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In this paper, Fourier spectral method combined with modified fourth order exponential time-differencing Runge-Kutta is
proposed to solve the nonlinear Schrödinger equation with a source term. The Fourier spectral method is applied to
approximate the spatial direction, and fourth order exponential time-differencing Runge-Kutta method is used to discrete
temporal direction. The proof of the conservation law of the mass and the energy for the semidiscrete and full-discrete Fourier
spectral scheme is given. The error of the semidiscrete Fourier spectral scheme is analyzed in the proper Sobolev space. Finally,
several numerical examples are presented to support our analysis.

1. Introduction

Schrödinger equation, being known as basic assumption of
quantum mechanics, is one of the most important equations
in quantum mechanics that proposed by Austrian physicist
Schrödinger. Known to all, the standard Schrödinger equa-
tion is a second-order partial differential equation established
by combining the concept of matter wave and wave equation,
and it can describe the movement of microparticles. Indeed,
each microsystem has a corresponding Schrodinger equa-
tion. The specific form of wave function and corresponding
energy can be obtained by solving this equation, so as to
understand the properties of microsystem. Schrödinger
equation shows that in quantum mechanics, particles appear
in the form of probability, with uncertainty, and can be
ignored at the macroscale.

In recent decades, more and more scholars have been
interested in studying Schrödinger equations, and the
research on Schrödinger equations can be divided into two
categories: integral order (or local) and fractional order (or
nonlocal) models. Now, we will make a brief literature
review.

(1) Schrödinger Equations of Fractional Order. In 2000,
firstly, Laskin [1] extended the fractional concept in

quantum physics to construct a fractional path inte-
gral, and over these paths, the standard nonlinear
Schrödinger equation was generalized to the frac-
tional one. Very recently, many scholars studied the
numerical solutions of fractional Schrödinger equa-
tions. In 2008, Rida et al. [2] applied the Adomian
decomposition method to get the analytic and
approximate solutions for different types of fractional
differential equations. In 2011, the generalized two-
dimensional differential transform method was
directly applied to solve the coupled Burger’s equa-
tions by Liu et al. [3]. In 2012, Wei et al. [4] presented
an implicit fully discrete local discontinuous Galerkin
finite element method for solving the time-fractional
Schrödinger equation with Caputo fractional deriva-
tive. In 2013, Secchi et al. [5] obtained the solutions
to a class of Schrödinger equations by using the frac-
tional Laplacian. In 2014, the Jacobi spectral colloca-
tion method was constructed, and the numerical
solutions of the time-fractional Schrödinger equation
and the space-fractional Schrödinger equation were
got by Bhrawy et al. [6]. In literature [7], Wang
et al. proposed a linearly implicit conservative differ-
ence scheme for the coupled nonlinear Schrödinger
equations with space fractional derivative, and she
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proved that the scheme can conserve the mass and
energy in the discrete level. In 2015, Wang et al. [8]
studied the energy conservative Crank-Nicolson dif-
ference scheme for nonlinear Riesz space-fractional
Schrödinger equations and gave the proof of mass
conservation and energy conservation in the discrete
sense. In 2016, Ran et al. [9], under some assump-
tions, an implicit difference scheme was proposed to
solve the strongly coupled nonlinear space fractional
Schrödinger equations. In the literature [10–12], the
semidiscrete scheme was fully constructed by
employing finite element method. In 2020, Wang
et al. [13] proposed a preconditioning method for
the space fractional coupled nonlinear Schrödinger
equations. For other literature on the fractional
Schrödinger equations, see [14–16]

(2) Schrödinger Equations of Integral Order. The study of
the standard Schrödinger equations has attracted
many scholars. In 1995, Edwards et al. [17] presented
a numerical treatment to solve the time-independent
nonlinear Schrödinger equation with an external
potential. In 1999, Chang et al. [18] studied the finite
difference schemes for solving the generalized non-
linear Schrödinger equations, and several schemes,
including Crank-Nicolson-type schemes, split step
Fourier scheme, and pseudo-spectral scheme, were
employed for solving three models of the generalized
nonlinear Schrödinger equations. In 2003, Bao et al.
[19] studied the performance of time-splitting spec-
tral approximations for general nonlinear Schrödin-
ger equations and proved that the discrete scheme
was unconditionally stable and conserved in L1
norm. In 2005, Wang [20] got the numerical solu-
tions to nonlinear Schrödinger equations by using
the split-step finite difference method. In 2017, Deh-
ghan et al. [21] presented a numerical scheme based
on radial basis function for solving the high-
dimensional nonlinear Schrödinger equations using
the explicit Runge-Kutta method. In 2019, Ahsan
et al. [22] proposed a Haar wavelet collocation
method for linear and nonlinear Schrödinger equa-
tions, and the stability analysis of this method was
given. In 2020, Ban et al. [23] proposed a family of
algorithms, which were special implementations of
Lubich’s Convolution Quadrature, for the numerical
solution to the Schrödinger equation. For other liter-
ature on the standard Schrödinger equations, see
[24–28]

In this paper, we study the numerical solution to the non-
linear Schrödinger equation of the following form:

iut x, tð Þ + αΔu x, tð Þ + β u x, tð Þj j2u x, tð Þ + γf xð Þu x, tð Þ = 0,
ð1Þ

with the periodic condition

u x + 2π, tð Þ = u x, tð Þ, ð2Þ

and the initial condition

u x, 0ð Þ = u0 xð Þ, ð3Þ

where

Δu x, tð Þ = ∂xxu x, tð Þ, x, tð Þ ∈ −π, πð Þ × 0, T½ �: ð4Þ

i is the imaginary number of units and i2 = −1; u0ðxÞ is a
function with a period of 2π; α, β, and γ are the three real
numbers.

For this model, two important physical quantities are
often considered; these are mass and energy and using the
conservation of mass and energy to measure whether the
algorithm is effective for this equation. As in [10], we can eas-
ily derive the mass and energy conservation

M tð Þ =M 0ð Þ,
E tð Þ = E 0ð Þ,

ð5Þ

where

M tð Þ =
ð2π
0

u x, tð Þj j2dx,

E tð Þ = −α
ð2π
0
ux x, tð Þ�ux x, tð Þdx β2

ð2π
0

u x, tð Þ ∣ 4dx��
+ γ
ð2π
0

f xð Þ
����u x, tð Þj

2
dx:

ð6Þ

The rest of this paper is organized as follows. In Section 2,
the definitions and properties of the related Sobolev space are
introduced; based on this space, we establish a semidiscrete
Fourier spectral scheme for model (1), whose solution keeps
mass and energy conversation for some function f ðxÞ. Then,
the error estimation of this semidiscrete scheme is given in
the established Sobolev space. Section 3 gives an introduction
of modified fourth order exponential time-differencing
Runge-Kutta method that is used to discrete the temporal
component, and a proof of mass conservation and energy
conservation is given in the discrete sense. In Section 4, we
carry out some numerical experiments to verify our conclu-
sions. Finally, Section 5 offers some concluding remarks.

2. Preliminaries

In this section, based on the semidiscrete Fourier spectral
scheme, we prove the mass and energy conversation for this
semidiscrete scheme and give the error estimation of the Fou-
rier spectral approximation. First, we introduce the following
Sobolev space and some notations.

Let Ω = ð−π, πÞ ⊂ℝ, and the space C∞
p is defined by

C∞
p = u ∣ u ∈ C∞ Ωð Þ, u x − π, tð Þ = u x + π, tð Þ, x ∈ℝf g: ð7Þ
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Define inner product on Ω = ð−π, πÞ:

u x, tð Þ, v x, tð Þh iΩ =
ðπ
−π

u x, tð Þ�v x, tð Þdx, ð8Þ

and the norm on Ω = ð−π, πÞ:

∥u x, tð Þ∥ =
ðπ
−π

u x, tð Þ�u x, tð Þdx, ð9Þ

where �vðx, tÞ is the conjugate of vðx, tÞ. We denote the com-
plete space of C∞

p by Hn
p , which can be characterized in the

frequency space under the norm

∥u∥n ≔ 〠
m≤n

∥Dmu x, tð Þ∥2� �1/2, ð10Þ

the seminorm jujn is defined by

uj jn ≔ 〠
0<m≤n

∥Dmu x, tð Þ∥2� �1/2, ð11Þ

where Dmuðx, tÞ = ∂muðx, tÞ/∂xm.
Suppose

SN = span eikx ,−N ≤ k ≤N
n o

: ð12Þ

Then, the orthogonal projection operator PN : Hn
p ⟶

SN is defined by

PNuð Þ xð Þ = 〠
N

k=−N
ûke

ikx = uN , ð13Þ

where ûk, k = −N ,⋯,N are the Fourier coefficients of u.
According to the definition of inner product, ∀vN ∈ SN ,

we define the semidiscrete scheme for model (1):

iuNt , vN
� �

Ω
+ α ΔuN , vN
� �

Ω
+ β uN

�� ��2uN , vND E
Ω
+ γ f uN , vN
� �

Ω
= 0,

ð14Þ

uN 0ð Þ = PNu0 xð Þ: ð15Þ

Usually, when designing a numerical scheme for (14),
two important conservation laws often need to be consid-
ered: the mass and the total energy of the wave function. In
the following lemma, we prove that the semidiscrete Fourier
spectral scheme (14) can keep the conservation laws.

Lemma 1. Let uNð0Þ, uNðx, tÞ ∈H1
P, then the semidiscrete

scheme (14) is conservative in the sense

M tð Þ =M 0ð Þ, 0 < t < T ,
E tð Þ = E 0ð Þ, 0 < t < T ,

ð16Þ

where

M tð Þ =
ðπ
−π

uN x, tð Þ�� ��2dx,

E tð Þ = −α
ðπ
−π

uNx x, tð Þ�uNx x, tð Þdx + β

2

ðπ
−π

uN x, tð Þ ∣ 4dx��
+ γ
ðπ
−π

f xð Þ
����uN x, tð Þj

2

dx,

ð17Þ

are the mass and energy of the wave function, respectively.

Proof. Let vN = uN in (14), we have

iuNt , uN
� �

Ω
+ α ΔuN , uN
� �

Ω
+ β uN

�� ��2uN , uND E
Ω
+ γ f uN , uN
� �

Ω
= 0:

ð18Þ

Note that α, β, and γ are three real numbers; thus, taking
the imaginary part of the above equation and noting the peri-
odic boundary condition, we get

Im α ΔuN , uN
� �

Ω

� �
= Im

ðπ
−π

uNx �u
N
x

� �
= 0,

Im β uN
�� ��2uN , uND E

Ω

	 

= Im β uN

�� ��2 uN , uN
� �

Ω

	 

= 0,

Im γ f uN , uN
� �

Ω

� �
= 0,

ð19Þ

which indicates

uNt , uN
� �

Ω
= 1
2
d
dt

uN , uN
� �

Ω

� �
= 1
2
d
dt

M tð Þð Þ = 0: ð20Þ

Next, we prove the semidiscrete scheme (14) can keep
energy conservation. Let vN = uNt in (14), we have

iuNt , uNt
� �

Ω
+ α ΔuN , uNt
� �

Ω
+ β uN

�� ��2uN , uNtD E
Ω
+ γ f uN , uNt
� �

Ω
= 0:

ð21Þ

Taking the real part of the above equation and noting the
periodic boundary condition, we have

Re iuNt , uNt
� �

Ω

� �
= 0, ð22Þ

Re α ΔuN , uNt
� �

Ω

� �
= Re α uNxx ,uNt

� �
Ω

� �
= α Re

ðπ
−π

uNxx�u
N
t dx

� �

= −α Re
ðπ
−π

uNx �u
N
x,tdx

� �

= −
α

2
d
dt

ðπ
−π

uNx �u
N
x dx:

ð23Þ
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Computing the real part of βhjuN j2uN , uNt iΩ, we have

Re β uN
�� ��2uN , uNtD E

Ω

	 

,

= Re β
ðπ
−π

uN
�� ��2uN�uNt dx	 
� �

= Re β
ðπ
−π

uN�uNuN�uNt
� �

dx
� �

= β

4
d
dt

ðπ
−π

uN�uNuN�uN
� �

dx

= β

4
d
dt

ðπ
−π

uN
�� ��4dx:

ð24Þ

Computing the real part of γh f uN , uNt iΩ, we have

Re γ f uN , uNt
� �

Ω

� �
= γ

2
d
dt

ðπ
−π

f uN
�� ��2dx: ð25Þ

It follows from equations (22), (23), (24), and (25); we get
the energy conservation law. This completes the proof.

Next, we analyze the existence and uniqueness of solution
for the semidiscrete scheme (14). We need the following
lemma.

Lemma 2. Let uN is the solution for the semidiscrete scheme
(14); then, there exists a positive constant C, such that

max ∥uN∥1,∥uN∥∞
� �

≤ C: ð26Þ

Proof. From Lemma 1, we have

∥uN tð Þ∥20 = ∥uN 0ð Þ∥20 = ∥PNu0 xð Þ∥20 ≤ ∥u0∥
2
0 = C, ð27Þ

∥uN tð Þ∥20 +
β

2

ðπ
−π

uN x, tð Þ�� ��4dx
= ∥uN 0ð Þ∥20 +

β

2

ðπ
−π

uN x, 0ð Þ�� ��4dx
≤ ∥uN 0ð Þ∥20 +

βj j
2

ðπ
−π

max uN x, 0ð Þ�� ��4n o
dx

≤ ∥uN 0ð Þ∥20 + βj jπ∥uN x, 0ð Þ∥4∞
≤ ∥uN 0ð Þ∥20 + C∣β∣π∥uN x, 0ð Þ∥41 = C:

ð28Þ

(27) and (28) lead to

∥uN tð Þ∥21 = ∥uN tð Þ∥20+∥uNx tð Þ∥20 ≤ C: ð29Þ

Finally, using Sobolev’s embedding theorem, we obtain

∥uN tð Þ∥2∞ ≤ C, ð30Þ

which implies both ∥uNðtÞ∥1 and ∥uNðtÞ∥∞ are bounded.

Therefore

max ∥uN∥1,∥uN∥∞
� �

≤ C: ð31Þ

This completes the proof.

The semidiscrete scheme (14) is a first order nonlinear
ordinary differential equation with respect to time t on a
finite interval; using Lemma 2 and Picard’s theorem, we
obtain the following theorem.

Theorem 3. Let the solution u ∈ L2ðð0, TÞ,H1
Pð0, 2πÞÞ, u0 ∈

H1
Pð0, 2πÞ, then the semi-discrete scheme (14) has unique solu-

tion uN in SN .

Proof. The proof is omit.
In the following theorem, we will give the error estima-

tion of the Fourier spectral method to solve problem (1).
For convenience, we still use η ≤ ξ to denote that there exists
a positive constant C, which is independent of N , η, and ξ,
such that η ≤ Cξ.

Theorem 4. Let u is the solution of (1); uN is obtained from the
semidiscrete scheme (14); then, we have

∥u tð Þ − uN tð Þ∥2 ≤N2μ−2: ð32Þ

Proof. Let eNðtÞ = uNðtÞ − PNuðtÞ, with uNðtÞ in (14) replaced
by PNuðtÞ, for all vN ∈ SN , we have

i eN ,t tð Þ, vN� �
Ω
+ α ΔeN tð Þ, vN� �

Ω

+ β uN tð Þ�� ��2uN tð Þ − PNu tð Þj j2PNu tð Þ, vN
D E

Ω

+ γ f eN tð Þ, vN� �
Ω
= 0:

ð33Þ

Note that huðtÞ − PNuðtÞ, vNiΩ = 0, ∀vN ∈ SN , by setting
vN = eNðtÞ, and taking the imaginary part of (33), we obtain

α

2
d
dt

eN tð Þ, eN tð Þ� �
Ω
+ βIm u tð Þj j2u tð Þ − uN tð Þ�� ��2uN tð Þ, eN tð Þ

D E
Ω

	 

= 0:

ð34Þ

Applying the Schwarz inequality to the above equation,
we get

∣α ∣
2

d
dt

∥eN tð Þ∥2 ≤ ∥∣β∣ u tð Þj j2u tð Þ − uN tð Þ�� ��2uN tð Þ
	 


∥·∥eN tð Þ∥

≤
1
2 ∥∣β∣ u tð Þj j2u tð Þ − uN tð Þ�� ��2uN tð Þ

	 

∥2 + 1

2 ∥e
N tð Þ∥2:
ð35Þ
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We note that

∣β∣ u tð Þj j2u tð Þ − uN tð Þ�� ��2uN tð Þ
	 

= βj j u tð Þj j2 u tð Þ − uN tð Þ� �

+ ∣β∣uN tð Þ
· �u tð Þu tð Þ − u tð Þ�uN tð Þ + u tð Þ�uN tð Þ − �uN tð ÞuN tð Þ� �

= ∣β∣ u tð Þj j2 u tð Þ − uN tð Þ� �
+ uN tð Þu tð Þ �u tð Þð�

− �uN tð Þ� + uN tð Þ�� ��2 u tð Þ − uN tð Þ� �g:
ð36Þ

Then, the factor ∥∣β ∣ ðjuðtÞj2uðtÞ − juNðtÞj2uNðtÞÞ∥2 is
bounded by

∥∣β∣ u tð Þj j2u tð Þ − uN tð Þ�� ��2uN tð Þ
	 


∥ ≤ ∥u tð Þ − uN tð Þ∥
≤ ∥u tð Þ − PNu tð Þ∥+∥eN tð Þ∥:

ð37Þ

According to equations (35) and (37) and ðu − PNu, eNÞ
= 0, we arrive at

d
dt

∥eN tð Þ∥2 ≤ ∥u tð Þ − PNu tð Þ∥2+∥eN tð Þ∥2, ð38Þ

which in accordance with Gronwall inequality, we have

∥eN tð Þ∥ ≤
ðT
0
∥u τð Þ − PNu τð Þ∥2dτ: ð39Þ

Noting that for all 0 < μ < 1, there exists a positive con-
stant C, such that

∥u tð Þ − PNu tð Þ∥μ ≤ CNμ−1 uj j1: ð40Þ

Finally, a combination of the above estimates leads to

∥u tð Þ − uN tð Þ∥2 ≤ ∥u tð Þ − PNu tð Þ∥2+∥PNu tð Þ − uN tð Þ∥2

≤N2μ−2∣u tð Þ 2
1 +
ðT
0
∥u τð Þ − PNu τð Þ∥2dτ

����
≤N2μ−2 u tð Þ ∣ 21 +N2μ−2

ðT
0

����
����u τð Þ

����
2

1
dτ

≤N2μ−2 u tð Þ ∣ 21 +
ðT
0

����
����u τð Þ

����
2

1
dτ

 !
≤N2μ−2:

ð41Þ

This completes the proof.

3. The Full-Discrete Fourier Spectral Scheme
and Its Conservation

In this section, we first introduce the full-discrete Fourier
spectral scheme for (1) and then give the proof of its conser-
vation properties.

3.1. The Full-Discrete Fourier Spectral Scheme. Due to the
periodicity of the solution, it suffices to compute the model
in the intervalΩ = ½−π, π�. We choose N interpolation points
xN = ðx1, x2,⋯,xNÞ, and xj = 2πj/N , −N/2 ≤ j ≤N/2 − 1.
Then, the semidiscrete scheme (14) can be discretized in
space by seeking the approximate solution

u xj
� �

= 〠
kj j∞≤N/2

~uke
ikxj , t > 0, ð42Þ

where

~uk =
Ck

N
〠
n

j=1
u xj
� �

eikx j , ð43Þ

is the kth discrete Fourier coefficient, Ck = 1 for ∣k ∣ <N/2,
and Ck = 2 for ∣k ∣ =N/2. Thus, for each frequency k, we have

i
∂~uk
∂t

+ α k2
� �

~uk

+βF F−1 ~ukð Þ�� ��2F−1 ~ukð Þ
	 


+ γF f F−1 ~ukð Þ� �� �
= 0,

~u x, 0ð Þ =F u0ð Þ:

8>>>><
>>>>:

ð44Þ

Let h1, h2,⋯, hQ be the time steps, satisfying

〠
Q

q=1
hq = T ,

tq = 〠
q

j=1
hj,

L = iα k2
� �

,

F ~uk, tð Þ = iβF F−1 ~ukð Þ�� ��2F−1 ~ukð Þ
	 


+ iγF f F−1 ~ukð Þ� �� �
,

ð45Þ

then (44) is equivalent to

~uk tq + hq+1
� �

= eLhq+1~uk tq
� �

+ eLhq+1
ðhq+1
0

e−LsF ~uk tq + s
� �

, tq + s
� �

ds:

ð46Þ

More detail about this equation can be find in [29, 30].
Now, let ~uk,q = ~ukðtqÞ and using modified fourth order expo-
nential time-differencing Runge-Kutta (ETDRK4) method to
approximate the integral equation (46), we have
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λq = e
Lhq+1

2 ~uk,q + L−1 e
Lhq+1

2 − I
� �

F ~uk,q, tq
� �

,

χq = e
Lhq+1

2 ~uk,q + L−1 e
Lhq+1

2 − I
� �

F λq, tq +
hq+1
2

� �
,

νq = e
Lhq+1

2 λq + L−1 e
Lhq+1

2 − I
� �

·

2F χq, tq +
hq+1
2

� �
− F ~uk,q, tq
� �� �

,

~uk,q+1 = eLhq+1~uk,q + hq+1 θ1F ~uk,q, tq
� ��

+2θ2 F λq, tq +
hq+1
2

� �
+ F χq, tq +

hq+1
2

� �� �

+θ3F νq, tq + hq+1
� ��

,

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð47Þ

where

θ1 = 4ϕ3 Lhq+1
� �

− 3ϕ2 Lhq+1
� �

+ ϕ1 Lhq+1
� �

,

θ2 = ϕ2 Lhq+1
� �

− 2ϕ3 Lhq+1
� �

,

θ3 = 4ϕ3 Lhq+1
� �

− ϕ2 Lhq+1
� �

,

8>><
>>: ð48Þ

with the functions ϕ1, ϕ2, and ϕ3 being defined by

ϕ1 =
ez − 1
z

,

ϕ2 =
ez − 1 − z

z2
,

ϕ3 =
ez − 1 − z − z2/2

z3
:

ð49Þ

Finally, by using inverse Fourier transform, we obtain
uj,q =F−1ð~uk,qÞ is the approximate solution of uðxj, tqÞ.

For simplicity, the equal step-size is used to discrete time
directions. The method presented in this paper allows one to
choose different step sizes which are determined by adaptive
strategy given in [31]. Next, we proof that the full-discrete
scheme (47) satisfies two conservation laws given by Lemma 1.

3.2. The Conservation Laws for ETDRK4. In this subsection,
we prove that the scheme given by (47) can keep mass and
energy conservation. First, see the following two explanatory
notes about ETDRK4.

Note 1. Equation (46) is obtained by integrating

e−Lt~uk ·, tð Þ� �
= e−Lt F ~uk, tð Þ, ð50Þ

from t = tq to t = tq+1. Then, from the reasoning process of
the method ETDRK4 [29, 30], we get the following form

e−Ltq+1 ûN ,k,q+1 = e−Ltq ûN ,k,q + hq+1Φ tq, ûN ,k,q
� �

+O h5q+1
	 


,

ð51Þ

where

Φ tq, ûN ,k,q
� �

= 〠
4

j=1

hj−1

j!
dj−1

dt j−1
e−Lt F ûN ,k,q, t

� �� ������
t=tq

,

ûN ,k,q =F uN x, tq
� �� �

,

ð52Þ

Table 1: Errors in spatial direction for Example 1.

h N Error l∞ð Þ OrderN
1e–4 6 9.6321e–2 —

1e–4 8 6.5321e–3 9.3539

1e–4 10 3.4651e–4 13.1601

1e–4 12 1.7032e–5 16.5246

1e–4 14 7.0652e–7 20.6454

1e–4 16 4.1237e–8 21.2760

1e–4 18 4.3511e–9 19.0936

1e–4 20 5.3511e–10 19.8909

The errors in l∞ sense vs. various N for Example 1 with h = 10−4.

8 10

Er
ro

r (
𝛼
)

100

10–2

10–4

10–6

10–8

10–10

12 14
N

16 18 206

Figure 1: The log-errors (in l∞ sense) vs. N for Example 1.

Table 2: Errors in temporal direction for Example 1.

N h Error l∞ð Þ Orderh
32 1/100 1.2268e–5 —

32 1/200 8.2231e–7 3.8991

32 1/400 6.4230e–8 3.6784

32 1/800 4.9085e–9 3.7099

32 1/1600 4.6652e–10 3.3953

32 1/3200 3.1237e–11 3.9006

32 1/6400 2.3511e–12 3.7318

The errors in l∞ sense vs. different time step size h for Example 1 withN = 32
.
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here, uNðx, tqÞ is obtained from the semidiscrete scheme (14).

Then, if ignoring the error termOðh5q+1Þ, using the method of
ETDRK4 to solve (46) is equivalent to get the solution to (50)
by the scheme (51).

Note 2. Assume that the function ϕmentioned above satisfies
the Lipschitz condition with parameter λ > 0, that is

∣Φ t, u1ð Þ −Φ t, u2ð Þ∣ ≤ λ u1 − u2j j: ð53Þ

Actually, ϕ should be third-order continuous differentia-
ble with respect to u due to using the method of ETDRK4,
which ensures that ϕ satisfies this assumption easily.

In Lemma 1, we have proved the mass conservation for
the semidiscrete scheme (14). Then, if it holds ∣uNðxj, tqÞ −
uj,q ∣ ≤OðhnmaxÞ, the full-discrete scheme ETDRK4 is mass
conservative, where uNðxj, tqÞ is the solution to (14) and

uj,q is obtained from (47) and inverse Fourier transform.
Next, we give the proof in the following theorem.

Theorem 5 (mass conservation). Let uNðxj, tqÞ be obtained
from the semidiscrete scheme (14), uj,q =F−1ð~uk,qÞ, and ~uk,q
is computed by (47). Define the discrete mass MðtqÞ =∑j jΩj

jjuj,qj, Ω =Sj Ωj. Then, ignoring the error comes from

machine calculation, we have

uN xj, tq
� �

− uj,q
�� �� ≤O h4max

� �
, ð54Þ

where hmax = max
1≤i≤Q

hi, q = 0, 1, 2,⋯,Q: Furthermore,

M t0ð Þ ~M t1ð Þ ~⋯ ~M tQ
� �

: ð55Þ

u
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,t

)

t
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0

5
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Figure 2: The exact solution on the region ½0, 10� × ½−π, π� for Example 1.
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Figure 3: The approximate solution on the region ½0, 10� × ½−π, π� for Example 1.
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Proof. Without loss of generality, we only need to prove juN
ðxj, tQÞ − uj,Qj ≤Oðh4maxÞ: From Note 1, we have

e−Ltq+1~uk,q+1 = e−Ltq~uk,q + hq+1Φ tq, ~uk,q
� �

: ð56Þ

Taking the module of equation (51) minus equation (56),
and let ~eq = ûN ,k,q − ~uk,q, it follows

e−Ltq+1 ∣~eq+1∣ ≤ e−Ltq ∣~eq∣ + hq+1∣Φ tq, ûN ,k,q
� �

−Φ tq, ~uk,q
� �

∣ +O h5q+1
	 


:

ð57Þ

Using Note 2, we get

e−Ltq+1 ∣~eq+1∣ ≤ e−Ltq ∣~eq∣ + hq+1λ∣~eq∣ +O h5q+1
	 


, ð58Þ

q = 0, 1,⋯,Q − 1: Summing the above inequalities from
q = 0 to q =Q − 1, we obtain

e−LT ∣~eQ∣ ≤ ∣~e0∣ + λ 〠
Q−1

q=0
hq+1∣~eq∣ +O h4max

� �
: ð59Þ

Let C1 = eLT using Gronwall inequality leads to

∣~eM ∣ ≤ e

λC1 〠
Q−1

q=0
hq+1

C1 ∣~e0∣+O h4max
� �� �

: ð60Þ

Note that ~e0 = 0 and denote eλC1T by C, the desired result
follows,

∣uN xj, tQ
� �

− uj,Q∣ = ∣F−1 ~eQ
� �

∣ = ∣ ~eQ
� �

∣ ≤ C ·O h4max
� �

=O h4max
� �

:

ð61Þ

Moreover, we have

uj,0
�� �� − uj,Q

�� ��� ��� �� ≤ uj,0
�� �� − uN xj, t0

� ��� �� + uN xj, tQ
� ��� �� − uj,Q

�� ��� ��� ��
≤ ∣ uj,0
�� �� − uN xj, t0

� ��� ��� �
∣ + uN xj, tQ

� ��� �� − uj,Q
�� ��� ��� ��

≤ 2O h4max
� �

=O h4max
� �

:

ð62Þ

The above inequalities imply

M 0ð Þ ~M t1ð Þ ~⋯ ~M tQ
� �

, ð63Þ

as N is big enough and hmax ⟶ 0.

Theorem 6 (energy conservation). Let

uj,q =F−1 ~uk,q
� �

, ð64Þ

and ~uk,q is obtained from (47). Define the discrete local-energy

Ej tq
� �

= Ωj

�� �� −α �uj,qδ
α/2uj,q

	 

+ β

2
∣ uj,q

��4 �
, ð65Þ

and the discrete energy

E tq
� �

=〠
j

Ej tq
� �

, ð66Þ

here, δα/2uj,q is a numerical approximation of the fractional

Laplacian operator ð−ΔÞα/2, Ω =Sj Ωj. Then, we have

∣Ej 0ð Þ − Ej tq
� �

∣ ≤O h4max
� �

, q = 1, 2,⋯,Q: ð67Þ

Furthermore, Eðt0Þ ~ Eðt1Þ ~⋯~ EðtQÞ.

Proof. Without loss of generality, we only need to prove

∣Ej 0ð Þ − Ej tQ
� �

∣ ≤O h4max
� �

: ð68Þ

Table 4: Errors in temporal direction for Example 2.

N h Error l∞ð Þ Orderh
32 1/50 8.6535e–07 —

32 1/100 5.4832e–08 3.9802

32 1/200 4.1220e–09 3.7336

32 1/400 3.1075e–10 3.7295

32 1/800 2.2452e–11 3.7908

32 1/1600 1.5247e–12 3.8802

32 1/3200 1.0521e–13 3.8572

32 1/6400 1.0012e–14 3.3935

The errors in l∞ sense vs. different time step size h for Example 2 withN = 32.

Table 3: The conservation of mass and energy for Example 1.

Conservation t = 0 t = 2 t = 6 t = 8 t = 10
Mass (∗102) 1.058338707 1.058338708 1.058338710 1.058338712 1.058338713

Energy (∗103) 1.8327299552 1.8327299551 1.8327299549 1.8327299548 1.8327299547

The values of mass and energy at time t = 0, t = 2, t = 6, t = 8, and t = 10, for Example 1 with N = 16 and h = 10−2.
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Define bounded linear operator

A ∣uj,q ∣
� �

≔ Ej tq
� �

, ð69Þ

then we have

∣Ej 0ð Þ − Ej tQ
� �

∣ = ∥A ∣uj,0∣−∣uj,Q ∣
� �

∥ ≤ C ∣uj,0∣−∣uj,Q ∣
� ��� ��,

ð70Þ

where C > 0 is a positive constant. By Theorem 5,

∣Ej 0ð Þ − Ej tQ
� �

∣ ≤O h4max
� �

, ð71Þ

which implies

E 0ð Þ ~ E 1ð Þ ~⋯ ~ E Qð Þ, ð72Þ

as N is big enough and hmax ⟶ 0.

4. Applying

In this section, we present two examples to illustrate our
results. As in [10], we define the convergence orders in (l∞)
norm sense as follows

Table 5: The conservation of mass and energy for Example 2.

Conservation t = 0 t = 10 t = 20 t = 30 t = 50
Mass 3.1415926535 3.1415926536 3.1415926536 3.1415926536 3.1415926537

Energy 1.178097245 1.178097245 1.178097245 1.178097245 1.178097245

The values of mass and energy at time t = 0, t = 10, t = 20, t = 30, and t = 50, for Example 2 with N = 16 and h = 10−2.
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Figure 4: The exact solution on the region ½0, 60� × ½−π, π� for Example 2.
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Figure 5: The approximate solution on the region ½0, 60� × ½−π, π� for Example 2.
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orderh =
log E h1,Nð Þ/E h2,Nð Þð Þ

log h1/h2ð Þ ,

orderN = log E h,N1ð Þ/E h,N2ð Þð Þ
log N2/N1ð Þ ,

ð73Þ

where Eðh,NÞ is given by

E h,Nð Þ =max
j,p

u xj, tp
� �

− uj,p
�� ��: ð74Þ

All the experiments were done on a computer with the
following configuration: Intel(R) Core (TM) i5-8250 CPU
@ 1.60GHz 1.80GHz and involved using MATLAB 2015b.

4.1. Example 1. We first consider the periodic initial Schrö-
dinger equation (1) with the following conditions: 0 ≤ t ≤ 10
, α = 1, β = −1, γ = −1, f ðxÞ = sin2ðxÞ − cos ðxÞ −
ðexp ðcos ðxÞ + 1ÞÞ2 + 1, and u0ðxÞ = exp ðcos ðxÞ + 1Þ. The
exact solution is

u x, tð Þ = exp cos xð Þ + 1ð Þ exp −itð Þ: ð75Þ

By FFT and ETDRK4, we compute numerical solution of
this example. The point-wise errors (in l∞ sense) against var-
ious N are shown in Table 1; then, we plot in semilog scale in
Figure 1, which clearly indicates the exponential convergence
in space direction, and the fourth order accuracy in time
direction is shown in Table 2. The exact solution is shown
in Figure 2, and the solution surface is shown in Figure 3,
from which we can see that the two pictures are fit very well.
Finally, we compute the mass and the energy of the numeri-
cal solution at different times. As one can see in Table 3, the
scheme has an excellent conservation property and is in well
agreement with the results in Theorem 5.

4.2. Example 2. We then consider the periodic initial Schrö-
dinger equation (1) with the following conditions: 0 ≤ t ≤ 50
, α = 1, β = −1, γ = −1, f ðxÞ = cos2ðxÞ, and u0ðxÞ = sin ðxÞ.
The exact solution to the equation is

u x, tð Þ = sin xð Þ exp i −1:5tð Þð Þ: ð76Þ

We compute the numerical solution for this example
until the time t = 50 with time step h = 0:01 on the uniform
grid with N = 32. We display the errors that derived from
temporal direction in Table 4. By Theorem 5, the scheme
can keep the mass and energy conservation. Table 5 validates
this result very well. It can be seen from Figures 4 and 5 that
the approximate solution is in good agreement with the exact
solution.

5. Conclusion

In this paper, we propose a method to solve the Schrödinger
equations by using the method of Fourier spectral and mod-
ified fourth order exponential time-differencing Runge-
Kutta, and we give the semidiscrete and full-discrete schemes
for the equations. We prove that the schemes can keep the
conservation law of mass and energy for full-discrete

schemes. Numerical examples verify that our conclusions
are correct.
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