 1 − σð ÞP1, i = 1, 2,⋯,m + 1: ð48Þ

Nelder and Mead suggest using β = 0:5 and σ = 0:5 [48].
(2c) The PSO method is applied to adjust the last 2m

particles.
(2d) Discriminate the stopping criterion: if Sc < ε, the loop

will stop. Let the criterion be defined by

Sc = 〠
m+1

i=1

�g − ffiffiffiffi
gi

p� �2
m + 1

" #1/2
, ð49Þ

where �g =∑m+1
i=1 ðg∗i /m + 1Þ and g∗i =

ffiffiffiffi
gi

p =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
giðp1, p2,⋯,pmÞ

p
.

Step 3. Output the best estimated parameter values P =
ðp1, p2,⋯,pmÞ.

Remark 6. The Nelder-Mead simplex search (NMSS) is likely
to be trapped in local optima rather than global optima and
the particle swarm optimization (PSO) algorithm has a slow
convergence rate and low balance between exploration and
exploitation. Interestingly, the modified hybrid Nelder-
Mead simplex search and particle swarm optimization
(MH-NMSS-PSO) algorithm has been demonstrated to out-
perform both in terms of solution quality and convergence
rate. Although the optimal parameters obtained by the new
method can provide a solution very close to the real data, it
takes a long time to run, and sometimes, the number of
iterations is relatively high in order to obtain the optimal
parameters.

5. The Numerical Simulations of the Fractional-
Order SEIAR Model

In this chapter, we will make use of the MH-NMSS-PSO
algorithm to obtain the ideal parameters to make the numer-
ical results of the Norovirus system (16) as close as possible to
the number of people infected with Norovirus. For exhibiting
the parameters of the fractional-order SEIAR model, the real
data of a 2007 Norovirus outbreak in a middle school given
by [42] is used to carry out the inverse problem of parameter
estimation. Each of the parameters in the SEIAR model (16)
has its particular biological meaning. Then, each parameter
has a corresponding value range. The choice of parameter
intervals to narrow the target value is crucial for the result.
Hence, based on these ranges, the intervals and initial veloc-
ities are chose in this way:

0 ≤ λαi = pi ≤ 2, i = 1, 2,⋯, 5, 0 ≤ αi = pi+5 ≤ 1, i = 1, 2,⋯, 5,

1 × 10−4 ≤ β = p11 ≤ 1 × 10−3, 1 × 10−11 ≤ k = p12 ≤ 1 × 10−10,

0:01 ≤ μ = p13 ≤ 0:5, 0:5 ≤ ω = p14 ≤ 2,

0:5 ≤ ω′ = p14 ≤ 2, 0:17 ≤ γ = p15 ≤ 1,

0:01 ≤ γ′ = p16 ≤ 0:09,

Vi =

0:02, i = 1, 2,⋯, 5,

0:01, i = 6, 7,⋯, 10,

1 × 10−4, i = 11,

1 × 10−11, i = 12,

0:025, i = 13, 14,

0:01, i = 15, 16:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð50Þ

Based on the potential global minimum of gðPÞ, the
unknown parameter P∗ is obtained

λa1 = 0:35201, λa2 = 0:36513, λa3 = 1:99264, λa4 = 1:27217,

λa5 = 1:04215, a1 = 0:81292, a2 = 0:99693, a3 = 0:99981,

a4 = 0:93916, a5 = 0:91295, β = 8:33565 × 10−4, k = 1:02143 × 10−11,

p = 0:21034, ω = 2:00000, ω = 1:99679, γ = 0:50863, γ′ = 0:08663,

ð51Þ

with g = 3:1922. As seen in Figure 2, both the two methods
are capable of effectively solving inverse problems for the
fractional-order Norovirus system.

By observing how the parameters influence the variety of
infected people IðtÞ when other parameters are unchanged,
we can obtain the conclusion when λα4 , λα5 , α4, α5, k, γ′
changed; the number of infected people IðtÞ basically did
not change while other parameters have a certain impact on
IðtÞ. And the impacts of other orders and parameters are
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given in Figures 3and 4, which show that the parameter P∗

we estimated is indeed the ideal parameter.

6. The Numerical Simulations of the Multiterm
Fractional-Order SEIAR Model

6.1. The Expression of Numerical Solution. As we know, the
multiterm fractional-order differential equations have acted
with a significative role in revealing the behaviour of real
materials, particularly in the area of the viscoelastic mechan-
ics. In the recent years, some studies have shown that it is
more suitable for the study of epidemic models than the
integer-order derivative [10, 27]. In the following, the
three-term fractional-order SEIAR model and quarantine
SEIAR model of the Norovirus outbreak are proposed as fol-
lows:

0D
α1,α2,α0
t S tð Þ = −βS I + kAð Þ, ð52Þ

0D
α1,α2,α0
t E tð Þ = βS I + kAð Þ − μω′E − 1 − μð ÞωE, ð53Þ

0D
α1,α2,α0
t I tð Þ = 1 − μð ÞωE − γI, ð54Þ

0D
α1,α2,α0
t A tð Þ = μω′E − γ′A, ð55Þ

0D
α1,α2,α0
t R tð Þ = γI + γ′A, ð56Þ

0D
α1,α2,α0
t S tð Þ = −βkSA, ð57Þ

0D
α1,α2,α0
t E tð Þ = βkSA − μω′E − 1 − μð ÞωE, ð58Þ

0D
α1,α2,α0
t I tð Þ = 1 − μð ÞωE − γI, ð59Þ

0D
α1,α2,α0
t A tð Þ = μω′E − γ′A, ð60Þ

0D
α1,α2,α0
t R tð Þ = γI + γ′A, ð61Þ

where 0D
α1,α2,α0
t = λ1·0D

α1
t + λ2·0D

α2
t + λ0·0D

α0
t , and the other

parameters in the equation are defined as model (1). How-
ever, we can see that the units on the left of equations (52)
and (55) maintaining the dimensions of ðdaysÞ−αi are not
same as those on the right in which the dimensions are
ðdaysÞ−1. If we take the left-hand side of equations (52) and
(55), by λiði = 0, 1, 2Þ in which the dimension is ðdaysÞαi−1ði
= 0, 1, 2Þ, then we can have the same unit ðdaysÞ−1 to the
equations.

The GMMP scheme [46, 47] is also adopted to express
the numerical solutions of systems (52) and (55). For conve-
nience, the uniform grids t j = jh, j = 0, 1, 2,⋯, n, and nh = t
are applied to discretize in time. We converted equations
(52) and (55) to the form of

C
aD

α1,⋯,αr ,α0
t x tð Þ = f t, x tð Þð Þ, 0 ≤ t ≤ T , ð62Þ

where xðtÞ = ðSðtÞ, EðtÞ, IðtÞ,AðtÞ, RðtÞÞT , and 0 < α1 <⋯<
αr < α0 = 1.

Firstly, the fractional derivative can be discretized by
equation (52) as follows:

C
0D

αi
t x tnð Þ = 1

hαi
〠
n

k=0
cαik x tn−kð Þ − x 0ð Þð Þ, i = 1, 2,⋯, r,

ð63Þ

where

cαik = −1ð Þk
αi

j

 !
, ð64Þ

are binomial coefficients. When α0 = 1, we obtain

C
0D

α0
t x tnð Þ = dx tnð Þ

dt
=
x tnð Þ − x tn−1ð Þ

h
+O hð Þ: ð65Þ

From equations (62) and (65), we can obtain that

C
0D

α1,⋯,αr ,α0
t x tnð Þ = 〠

r

i=1

λi
hαi

〠
n

k=0
cαik x tn−kð Þ − x 0ð Þð Þ + 1

h
x tnð Þ − x tn−1ð Þð Þ

= 〠
n

k=0
〠
r

i=1

λi
hαi

cαik x tn−kð Þ − x 0ð Þð Þ + 1
h

x tnð Þ − x tn−1ð Þð Þ

= 〠
n

k=0
〠
r

i=1

λi
hαi

cαik

 !
x tn−kð Þ − x 0ð Þð Þ + 1

h
x tnð Þ − x tn−1ð Þð Þ

= 〠
n

k=0
Bn
k x tn−kð Þ − x 0ð Þð Þ + 1

h
x tnð Þ − x tn−1ð Þð Þ,

ð66Þ

where Bn
k =∑r

i=1ðλi/hαiÞcαik .
The discrete scheme of equations (52) is given in the

following:

C
0D

α1,⋯,αr ,α0
t x tnð Þ = f tn, x tnð Þð Þ: ð67Þ
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Figure 2: Quantity of the Norovirus infections IðtÞ compared with
the numerical results of one-term fractional-order SEIAR model
(16) obtained by the MGAM method and g = 3:1922.
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Figure 3: The influences of λαi , αiði = 1, 2, 3Þ on the quantity of infections IðtÞ when the remaining parameters remain unchanged.
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Figure 4: The influences of β, μ, ω, ω′, γ on the quantity of infections IðtÞ when the remaining parameters remain unchanged.
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It follows from equation (67) that

〠
n

k=0
Bn
k x tn−kð Þ − x 0ð Þð Þ + 1

h
x tnð Þ − x tn−1ð Þð Þ = f tn, u tnð Þð Þ,

ð68Þ

i.e.,

x tnð Þ = f tn, x tnð Þð Þ
Bn
0 + h−1

+
Bn
0x 0ð Þ + h−1x tn−1ð Þ

Bn
0 + h−1

− 〠
n

k=1

Bn
k

Bn
0 + h−1

x tn−kð Þ − x 0ð Þð Þ:
ð69Þ

Since there is an unknown variable xðtnÞ on both sides of
(69), we choose the Newton method to gain the value of xðtnÞ
via equation (69).

6.2. The Numerical Simulations of the Three-Term
Fractional-Order SEIAR Model. In the following, we use the
above GMMP scheme [46, 47] to exhibit the numerical solu-
tion for simulating this SEIAR model (52) and also utilize the
MH-NMSS-PSO algorithm to find the ideal fractional orders
and parameters, with which the three-term fractional SEIAR
model (52) can provide numerical results that fit well with
the real data.

As the one-term SEIAR model (16), each of the parame-
ters in the multiterm SEIARmodel (52) has its particular bio-
logical meaning. And each parameter has a corresponding
value range. Then, each parameter has a corresponding value
range. The choice of parameter intervals to narrow the target
value is crucial for the result. Hence, based on these ranges,
the intervals and initial velocities are chose in this way:

0 ≤ λ1 = p1 ≤ 2, 0 ≤ λ2 = p2 ≤ 2, 0 ≤ λ0 = p3 ≤ 2,

0 ≤ α1 = p4 ≤ 1, 0 ≤ α2 = p5 ≤ 2, 1 × 10−4 ≤ β = p6 ≤ 1 × 10−3,

1 × 10−11 ≤ k = p7 ≤ 1 × 10−10, 0:01 ≤ μ = p8 ≤ 0:5, 0:5 ≤ ω = p9 ≤ 2,

0:5 ≤ ω′ = p10 ≤ 2,
1
6
≤ γ = p11 ≤ 1, 0:01 ≤ γ′ = p12 ≤ 0:092,

Vi =

0:01, i = 1, 2,⋯, 5,

1 × 10−4, i = 6,

1 × 10−11, i = 7,

0:02, i = 8,

0:05, i = 9, 10,

0:02, i = 11,

0:01, i = 12:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð70Þ

Based on the potential global minimum of gðPÞ, the
unknown parameter P∗ is obtained:

λ1 = 0:32333, λ2 = 0:000346, λ0 = 0:27650, α1 = 0:98135,

α2 = 0:99672, β = 4:3321 × 10‐4, κ = 1:0035 × 10‐11, μ = 0:50000,

ω = 2:00000, ω = 2:00000, γ = 0:16667, γ′ = 0:16667,
ð71Þ

with g = 3:7399. As seen in Figure 5, the three-term fractional
SEIAR model (52) can provide numerical results that agree
well with the real data.

By observing how the parameters influence the variety of
infected people IðtÞ when the remaining parameters are
unchanged, we can obtain the conclusion when the parame-
ters λ2, α2, k, γ′ changed; the number of infected people IðtÞ
basically did not change while other parameters have a cer-
tain impact on IðtÞ. And the influences of other orders and
parameters are given in Figures 6 and 7, which show that
the parameter P∗ we estimated is indeed the ideal parameter.

In the following, we will study the effects of the isolation
which is taken on different days. In reference [42], they study
the data about a Norovirus infectious diarrhea incident
reported in a middle school in a city. On March 8th, the
department of the centers for disease control and prevention
of a city received a telephone report from a middle school,
saying that there were more than ten cases of vomiting,
abdominal pain, and diarrhea in the school recently. The fol-
lowing case definitions were established: vomiting or diar-
rhea and other symptoms such as abdominal pain, fever,
headache, and dizziness have occurred among the students
and staff of the school since March 5th. The number of cases
reached a peak on March 8th. After the intervention on
March 8th, isolation measures were taken. The epidemic
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Figure 5: Quantity of the Norovirus infections IðtÞ compared with
the numerical results of the SEIAR model (52) obtained by MGAM
method and g = 3:7399.
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situation began to decline gradually. In the following, we will
assess the effects of the isolation on different days. From the
numerical simulation and Figure 8, the conclusion about
the effects of isolation can be obtained in the following.When
the intervention and isolation measures were taken onMarch
8th, the number of infected people reached a peak on March

8th. When the isolation measure were taken after March 8th,
the number of the infected people would increase more than
the real data. In particular, when the isolation measures were
taken on March 12th, the changes of the number of the
infected people would be similar to those with no isolation
measure, which indicates that the intervention and isolation
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Figure 6: The influences of λ1, λ0, α1, β, μ, ω on the quantity of infections IðtÞ when the remaining parameters remain unchanged.
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are ineffective for controlling the number of the infected peo-
ple. These conclusions have practical significance for control-
ling the spread of the Norovirus. The earlier the intervention
and isolation are taken, the less people are infected.

7. Conclusion

In this research work, we devoted to studying general and
multiterm fractional-order SEIAR models considering the
Caputo fractional derivative. And we also research the
inverse problem of parameter estimation for the fractional-
order SEIAR systems. To derive the numerical solutions of
the fractional-order SEIAR differential equation, the GMMP

scheme and Newton method are introduced. Simultaneously,
the way we estimate orders and parameters is by applying the
MH-NMSS-PSO algorithm. To guarantee the correctness
and effectiveness of the proposed methods, the data of a
2007 Norovirus outbreak in a middle school [42] is used as
the real data to conceive the parameter estimation. With
the new parameters, all figures demonstrate that the numer-
ical solutions fit very well with the real data, which prove
whether the single-term or the multiterm fractional-order
SEIARmodels can forecast the quantity of the infectious peo-
ple accurately. And it also verifies the effectiveness of our
method for parameter estimation. And the impact of every
parameter on the quantity of infected humans IðtÞ is studied
with the remaining parameters unchanged. The result shows
that the parameters we got are indeed the most ideal param-
eters, and the fractional-order SEIARmodel we proposed can
provide a better fitting among the numerical solutions and
the real data than other models.

The hybrid Nelder-Mead simplex search and particle
swarm optimization (MH-NMSS-PSO) algorithms are a
valid method of estimating the fractional derivative orders
and coefficients for fractional differential equations. In the
paper [58], they propose a feasible parameter estimation
method based on a hybrid Nelder-Mead simplex search and
particle swarm optimization to perform the curve fitting for
the multiterm time-fractional Bloch equations. From the
simulated results, shown in Figure 5 of their paper, the
numerical results of the two-term TFBE model (solid line)
are in good agreement with the experimental data (asterisk),
which shows that the parameter estimation method (MH-
NMSS-PSO) is effective. In the paper [10], they apply a
parameter fitting approach to the classical monoexponential
model, a previously developed anomalous relaxation model,
and the extended time-fractional relaxation model. They find
that the extended time-fractional model is able to fit the
experimental data with smaller mean-squared error than
the classical monoexponential relaxation model and the
anomalous relaxation model, which is shown in Figure 2.
Other papers about the inverse problem also show that the

0
10
20
30
40
50
60
70
80
90

100

Th
e n

um
be

r o
f i

nf
ec

tio
ns

0

10

20

30

40

50

60

70

80

90

Th
e n

um
be

r o
f i

nf
ec

tio
ns

Time (days)
0 5 10 15 20

Real data
𝜔′ = 1.8

𝜔′ = 1.9
𝜔′ = 2

20 4 6 8 10 12 14 16 18
Time (days)

Real data
𝛾 = 0.18

𝛾 = 0.17
𝛾 = 0.16

Figure 7: The influences of ω′, γ on the quantity of infections IðtÞ when the remaining parameters remain fixed.
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MH-NMSS-PSO algorithm is an efficient and valid method
of estimating parameters for fractional differential equations.

In our paper, we use the modified hybrid Nelder-Mead
simplex search and particle swarm optimization (MH-
NMSS-PSO) algorithm to estimate the parameters for frac-
tional differential equations and the multiterm fractional dif-
ferential equations. The modified MH-NMSS-PSO algorithm
is more efficient than the classical one. With the new param-
eters, our multiterm fractional-order SEIAR system is capa-
ble of providing numerical results that agree very well with
the real data. It also demonstrates that our dengue model
can predict the number of infected human with other data,
and our method can be applied to other fractional-order epi-
demic models.
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