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+e present study aims to assess the induced nanotoxicity of arsenic nanoparticles (AsNPs) on different organs of fresh water fish
Labeo rohita. AsNPs were synthesized by chemical reduction method using sodium arsenite as precursor, ice-cold sodium
borohydride as reducing agent, and sodium hydroxide to adjust the solution pH. +e synthesized AsNPs were characterized by
UV-Vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) for optical, structural, and mor-
phological investigations. +e UV-Vis absorption peaks occurring at around 300 nm indicated the presence of AsNPs in colloidal
sample. +e rhombohedral crystalline nature and metallic purity of AsNPs with crystallite size of 30± 1 nm were confirmed by
characteristic peaks of XRD pattern. +e SEM micrograph revealed the almost spherical shape and 40± 10 nm average size
prepared AsNPs. For assessment of induced nanotoxicity, juveniles of Labeo rohita (L. rohita) were exposed to three different
concentrations of AsNPs (namely, 1, 10, and 20mg/L) for 30 days (n� 15 per group), and the control fish was kept untreated. It
was observed that the routine behavior activities (such as swimming, mutual interactions, and feed intake) were affected by AsNPs.
+e growth of AsNPs treated fish was found retarded as compared to the control fish. Total erythrocyte count, total leukocyte
count, and hemoglobin and hematocrit values were low in the AsNPs treated fish. Immunobiochemical assays revealed that
protein level was altered in the AsNPs treated fish. +e levels of antioxidant enzymes catalase and superoxide dismutase were low
in the treated fish. +e histological alteration induced by AsNPs in liver, gills, and kidneys demonstrated the damage in form of
glomerulus shrinkage, vacuolation, inflammation, necrosis, lamellar disorganization, and hemorrhage in comparison with
untreated fish. +e results of the present study indicate that AsNPs exposure causes behavior, growth, hematology, immuno-
biochemical, and histological shortcomings in L. rohita.

1. Introduction

Environmental toxicology includes the study of hazardous
effects of chemicals on living organisms in the environment.
Developing technologies and industries are the main cause
of environmental pollution that is particularly harmful to
aquatic life because industrial and agricultural wastes are
usually released into water resources [1]. It is, therefore, very
important to recognize and oversee the sources of

environmental pollution, to handle their harmful effects on
aquatic ecosystems. Fish is considered very sensitive to
changes in their environment as they are frequently exposed
to the pollutants present in surrounding waters through gills
and skin and, therefore, can be used as bioindicator for the
determination of water quality [2, 3]. Besides being the main
source of proteins for humans through its meat, fish can also
be a major vector for the transfer of pollutants to humans
due to the presence of contaminants in its surrounding
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water. If exposed to these contaminants for a longer time,
fish can be affected sublethally [4, 5]. Nowadays, nano-
technology is one of the most emerging fields with a lot of
scope in biomedical and analytical sciences [6]. Nano-
technology deals with different structures that have di-
mensions of the order of 10−9 meters. When the dimension
of the matter is reduced to nanorange, the surface area is
increased in comparison to its volume. Owing to large
surface to volume ratio, nanostructures have great appli-
cations in many fields [7]. Besides these advantages, there
also exist some concerns to nanotechnology. Due to human
activities such as improper disposal of wastes, metallic
nanoparticles enter aquatic ecosystems and result in serious
threats to aquatic animals. Different nanoparticles have been
reported to cause adverse effects on aquatic organisms; for
instance, iron oxide nanoparticles alter the hemoglobin
content, red blood cells and white blood cells number,
hematocrit, blood glucose, Na+, K+, Cl−, and plasma protein
in Labeo rohita [8]. Nickel nanoparticles cause decrease in
antioxidant enzymes in liver and gills of Oreochromis
mossambicus. Nickel nanoparticles also cause hyperplasia of
gill epithelium, epithelial lifting, and epithelial rupture.
Necrosis, vacuolar degeneration, edema, and muscle fibers’
splitting was observed in skin of Oreochromis mossambicus
[9]. Similarly, high doses of silver nanoparticles (AgNPs)
cause bioaccumulation and tissue damage due to changes in
the concentration of ACP and ALP enzymes, damage to gills
primary lamella and blood vessels, and vacuolar degener-
ation in liver [10]. Silver nanoparticles can induce severe
histopathological changes in zebrafish. +ey accumulate in
tissues of liver and gills and cause damage to tissues [11].
Cobalt oxide nanoparticles cause injuries like hyperplasia,
lamellar fusion, hypertrophy, necrosis, increased mucous
secretion, and aneurism in zebrafish which caused breathing
disorder and death [12]. We previously have found that
silver, nickel, cobalt, and chromium oxide nanoparticles
cause various levels of toxicity in Labeo rohita on growth,
hematological, histological, and biochemical indices [13].

Arsenic nanoparticles (AsNPs) have been considered
good candidates for cancer treatment and have shown good
cytotoxic potential against breast cancer cells [14]. In an-
other study, arsenic trioxide nanoparticles (As2O3NPs) were
reported to inhibit acute promyelocytic leukemia and
PTEN/AKT mediated apoptosis [15]. As2O3NPs were also
shown to cause strong apoptosis and cytotoxic effect against
NB4 tumor cells by inhibiting Bcl-2 expression [16]. Keeping
in view AsNPs’ emerging use in the medical and industrial
applications, it is very important to ascertain their effects on
living tissues. Arsenic in bulk form is considered as one of
the top pollutants present in natural waters, produced due to
some geological processes and industrialization such as
smelting andmining [17, 18]. It is carcinogenic in nature and
causes genotoxicity, mitochondrial damage, DNA frag-
mentation, reduction in protein content, defects in enzyme
activities, reactive oxygen species elevation, and apoptosis
induction [19–24].

Blood analysis is an important biological tool to evaluate
the effects of pollutants on fish. +e hematological profile of
fish may indicate the alternations in aquatic ecosystems

caused by environmental pollutants and thus act as patho-
physiological indicator to detect the health status of fish. +e
levels of hemoglobin concentration (Hb), hematocrit (Hct),
red blood cell (RBC), and mean corpuscular hemoglobin
concentration (MCHC) are used to check oxygen-carrying
capacity of the blood and immune responses. Moreover, by
monitoring the white blood cells (WBC) and thrombocytes
(TC) along with aforementioned blood parameters, sublethal
effects of toxicants can also be predicted [25, 26]. Further-
more, blood variables are good indicators for disease diag-
nosis and assess the overall health status of fish. Blood profiles
very sensitive to different changes are related to nutrition,
internal and external environmental stressors, and diseases
[27, 28]. Although a lot of data is available about the toxic
effects of bulk arsenic on animal life, very little data exists on
the toxicity of AsNPs to aquatic species and their associated
ecological consequences. To the best of our knowledge, there
is no study available on the toxic potential of AsNPs on fish.
So, the present study is designed to examine the effects of
AsNPs on the growth and hematobiochemical parameters of
fresh water fish (Labeo rohita), which is commercially and
economically important fish.

2. Materials and Methods

2.1. AsNPs Synthesis. AsNPs were prepared by wet chemical
reduction method already reported by Pal et al. [29] with
some modifications. Sodium arsenite (NaAsO2) was used as
precursor salt; it was dissolved in water to prepare a 30mM
stock solution. A second aqueous stock solution (300mM) of
sodium borohydride (NaBH4) was prepared and stored at
5°C. For the synthesis process, 4.54ml of NaAsO2 stock
solution was added to 100ml of water, and pH was main-
tained between 7 and 9 by adding appropriate amount of
sodium hydroxide (NaOH). 5ml of ice-cold NaBH4 was
added to the precursor solution; the whole mixture stood for
2 hours (at room temperature) and was then heated for
20min at 60°C. Later, it was cooled to room temperature.

2.2. Characterizations of Prepared AsNPs. We used ultravi-
olet-visible spectroscopy (Shimadzu, UV-1800, Japan) in the
wavelength range of 300–700 nm to study the optical re-
sponse of colloidal AsNPs. +e X-ray powder diffractometer
(XRD; JSX 3201M, Jeol, Japan) was used to study the
structural properties of AsNPs. +e Cu-Kα line radiation
having wavelength 1.5406×10 −10m was used in XRD. For
XRD, a thick film of colloidal sample was achieved by drop
casting method on the glass slide followed by drying at room
temperature. To study the size and shape of prepared AsNPs,
scanning electron microscope (Nova NanoSEM 450, USA)
was used. For SEM analysis, again, drop casting technique
was used to obtain enough AsNPs amount on a clean piece
of glass slide. A thin coating of gold was deposited on the
sample before conducting SEM to avoid any charging effects.

2.3. Fish and Experimental Setup. Juveniles of Labeo rohita
(L. rohita) were procured from local fish hatchery
(Muridke) and brought to the laboratory in well-aerated
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plastic bags. Fish was examined by the experts of De-
partment of Zoology, Lahore College for Women Uni-
versity, Lahore, Pakistan, and declared healthy. No disease
symptoms or any lesions were found on the fish. +e
healthy specimens were then transferred to 60 L glass
aquaria containing tap water. Fish were treated in com-
pliance with the local animal welfare regulations (Zool-
ogy/LCWU/5729) of the host university (Lahore College
for Women University). +e water quality parameters are
listed in Table 1. A constant aeration was supplied to the
aquaria to keep optimum dissolved oxygen. About 30%
water was exchanged with fresh water at the daily basis
throughout the experimental period, to remove any un-
eaten or fecal material. +e fish were randomly allocated
into four groups in triplicate at the density of 15 fish in
each group. Group 1 (G1) contained control untreated
fish, Group 2 (G2) was treated with 1mg/l of AsNPs,
Group 3 (G3) was treated with 10mg/l of AsNPs, and
Group 4 (G4) was treated with 20mg/l of AsNPs.

2.4. Behavioral and Growth Analysis. Fish behavior was
examined after AsNPs treatment. Swimming, interactions,
and feed intake were observed. +e survival rate of fish was
also recorded. In order to study fish growth, length and
weight were measured before and after the experiment.

2.4.1. Hematological Indices. At the end of the experimental
period, fish were anesthetized with clove oil (100 µg/l) and
blood was extracted with syringe. EDTA was added to blood
to prevent coagulation. Total erythrocyte count (TEC) and
total leukocyte count (TLC) were counted by using a he-
mocytometer. Hemoglobin (Hb) was measured by Cyan-
methemoglobin method using Drabkin’s fluid. Absorbance
was taken at 540 nm with spectrophotometer. Hematocrit
(Hct) value was taken by using microhematocrit tubes as
described by Dacie and Lewis [30].

2.5. Immunobiochemical Analysis. Serum was obtained for
immunobiochemical parameters by clotting blood at room
temperature for one hour following centrifugation at
3000 rpm for 15min. Total protein (TP) and albumin (ALB)
were calculated by using TP and ALB kit (Crescent Diag-
nostics, Saudi Arabia), respectively. Globulin (GLB) value
was obtained by subtracting ALB from TP. For analyzing
catalase (CAT) and superoxide dismutase (SOD) activities,
liver tissue was snap-frozen into liquid nitrogen and stored
at −40°C. Tissues were washed with chilled PBS, homoge-
nized, and centrifuged at 4°C for 15min at 12000 rpm.
Supernatant was used to calculate the values of CAT and
SOD spectrometrically.

2.6. Histological Evaluation. Kidney, gill, and liver tissues
were fixed in 10% buffered formalin. All the tissues were
dehydrated in graded absolute ethanol solutions (ascending
order: 25%, 50%, 75%, and 100%) for 15min each. Paraffin
wax was used to entrench the dehydrated tissues for section
cutting. Sections of 6–8 µm thickness were obtained by

cutting tissues on rotatory microtome (ERM-2301). Tissue
sections were deparaffinized with xylene, rehydrated in
graded absolute ethanol (in descending order: 75%, 50%,
25%, and 0%), and mounted on slides with DPX (distyrene,
plasticizer, and xylene). Staining of the sections was done
with HE (Hematoxylin, Eosin). Pictures of the slides were
taken with Trinocular Camera fitted digital microscope (E-
200, Nikon Japan Eil-12).

2.7. StatisticalAnalysis. Data is presented as mean with error
bars indicating standard error of the mean. One-way
analysis of variance (ANOVA) was used to calculate the
statistically significant differences between groups. Graphs
were made in Microsoft Excel program. GraphPad Prism
(ver.7.03, USA) was used to find significant differences
between groups.

3. Results

3.1. Synthesis Mechanism of AsNPs. In the synthesis process
of AsNPs by wet chemical reduction approach, solution
reaction went through different phases which can be ob-
served by the change of color of the solution as shown in
Figure 1. +e potential mechanism for the formation of
AsNPs can be explained as follows: first of all, as precursor
(NaAsO2) is dissolved in the water, arsenite ions (As3+) are
produced in the solution and no color change occurred in
the solution (Figure 1(a)). Before introducing the reducing
agent (NaBH4), the pH of the solution was maintained up
to 7–9 by the addition of NaOH.+e value of pH matters in
this case because, at lower pH (<4), the same reducing agent
(NaBH4) can reduce As3+ to AsH3 instead of neutral arsenic
atoms (As0) [29]. +e reduction process started as the
NaBH4 solution was added into the precursor solution and
arsenite ions (As3+) reduced to free As-atoms (As0) which
can be noticed from the color charge of the solution
(Figure 1(b)). Change in color of solution with the passage
of time actually indicated the different stages of nucleation
and growth. +e formation of As-nuclei started owing to
the accumulation of free As-atoms (As0) under action of
van derWaals interactions and Brownian movement. In the
synthesis of NPs during reduction method, both nucleation
and growth process may happen side by side [31, 32].
Heating the solution may further accelerate the reaction
process. +e further change in solution color indicated the
different phases during formation of AsNPs as shown in
Figures 1(c)–1(e).

Table 1: +e physical and chemical parameters of water (Mean-
± SE) measured during experimental period.

Water parameter Mean± SE
Temperature (°C) 26.91± 2.15
Dissolved oxygen (mg/L) 6.1± 1.5
Ammonium NH3 (mg/L) 0.17± 0.09
Chloride (mg/L) 10.2± 1.85
Nitrate (mg/L) 0.05± 0.02
pH 7.2± 1.6
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3.2. Characterization Analysis of Synthesized AsNPs

3.2.1. UV-Visible Spectroscopy Analysis. UV-Vis showed
structural and optical information of AsNPs. Metallic
nanoparticles exhibit a characteristic absorption spectrum
that lies within the ultraviolet and visible region which is
known as surface plasmon resonance (SPR) [33]. Figure 2(a)
shows the UV-Vis spectrum of synthesized AsNPs showing
an increase in absorption of AsNPs as wavelength corre-
sponds to smaller values and showed the maximum ab-
sorption at around 300 nm.+e peakmaximum corresponds
to the formation of AsNPs and is consistent with already
reported literature [29].

3.2.2. XRD Analysis. Structural analysis of our sample was
carried out by X-ray diffractometer to identify the crystalline
nature of AsNPs. +e obtained XRD pattern is shown in
Figure 2(b); seven peaks could be discerned to the reflection
planes (003), (101), (012), (104), (110), (006), and (113) of the
rhombohedral structure of pure metallic AsNPs [34].
Crystalline size according to Scherrer formula [35] was
D� 30± 1 nm.

3.2.3. SEM Analysis. Morphology and size distribution of
AsNPs are shown in SEM micrograph (Figure 2(c)). Almost
all particles have spherical shapes. Most of the particles have
uniform size range between 30 and 40 nm; however, few
smaller sized particles also appeared. +e average particles
size is 40± 10 nm.

3.3. Behavioral Changes. Behavior of both control and
AsNPs exposed groups was examined to determine be-
havioral differences. +is behavior parameters included
swimming activity, mutual interactions, and feed uptake.
+e observation showed that the routine swimming of fish
was greatly disturbed by AsNPs in comparison to the control
group. +e treated group fish were less active and stayed
close to the bottom of the tank. +e feeding activity was
poor. Survival rate of fish was also found to be affected in
AsNPs treated fish. +e documentation of behavior and
survival is presented in Table 2.

3.4. Growth Studies. +e length and weight of both groups
were recorded before and after the experiment. A difference
was recorded in the overall growth between control and
AsNPs treated groups. Clearly, AsNPs depressed the growth
of fish in terms of both weight and length (Table 3). Fol-
lowing growth, parameters were recorded: weight gain,
percentage weight gain (%), specific growth ratio (%), feed
conversion ratio, condition factor, and length gain.

3.5. Hematological Indices. Blood cells were adversely af-
fected by exposure to AsNPs. RBCs and WBCs were de-
termined in control and AsNPs treated groups using a
hemocytometer. Both RBCs andWBCs were found to be low
in abundance in AsNPs treated group. Hb and Hct values
also decreased in the treated groups. +ese results showed
that AsNPs adversely affected blood chemistry of the fish
(Table 4).

3.6. ImmunobiochemicalAnalysis. TP, ALB, GLB, A/G ratio,
CAT, and SOD activities were measured in control and
AsNPs treated groups. +e level of TP was significantly
different between control G3 and G4 groups. Level of al-
bumin was high in AsNPs treated fish. +e difference was
significant between control and G4. Globulin level was not
much different in control and G2 but was significantly low in
G3 and G4 in comparison to G1. +e A/G ratio was high in
G3 and G4 groups (Figure 3). Catalase activities were de-
creased in all AsNPs treated groups and were significantly
low in G3 and G4. SOD activities were also significantly low
in G3 and G4 groups (Figure 3).

3.7. Histology. To observe the histological effects of AsNPs
on fish organs, kidney, gills, and liver tissues were selected.
+ese organs are routinely used for assessing the toxic
potential of various molecules on living cells and tissues.
Kidney histology revealed that AsNPs caused vacuolation,
glomerulus shrinkage, inflammation, necrosis, and epithelial
desquamation. In gills, AsNPs caused degeneration, hem-
orrhage, lamellar fusion, disorganization, aneurysm, and
blood congestion. In liver, AsNPs caused vacuolation, ne-
crosis, blood congestion, and inflammation (Figure 4).

(a) (b) (c) (d) (e)

Figure 1: Different stages during the synthesis of AsNPs. (a) Transparent precursor solution indicated no color by the As3+ ions formation.
(b) Color of solution changed to light yellow by the addition of reducing agent due to the reduction process. (c-e) Further color change from
light yellow to dark brown is owing to the nucleation and growth process leading to the formation of AsNPs.
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4. Discussion

Although nanoparticles have been found to be dispersed
widely in nature (air, soil, and water), less meticulous in vivo
studies have been carried out concerning their long-term
detrimental effects on environment. It is arbitrarily known
that nanoparticles cause various adverse health effects on
animals but the information about the mechanism of action
and data about the qualitative and quantitative impacts are
lacking. Nanoparticles can enter the animal bodies through

inhalation, injection, dermal route, and ingestion and can
ultimately be accumulated in the tissues [36].

From these entry points, they can further reach the
circulatory and lymphatic systems. When nanoparticles
are procured in water as their final exit areas, aquatic
animals directly engulf them with water or they can enter
their bodies, for example, in fish through gills. Bulk ar-
senic toxicity caused by contaminated water has been
reported from many countries such as India and Ban-
gladesh [37].

We exposed L. rohita juveniles to different concentrations
of AsNPs (1, 10, and 20mg/L) for a period of 30 days. Firstly,
the behavior of fish was noted. We found that the fish treated
with AsNPs showed disturbed patterns of behavior activities
(Table 2). In AsNPs treated groups, swimming and mutual
interactions were highly disturbed particularly at higher
concentrations. Feed intake was also reduced in the AsNPs
exposed fish. All these behavior changes may be attributed to
the transfer of NPs to the brain which results in damage to the
texture of brain and altered metabolism. As these effects are
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Figure 2: (a) Ultraviolet-visible (UV-Vis) absorption spectra of AsNPs show maximum absorption at around 300 nm. (b) XRD pattern of
AsNPs indicating rhombohedral crystalline nature. (c) SEM image of showing spherical morphology of AsNPs.

Table 2: A. Behavioral manifestation of fish. ++: good activity, +:
slightly low activity, + −: very low activity, −: loss of activity.
B. Survival rate of fish.

A. Behavior categories G1 G2 G3 G4
Swimming ++ + + − + −

Mutual interactions ++ + − + −

Feed intake ++ ++ + +
B. Survival rate
Percentage survival (%) 100 100 90 65
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concentration-dependent, that is why we see different degrees
of behavior changes at different concentrations [38–40].

High concentration of AsNPs was found to be fatal for
fish as survival rate decreased to 90% and 65% in G3 and G4
groups, respectively (Table 2). Lethal concentrations vary for
different types of nanoparticles, exposure periods, and the
animal species type. For example, LC50 concentrations for
AgNPs, CuNPs, and NiNPs were determined to be 2.9mg/l,
3.8mg/l, and >400mg/l, respectively, for 96 h in adult
zebrafish [41]. In another study, AgNPs (100mg/kg) were
applied to L. rohita for 7 days, and the concentration was
found to be nonlethal [10]. In our previous work, we found

100% survival rate of L. rohita treated with AgNPs, NiNPs,
and Co3O4NPs while survival was 86% in fish treated with
Cr3O4NPs for a period of 21 days with 25mg/l concentration
of all the NPs.

Growth of fish can be influenced by stressors in sur-
rounding environment. +ey affect appetite of fish,
thereby causing low feed intake and low growth incre-
ment. We observed significantly reduced growth in AsNPs
treated groups as compared to control (Table 3). Lesser
weight gain in mice and fish exposed to carbon nanotubes,
gold, and plastic NPs has already been reported
[36, 42, 43]. +is might be due to low food digestibility

Table 3: Growth parameters: G1 (control), G2 (AsNPs 1mg/l), G3 (AsNPs 10mg/l), and G4 (AsNPs 20mg/l). Values with a different
superscript in the same row are significantly different.

Growth parameter G1 G2 G3 G4
Weight gain 15.5± 0.9a 12.7± 0.7b 7.9± 0.4c 4.9± 0.9d
Percentage weight gain (%) 42.6± 1.9a 35.4± 2.3b 21.5± 1.4c 13.8± 1.6d
Specific growth ratio (%) 2.8± 0.3a 2.6± 0.5a 2.1± 0.6b 1.6± 0.5b
Feed conversion ratio 0.7± 0.1a 0.9± 0.2a 1.5± 0.5b 2.4± 0.6c
Condition factor 2.1± 0.6a 2.1± 0.8a 2.4± 0.9a 1.7± 0.6b
Length gain 1.2± 0.3a 0.8± 0.2b 0.6± 0.2b 0.7± 0.1b

Table 4: Summary of hematological parameters: G1 (control), G2 (AsNPs 1mg/l), G3 (AsNPs 10mg/l), and G4 (AsNPs 20mg/l). Values
with a different superscript in the same row are significantly different.

Hematological indices G1 G2 G3 G4
Total erythrocyte count (∗106/mm3) 314± 25a 295± 21a 275± 11c 267± 14
Total leukocyte count (∗104/mm3) 19± 2a 17± 4a 12± 2c 13± 1d
Hemoglobin (g/dl) 11.2± 1.2a 10.3± 3.2a 9.6± 2.3a 7.2± 1.9a
Hematocrit (%) 18± 2a 18.7± 1.4a 16.3± 3.1a 12.4± 2.1a
Total erythrocyte count (∗106/mm3) 314± 25a 295± 21a 275± 11c 267± 14
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Figure 3: (a) Total protein level was comparable between control and G1. It was significantly low in G3 and G4. (b) Albumin was high at all
three concentrations in AsNPs treated groups. +e difference was significant between G1 and G4. (c) Globulin was significantly low in G3
and G4 groups as compared to G1 group. (d) A/G ration was high in G3 and G4. (e) Catalase was low in all AsNPs treated groups with the
lowest in G4. (f ) Superoxide dismutase level was significantly low in G3 and G4 groups. Columns showing different letters are significantly
different (∗p< 0.05) (G1: control, G2: 1mg/l, G3: 10mg/l, and G4: 20mg/l).
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under stressful conditions of nanoparticles’ exposure
which lead to growth reduction [43].

Hematological parameters are routinely used to ascer-
tain toxicant related stress in aquatic animals [44, 45]. In our
study, we observed significant decline in RBCs, WBCs, Hb,
and Hct% values in AsNPs treated groups at higher

concentrations (Table 4). Lower values of blood cell counts,
Hb, and Hct% are signpost of blood disorders in the treated
fish. At high concentrations, gold NPs caused low TEC and
Hct% levels in mice [43]. In another study, zinc oxide
nanoparticles at sublethal concentrations caused low Hb,
TECs, and Hct% inOreochromis niloticus [46]. Furthermore,
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Figure 4: (a–d) Histology of kidney. G1 showed normal structure of renal tubules (RT) and renal hematopoietic tissue (RHT). G2 kidney
showed glomerulus shrinkage (GS), G3 vacuolation (V) and inflammation (I), and G4 necrosis (N) and epithelial desquamation (ED). (e–h)
Histology of gills. G1 showed normal structure of gills, gill filament (GF), and gill lamella (GL). G3-G4 showed degeneration (D), lamellar
fusion (LF), hemorrhage (H), blood congestion (BC), lamellar disorganization (LD), and lamellar aneurysm (LA). Histology of liver.
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20mg/l). Images were captured at 40x.
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a one-week exposure of silver nanoparticles caused signif-
icant reduction in TECs and Hct% in silver carp [47]. AsNPs
have been reported to induce apoptosis in hepatocytes [48].
In their recent work, they reported that both As and AsNPs
significantly destruct lysosomal membrane integrity and
decrease mitochondrial membrane potential in hepatocytes.
However, the extent of damage to lysosomal and mito-
chondrial membranes was significantly high in AsNPs
treated cells as compared to bulk As. Impaired hematological
parameters reflect underlying disease conditions and im-
balanced immune response in fish.

Protein biomarkers are critical indicators of physio-
logical disturbances. TP and GLB are used to measure index
of specific immune responses [49, 50].We found that TP and
globulin were significantly low in AsNPs treated groups at
higher concentrations. Serum proteins have been found to
decrease in response to toxicants’ stress [5]. Reduction in
protein levels suggests that they have been consumed as
substitute energy source to fulfil high energy requirement in
NPs treated fish. +is might be due to NPs mediated stress
which reduces appetite and results in reduced nutritional/
serum protein values. Hemodilutionmay also cause loss, low
synthesis, or reduced absorption of proteins [50, 51]. ALB is
important for steroid hormone regulation [52]. Higher levels
of ALB were found in treated fish. Significant increase in
ALB was found in liver and muscles of Channa punctatus
exposed to Cr, Ni, and Co [53].

Although low concentrations of AsNPs did not provoke
a strong difference in the antioxidant enzyme activities
(catalase and SOD), at higher concentrations (G3 and G4)
enzyme activities were reduced in treated groups. Antiox-
idant enzymes protect cells against ROS (reactive oxygen
species). A high antioxidant activity ensures less oxidative
stress [54, 55]. Antioxidant enzymes have also been used to
study oxidative stress in aquatic animals [56, 57]. Low
amount of antioxidant enzymes leads to retarded metabolic
enzymes and cellular injury [58].

Kidney, gills, and liver are the major sites for metabolism
and detoxification of foreignmolecules. Upon disturbance of
normal structure of these organs via pollutants, all other
important processes of the body may get disrupted. Our
histopathological results showed that kidney, gills, and liver
were affected by AsNPs. Extensive abnormalities were found
in G3 and G4 groups. Similar to our findings, TiO2NPs have
been reported to cause apoptosis in zebrafish head and tail
[59]. Histopathological lesions in gills and liver of Siberian
sturgeon were found upon exposure to CuNPs and AgNPs
[60]. +e overall deformations in these organs may be allied
to protein imbalance, oxidative stress, DNA damage, and
necrosis [61, 62]. From this study, we conclude that AsNPs at
higher concentrations are toxic to aquatic organisms. It
causes behavior modification, growth retardation, hema-
tological disorders, and immunobiochemical and histolog-
ical defects in Labeo rohita fish.+e findings of this work can
be useful for better health management in aquaculture. It
will help in early disease detection and control in fish. +e
advances in toxicity evaluation will help to improve fish
growth and production bringing economic benefits to
farmers.

5. Conclusions

In summary, chemically synthesized AsNPs having spherical
shape and size distribution of 40± 10 nm were tested for
different toxic effects on Labeo rohita juveniles for 30 days’
exposure period. Alterations in different parameters, such as
growth, behavior, blood profiling, biochemical factors, and
tissue structure damage, clearly demonstrated the toxic
impact of AsNPs on treated fish as compared to untreated
control. Based on the findings of this work, we propose that
L. rohita can be used as a potential bioindicator for as-
sessment of induced nanotoxicity. Furthermore, before use
of AsNPs for various practical applications, their toxic
potential must cautiously be evaluated.
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