
RESEARCH ARTICLE

Hybrid pointer networks for traveling

salesman problems optimization

Ahmed Stohy1, Heba-Tullah Abdelhakam1, Sayed Ali1, Mohammed Elhenawy2, Abdallah

A. Hassan1, Mahmoud MasoudID
2*, Sebastien GlaserID

2, Andry Rakotonirainy2

1 Department of Computer and Systems Engineering, Minya University, Minya, Egypt, 2 Centre for Accident

Research and Road Safety, Queensland University of Technology, Brisbane, Australia

* Mahmoud.masoud@qut.edu.au

Abstract

In this work, we proposed a hybrid pointer network (HPN), an end-to-end deep reinforce-

ment learning architecture is provided to tackle the travelling salesman problem (TSP). HPN

builds upon graph pointer networks, an extension of pointer networks with an additional

graph embedding layer. HPN combines the graph embedding layer with the transformer’s

encoder to produce multiple embeddings for the feature context. We conducted extensive

experimental work to compare HPN and Graph pointer network (GPN). For the sack of fair-

ness, we used the same setting as proposed in GPN paper. The experimental results show

that our network significantly outperforms the original graph pointer network for small and

large-scale problems. For example, it reduced the cost for travelling salesman problems

with 50 cities/nodes (TSP50) from 5.959 to 5.706 without utilizing 2opt. Moreover, we solved

benchmark instances of variable sizes using HPN and GPN. The cost of the solutions and

the testing times are compared using Linear mixed effect models. We found that our model

yields statistically significant better solutions in terms of the total trip cost. We make our

data, models, and code publicly available https://github.com/AhmedStohy/Hybrid-Pointer-

Networks.

I. Introduction

Combinatorial optimization problems have garnered substantial attention from the theory

and algorithm design community in recent decades as fundamental challenges in computer

science and operations research. TSP in one fundamental combinatorial optimization problem

that have been explored in the disciplines of logistics transportation, genomics, express deliv-

ery, and dispatching. TSP is often defined on a graph with a number of nodes, and it is essen-

tial to search through the permutation sequences of nodes for finding an optimal one with the

shortest traveling distance.

Due to the many applications of the travelling salesman problem (TSP) in many areas, it

has received significant attention from the machine learning community in the past years.

However, the developed neural combinatorial optimization models are still in the infantry

stage. Generalization is still an unresolved problem when it comes to dealing with many points
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with high precision. The travelling salesman problem (TSP) is considered as one of the most

significant and practical problems. Consider a salesman travelling to several areas; the sales-

man must visit each city just once while minimizing the total travel time. TSP is an NP-hard

problem [1], which addresses the challenge of finding the optimal solution in polynomial time.

Exact algorithms, approximation algorithms, and heuristic algorithms are examples of tra-

ditional approaches for tackling NP-hard graph optimization problems [2]. Exact algorithms

using the branch and bound framework can produce optimum solutions, but due to their NP-

hardness, they are not suited for large-scale applications. Polynomial-time approximation

algorithms can often produce quality-guaranteed solutions, although they have lower optimal-

ity guarantees than precise algorithms. The optimality guarantee may not exist at all for situa-

tions that are not amenable to a polynomial approximation approach. Furthermore, because of

their high computing efficiency, heuristic algorithms are commonly employed, although they

typically need adaptations and subject specialist understanding for a given situation. Heuristic

algorithms frequently lack theoretical basis, all three groups of algorithms previously men-

tioned seldom take advantage of the common features among optimization problems, and

thus frequently require the design of a new algorithm to solve a different instance of an even

similar problem that is based on the same combinatorial structure, with the coefficient values

in the objective function or constraints regarded as samples from the same basic distributions

[3]. The use of machine learning methodologies has provided a silver lining in the form of a

scalable solution for solving combinatorial problems with similar combinatorial structures.

Many approximation algorithms and heuristics, such as Christofides algorithm [4], local

search [5], and the Lin-Kernighan heuristic (LKH) [6] have been developed to overcome the

complexity of the exact algorithms which are guaranteed to yield an optimal solution but are

frequently too computationally costly to be utilized in practice [7]. Many combinatorial opti-

mization problems, such as a TSP has a graph structure [8], which may be easily described

using the current graph embedding or network embedding techniques. The graph information

is integrated in a continuous node representation in this method. Because of its great skills in

information embedding and belief propagation of graph topology, the most recent develop-

ment of graph neural network (GNN) may be applied in simulating a graph combinatorial

problem [9]. This drives us to use a GNN model to handle combinatorial optimization prob-

lems, specifically TSP.

The pointer network [10], a seq2seq model [11], shows great potential for approximation

solutions to combinatorial optimization problems such as identifying the convex hull and the

TSP. It uses LSTM [12] as the encoder and an attention mechanism [13] as the decoder to

extract features from city coordinates. It then predicts a policy outlining the next likely city by

selecting a permutation of visited cities. The pointer network model is trained using the Actor-

Critic technique [14].

Moreover, the attention model [15, 16], influenced by the Transformer architecture [13],

tried to address routing problems such as the TSP and VRP. Graph pointer networks [17]

extended the traditional pointer networks with an additional layer of graph embedding, this

transformation achieved a better generalization for a large-scale problem, but the GPN model

without 2-opt still struggling for finding the optimal solutions for small and large scale.

GPN has limited capabilities for tackling small-scale problems, and the suggested GNN

employed in its architecture isn’t the ideal encoder for determining point-to-point relation-

ships. The work proposed in this paper begins with how the performance of graph pointer net-

works can be improved without changing much of the architecture; an extra encoder layer is

added alongside the graph embedding layer to act as a hybrid encoder, and this gives the

model the ability to achieve good results; this will be discussed in greater detail in the HPN

section.
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Extensive experimental work results show that the proposed technique significantly outper-

forms previous DL-based methods on TSP. The learnt model is more successful than standard

hand-crafted rules in guiding the improvement process, and they may be further strengthened

by simple ensemble methods. Furthermore, HPN generalizes rather well to a variety of prob-

lem sizes, starting solutions, and even real-world datasets. It should be noted that the goal is

not to outperform highly optimized and specialized traditional solvers but to present a general-

ized model that can automatically learn good search heuristics on different problem sizes,

which has a great value when applied to real-world problems.

In this work, we propose a deep reinforcement learning model trained via Actor-critic. Our

architecture is based on a pointer attention mechanism that outputs nodes sequentially for

action selection. We introduce a reinforcement learning formulation to learn a stochastic pol-

icy of the next promising solutions using a hybrid architecture, incorporating the search’s his-

tory information by keeping track of the current best-visited solution. Our results show that

we can learn policies for the Euclidean TSP that achieve the state-of-the-art solution compared

with previous work in RL-based Models. Moreover, our approach can achieve state of the art

results compared with previous deep learning methods based on construction [10, 15, 18–20]

and improvement [21] heuristics.

II. Travelling salesman problem (TSP)

TSP is a classic example of a combinatorial optimization problem that has been used in data

clustering, genome sequencing, as well as other fields. TSP problem is NP-hard, and several

exact, heuristic and approximation algorithms have been developed to solve it. In this paper,

TSP problems are assumed to be symmetric. The symmetric TSP is regarded as an undirected

graph.

1. Asymmetric vs. symmetric TSP

The distance between two cities in the symmetric TSP is the same in each opposite direction,

producing an undirected network. This symmetry cuts the number of alternative solutions in

half. Paths may not exist in both directions in the asymmetric TSP, or the distances may be dif-

ferent, resulting in a directed graph.

2. Directed vs. undirected graphs

Edges in undirected graphs do not have a direction. Each edge may be travelled in both direc-

tions, indicating a two-way connection. The edges of directed graphs have a direction. The

edges represent a one-way connection, as each edge may only be travelled in one direction.

A full undirected graph can be defined as C = (V,E)where V is the vector of vertices of

graph C, and E is the vector of edges between these vertices. In this study, the TSP’s graph is

complete, so every node has an edge to each of the other vertices in the graph.

C is symmetric if ð8i; j : eij ¼ ejiÞ;

In the context of this paper, eij equals the distance between the vertices i and j. Given a set V
of cities n in a two-dimensional space, the objective is to find the optimal Hamiltonian path

that minimizes the total tour length [20]:

LðpjVÞ ¼ kvpðnÞ � vpð1Þk2 þ
Pn� 1

i¼1
kvpðiÞ � vpðiþ1Þk2 ð0:1Þ

Where k.k2 is ℓ2 norm and π denote as a tour.
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III. Methods

In this section, we will describe the learning algorithm used to train the proposed model. Fur-

thermore, we describe the statistical model used to test whether our proposed model outper-

forms the GPN.

1. Reinforcement learning (RL)

Reinforcement learning (RL) is the process of learning what to perform to increase the

expected numerical reward signal. The agent isn’t instructed which actions to perform but

must experiment to determine which acts offer the greatest expected reward. To begin, we will

define the notation used to represent the TSP as a reinforcement learning problem. Let S be
the state space and A the action space. Each state st2S is defined as the set of all previously vis-

ited cities. Action at2A is defined as the following selected city from the group of possible cit-

ies; our model is considered a sequential one that, given an instance at (selected input city)

outputs a probability distribution over the next candidates from the remaining cities that have

not been chosen. We can define our policy as:

PyðpjxÞ ¼ P½At ¼ ajSt ¼ s�; ð0:2Þ

From which we can sample to obtain a tour π. In order to train our model, we define the

loss [15]:

LðyjsÞ ¼ EPyðpjxÞ½LðpÞ�; ð0:3Þ

Where L(π) is the cost of the tour that we are attempting to minimize. Recall the REIN-

FORCE’s [22] equation with baseline which is an extension from policy gradient algorithm

[23]:

rJ � E½ðLðpÞ � bðsÞÞr log pðajsÞ�: ð0:4Þ

Where b(s) is the baseline subtracted from the cost to eliminate the policy gradient variance.

The optimal baseline is one that lowers variation as much as possible while simultaneously

speeding up the training process. As a result, we employ the approach given by [15]:
Algorithm 1. REINFORCE with Rollout Baseline [15]
1: input: number of epochs E, steps per epoch T, batch size B, signifi-
cance α
2: init θ, θBL  θ # initialize network parameters
3: for epoch = 1,. . ., E do
4: for step = 1,. . ., T do
5: si  RandomInstance () 8 i 2 {1,. . ., B} # Generate Random Instances
6: πi SampleRollout (si,pθ) 8 i 2 {1,. . ., B} # Sample from policy
7: pBLi  GreedyRollout (si, pBL

y
) 8 i 2 {1,. . ., B} # Greedy selection from

policy

8: rL 
XB

i¼1

LðpiÞ � Lðp
BL
i Þry log pyðpiÞ # Loss calulation((Sampling cost–BL

cost)� logprob)
9: θ  Adam (θ, rL) # Optimizer step
10: end for
11: if OneSidedPairedTTest (pθ, pBL

y
) < α then # Check if Actor is better

than critic with margin α
12: θBL  θ # Transfer Actor’s weights into Critic
13: end if
14: end for
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2. Linear mixed effect models

Linear mixed effect models (LMEs) are tools used to test whether a significant relationship

exists between the dependent variable (response) and independent variables (regressors).

LMEs are developed to enable the analysis of dependent data by introducing random variables

(i.e., random effects) at the lower levels of the model. For example [24], different algorithms

returned solutions to the same instance. To capture the correlation between the solutions of

the same instance, a random effect is introduced at the instance level. The formula of the

mixed model is shown below

y ¼ Xβþ Zuþ ε

Where

y is the response vector

X is the design matrix for fixed factors

β is the coefficients of fixed effect regression

Z is the random effects design matrix for random factors

U is the vector of random effects

ε is the residuals

In the linear mixed model, the fixed factor xi’s null hypothesis is that xi does not signifi-

cantly explain some of the variability of the response y (i.e., βi = 0). For the purposes of this

paper, the significance level, α, is set at 0.05. To determine if a particular fixed factor signifi-

cantly affects the response, the p-value corresponding to this fixed factor in the estimation

table is compared with the 0.05 significance level.

IV. Hybrid pointer network (HPN)

HPN is inspired by the Graph pointer network (GPN). GPN is a modified variant of the classic

pointer network (PN).

Graph pointer networks have been used to tackle TSP. Building on this approach, in this

paper:

• The graph embedding layer is combined with the transformer’s encoder to produce multiple

embeddings for the feature context.

• An extra decoder layer is added to operate as a multi-decoder structure network to improve

the agent’s decision-making process throughout the learning phase.

• Finally, we switch our learning algorithm from a central self-critic [25] to an actor-critic one

as suggested by Kool [15].

The GPN adds graph embedding layer above the pointer network, allowing the model to

figure out the complicated relationships between graph nodes in large-scale problems. How-

ever, it still struggles to find a globally optimal strategy for TSP problems. This study proposes

extending the network architecture to converge to a better policy for small, medium, and large

sizes. The proposed HPN is shown in Fig 1. HPN consists of a mixture of several encoder’s

architecture and multi decoder based on the attention concept.

1. Hybrid encoder

As illustrated in Fig 2, the proposed encoder consists of two parts: the hybrid context encoder,

which encodes the Feature vector into two contextual vectors and the point encoder, which

encodes the currently selected city by LSTM. Two different encoders are employed for the

hybrid context encoder. The first encoder is a typical transformer encoder with multi-head
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attention and residual connection with batch normalizing layer, the transformer’s encoder

equations with a single head are [26]:

Henc ¼ Hl¼Lenc 2 Rðnþ1Þ�d ð0:5Þ

Hl ¼ softmax
QlKlT

ffiffiffi
d
p

� �

Vl 2 Rðnþ1Þ�d; ð0:6Þ

Ql ¼ Hl WL
Q 2 R

ðnþ1Þ�d;Wl
Q 2 R

d�d; ð0:7Þ

Fig 1. Architecture of HPN which combining a hybrid context encoder with a multi-attention decoder.

https://doi.org/10.1371/journal.pone.0260995.g001

Fig 2. Hybrid encoder consists of transformer’s encoder and graph embedding layer as a hybrid context encoder,

(blue dotted box) for the hybrid context encoder and (red dotted box) for the point encoder.

https://doi.org/10.1371/journal.pone.0260995.g002
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Kl ¼ Hl WL
K 2 R

ðnþ1Þ�d;Wl
K 2 R

d�d; ð0:8Þ

Vl ¼ Hl WL
V 2 R

ðnþ1Þ�d;Wl
V 2 R

d�d ð0:9Þ

Where WL
Q, WL

K and WL
V are learnable parameters, Henc is a matrix contains the encoded

nodes, Ql, Kl and Vl are a query, key and value of the self-attention.

The second one is the graph embedding layer. The graph embedding layer context is

acquired by directly encoding the context vector obtained from coordinates of cities. Because

we are only considering symmetric TSP, the graph is full. As a result, the graph embedding

layer can be written as [17]:

Xl ¼ gXl� 1Wg þ ð1 � gÞφyð
Xl� 1

jNðiÞj
Þ ð0:10Þ

Where Xl 2 RN�dl ; and φ
y

: RN�dl� 1 ! RN�dl is the aggregation function, γ is a trainable

parameter, Wg 2 Rdl� 1�dl is trainable weight matrix and N(i) the adjacency set of node i.

For the point encoder which encodes the currently selected city, each city coordinates xi
(i.e. (xi1, xi2)) is embedded into a higher dimensional vector x̂ 2 Rd, where d is the hidden

dimension. An LSTM then encodes the vector x̂ for the current city xi. The hidden variable xhi
of the LSTM is passed to both the decoder of the current stamp and the encoder of the next

time stamp.

2. Multi-decoder

To begin the decoding phase, a placeholder is added for the first iteration of the decoding to

select the best location to start the tour, the decoder is based on the attention mechanism of a

pointer network and outputs the pointer vector uI, which is then sent through a Softmax layer

to build a distribution across the following candidate cities. The attention mechanism and the

pointer vector uI are defined as follows [17]:

uðjÞi ¼
VT:tanhðWrrj þWqqÞ if j 6¼ sðkÞ; 8k < j;

� 1 otherwise;

(

Where ui(j) is the j-th entry of the vector ui, Wr andWq are trainable parameters, q is the

query vector from the hidden state of the LSTM, is a reference vector containing the contextual

information from all cities.

The encoded context from the transformer’s encoder is used as a reference for the first

decoder layer and the context obtained from the graph embedding layer is used as the refer-

ence for the second decoder layer, as illustrated in Fig 1.

Then we’ll have an attention vector for each decoder layer, and we’ll need to figure out how

to aggregate them. For the aggregator Function, four distinct procedures may be used to deter-

mine the distribution policy throughout the candidate cities:

• The first option is to add the two attention vectors from each decoder layer, which are pro-

vided by:

pyðaijsiÞ ¼ pi ¼ softmaxðu1

i þ u
2

i Þ
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• The second option is to take the maximum value between these two vectors, which is indi-

cated as follows:

pyðaijsiÞ ¼ pi ¼ softmaxðmaxðu1

i ; u
2

i ÞÞ

• The third option is to take the mean as follows:

pyðaijsiÞ ¼ pi ¼ softmaxðaverageðu1

i ; u
2

i ÞÞ

• The final option is to concatenate both of them and feed the concatenated vector into a single

embedding layer, letting the model to decide how to aggregate them; we can describe this

notion as follows:

pyðaijsiÞ ¼ pi ¼ softmaxðWyðcatðu
1

i ; u
2

i ÞÞÞ:

Where ϑθ:RN×2!RN×1 is the aggregation function. In the result section, we displayed the

outcome for each one of them.

Fig 1 illustrates the model operations. We feed the network a tensor of input nodes in this

problem the input nodes contain four features as previously illustrated so the input dimeson

will be (batch-size, problem-size, number-of-feature), we feed these nodes into the hybrid con-

text and will get two contextual vectors one from the transformer’s encoder and the other

from the graph encoder, then for the first decoding stamp we feed the placeholder to the

pointer encoder for learning the best possible location. Finally, we feed the contextual vectors

with the hidden states from the pointer encoder to our decoder, which is a simple attention

layer, and aggerate the two-attention vectors using the sum operation. For clarity, we employ

two decoder layers, one for the context vector of the graph and the other for the context vector

of the transformer.

V. Experiments

In our experiments, the city/node coordinates are independently and randomly drawn from a

uniform distribution x ~ U(0, 1). In each epoch, the training data is generated on the fly. The

hyperparameters provided in Table 1 are used in the following experiments.

1. Small-scale experiments

We begin our experiments with a difficult barrier: which aggregator function between the pre-

viously described ones will assist our model in achieving better results? Indeed, it is difficult to

answer this question without experimenting all of them; we examined the above-mentioned

suggestions for this component and recorded the training performance results. Fig 3 illustrate

these results.

Table 1. Hyperparameters used for training.

Parameter Value Parameter Value
Graph Embedding Layer 3 Learning rate 1e-4

Transformer Encoder Layer 6 Batch size 512
Feed-forward dim 512 Training steps 2500

Optimizer Adam Tanh clipping 10

https://doi.org/10.1371/journal.pone.0260995.t001
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We can conclude from the above figure that the summation has excellent performance at

first, but by the middle of training, the average has caught it, the maximum and the single-

layer aggregation have a little higher result, so we decide to stop examining them.

We use 50 nodes travelling salesman problem (TSP50) instances to train our HPN model to

tackle the small-scale. TSP50’s average training time for each epoch is 19 minutes while utiliz-

ing one NVIDIA Tesla P100 GPU instance. We compare the performance of our model on

small-scale TSP to earlier studies such as Graph pointer networks, the Attention Model, the

pointer network, s2v-DQN [3], the Transformer Network [26] and other heuristics, e.g. 2-opt

heuristics, Christofides algorithm and random insertion. The results are shown in Fig 4 which

compares the approximate tour length to the optimal solution on 10k instances. A small num-

ber indicates a better result.

Fig 3. Training performance for the actor (on Top) and the critic (on Bottom) where the total tour length on the y-

axis and the number of epochs on x-axis indicating that when we apply the sum operation between the two attention’s

vectors, the model converges a little fast compared with the others.

https://doi.org/10.1371/journal.pone.0260995.g003
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As demonstrated in Fig 4 the optimal solution obtained from CONCORDE, LKH-3 heuris-

tic is an extension of LKH-2 for solving constrained traveling salesman and vehicle routing

problems, our HPN model surpasses the current existing models and achieves the state-of-the-

art solution for TSP50. Our model outperforms the graph pointer network by a wide margin,

enhancing its performance for TSP50 from 5.959 to 5.706 without utilizing 2-opt, which is a

success for the hybridization concept.

2. Large-scale experiments

For achieving the best possible generalization out of our model, instead of just using the cities’

coordinates as a context for both the graph encoder and the transform encoder, we replace it

Fig 4. Comparison of TSP50 results.

https://doi.org/10.1371/journal.pone.0260995.g004

Fig 5. The feature extractor architecture combines both vector context with the Euclidian distance and outputs a

Feature vector.

https://doi.org/10.1371/journal.pone.0260995.g005
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with a feature context that accelerates the training convergence for the large-scale problems.

The feature context includes the vector context previously used by [17] concatenated with the

Euclidean distance, where the vector context is just a subtraction operation between the coor-

dinates of the currently selected city with the others.

Our feature extractor component does this job as illustrated in Fig 5. It is essential in the

proposed HPN model since, it extracts the most relative information and feeds it to the

Fig 6. Sample tours for TSP250-500-750-1000 solved by HPN+2-opt.

https://doi.org/10.1371/journal.pone.0260995.g006
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encoder as a context. “Suppose that Xi ¼ ½xTi ; . . . ; xTi �
T
2 RNx2 is a matrix with identical N

rows. We define �Xt ¼ X � Xi as the vector context. The j-th row of Xi is a vector pointing from

node i to node j and X is the matrix that contains coordinates of all cities. We expanded this

Table 2. TSP’s result using hybrid pointer network model (HPN) vs baselines. Each result is obtained by averaging on 1000 random TSP instances for larger instance

and 10k instances for TSP50. Obj is the total tour length and the time reported is for solving 1k instances for larger TSP instances and 10k for TSP50.

Method TSP50 TSP250 TSP500 TSP750 TSP1000

Obj. Time Obj. Time Obj. Time Obj. Time Obj. Time

LKH3 5.70 300s 11.893 9792s 16.542 23070s 20.129 36840s 23.130 50680s

Concorde 5.70 120s 11.89 1894s 16:55 13902s 20.10 32993s 23.11 47804s

Nearest Neighbor 7.00 0s 14.928 25s 20.791 60s 25.219 115s 28.973 136s

2-opt 6.117 7.92s 13.253 303s 18.600 1363s 22.668 3296s 26.111 6153s

Farthest Insertion 6.01 2s 13.026 33s 18.288 160s 22.342 454s 25.741 945s

OR-Tools (Savings) – – 12.652 5000s 17.653 5000s 22.933 5000s 28.332 5000s

OR-Tools (Christofides) – – 12.289 5000s 17.449 5000s 22.395 5000s 26.477 5000s

Pointer Net 7.66 – 14.249 29s 21.409 280s 27.382 782s 32.714 3133s

Attention Model 5.80 2s 14.032 2s 24.789 14s 28.281 42s 34.055 136s

GPN 5.959 1.75s 13.679 32s 19.605 111s 24.337 232s 28.471 393s

GPN+2opt 5.867 6.5s 12.942 214s 18.358 974s 22.541 2278s 26.129 4410s

s2v-DQN 5.95 – 13.079 476s 18.428 1508s 22.550 3182s 26.046 5600s

Transformers (Gr.) 5.707 13.7s 14.60 4s 23.63 10s 30.77 15s – –

HPN (Gr.) ours 5.706 0.36s 13.44 16s 18.94 48s 23.15 100s 26.64 168s

HPN+2opt ours – – 12.78 315s 17.95 1460s 21.95 3405s 25.21 6480s

https://doi.org/10.1371/journal.pone.0260995.t002

Fig 7. Large-scale results from GPN, HPN, GPN+2opt, and HPN+2opt demonstrate that the gap between our model and GPN increases

as the problem size increases.

https://doi.org/10.1371/journal.pone.0260995.g007
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Table 3. Evaluation on real world TSPLIB dataset using HPN and HPN+2opt.

Benchmark HPN HPN+2opt Un-normalized tour length HPN+2opt in

km

GPN GPN+2opt Un-normalized tour length GPN +2opt in

kmObj. Time Obj. Time Obj. Time Obj. Time

rd400 17.0 2s 16.6 2.3s 16538 18 1s 16.9 2.1s 16827

gr431 10.4 1.3s 9.9 1.8s 2473 11.3 1s 10.3 2.3s 2689

d493 13.4 1.3s 11.2 3.6s 38404 12.9 1.1s 11.7 2.3s 40098

att532 14.8 1.4s 13.2 3.4s 96916 14.9 1.1s 13.5 3.4s 1029393

pa561 18.0 2.8s 17.3 5.3s 16357 19 1.3s 17.9 2.8s 16971

u574 18.3 1.4s 17.2 3.6s 41323 22.7 1.6s 17.5 3.4s 42874

d657 16.3 1.8s 15.2 5s 53921 17.8 1.6s 15.8 4.1s 55692

gr666 14.5 1.7s 13.5 5.3s 3731 15.9 1.67s 13.9 5.5s 3840

u724 22.5 2.8s 21.1 5.4s 48742 22.7 1.5s 21.4 4.7s 49105

rat783 25.1 2.2s 24.7 4.4s 10887 26.9 1.9s 25 5.1s 11015

dsj1000 18.8 3s 17.2 12s 20715222 20.1 2.1s 17.5 11.6s 21020136

u1060 23 2.8s 20 11.4s 286109 23.6 2.3s 21 11.1s 289678

d1291 19.6 4s 16.6 17s 57713 20.1 2.6s 16.7 20.1s 57964

nrw1379 27.2 4s 25.8 15s 61163 30.4 3.1s 27.1 19.8s 64005

u1432 33.9 3.8s 32.8 14.53s 166739 36.2 2.9s 33.6 16.3s 170875

vm1748 28.8 5s 24.9 38s 386483 29.3 3.8s 25.9 31.15s 395392

rl1889 27 6s 23.2 39s 365362 29.6 4s 23.6 34.1s 373652

u2152 36.9 6s 32.3 43s 75754 38.7 4.4s 32.7 42.5s 77622

pr2392 38 7s 35.2 70s 426199 42.8 5.3s 36.2 57.4s 436979

pcb3038 46.1 10s 43. 117s 154445 52.7 6.5s 44 105s 156771

nu3496 26.4 9s 23.8 144s 105314 32.6 8.1s 24.3 154s 107965

fl3795 16.4 2s 14.7 170s 30786 23.7 8.4s 14.5 258.7s 30402

fnl4461 29.9 15s 46.7 220s 203653 59 9.3s 49 166.7s 214703

ca4663 26.2 14s 23.8 248s 1585498 37.2 10.1s 24.3 273.7s 1621202

rl5934 43.9 22.6s 37.9 501s 630300 54.8 13s 39.6 426.3s 645335

tz6117 46 16s 40.3 431s 434403 55.6 12.7s 41.6 409.1s 448478

eg7146 21.7 19.3s 19 440s 187376 35.3 16.7s 19.2 633.3s 189608

pla7397 51.8 26s 42.6 906s 25169496 71.1 16.3s 44.5 598.4s 26287346

ym7663 32.8 21s 30.3 594s 281001 57.7 16.6s 30.8 792.5s 286558

ei8246 58.3 22s 45 585s 226498 75.5 18.1s 55.8 737.4s 233699

ar9152 40.9 26s 36.9 834s 972758 56.5 19.7s 38.2 1009.3s 1002739

ja9847 28.6 28s 24.4 1090s 542887 41.5 21.4s 24.7 1438.5s 550364

fi10639 56 49s 51.5 1206s 573948 81.6 24.2s 52.8 1238.6s 5888001

https://doi.org/10.1371/journal.pone.0260995.t003

Table 4. The fixed effects coefficients of the model explaining the tour cost in terms of the HPN/GPN and the problem size.

Name Estimate SE tStat DF pValue Lower Upper

(Intercept) 16.01394 2.47475 6.470932 65 < .0001 11.07152 20.95636

size 0.003976 0.000526 7.557891 65 < .0001 0.002926 0.005027

MODEL_1 6.485472 1.229939 5.273005 65 < .0001 4.029116 8.941829

https://doi.org/10.1371/journal.pone.0260995.t004

Table 5. Fixed effects coefficients of the model explaining the testing time in terms of the HPN/GPN and the problem size.

Name Estimate SE tStat DF pValue Lower Upper

(Intercept) 0.989527 0.649926 1.522523 65 0.132729 -0.30846 2.287518

size 0.002742 0.000118 23.30437 65 < .0001 0.002507 0.002977

MODEL_1 -2.79206 0.735072 -3.79835 65 < .0001 -4.2601 -1.32402

https://doi.org/10.1371/journal.pone.0260995.t005
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notion by adding the Euclidean distance between the currently selected city and other cities to

the vector context.

The Euclidean distance between two points (xi1, xi2) and (xj1, xj2) is shown in (0.11):

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi1 � xj1Þ
2
þ ðxi2 � xj2Þ

2

q

ð0:11Þ

Where xi1, xi2, xj1 and xj2are the coordinates of city i and city j respectively.

Using the feature extractor, we train our large model in TSP50, validate with TSP500, 10

epochs, 1e-3 learning rate with leaning rate decay 0.96 and 100 for tanh clipping. Due to mem-

ory constraints we only solve 1k instances, some sample tours are shown in Fig 6, in which we

solve TSP50-250-500-1000 with HPN+2opt. Table 2 summarizes our result, which shows that

our model generalizes better than GPN. For the sake of a fair comparison with the state-of-

the-art (i.e., GPN), we used 2opt local search technique to fine-tune the HPN’s tours. As

shown in Table 2 and Fig 7, our models outperform the GPN, GPN+2opt, PN, AM, and 2opt

models. Moreover, HPN+2opt returns near-optimal tours and generalizes better than the

GPN on a large-scale instance.

3. Benchmark instances results and statistical analysis

To validate our model against the standard benchmark instances, we employed varied-size

instances from the public libraries TSPLIB [27] and World TSP. The benchmark dataset con-

sists of 34 instances. The naming convention of instances consists of the first few letters of the

instance location and the problem size n. For example, the instance eg7146 has 7146 points in

Egypt. The instance sizes vary from 400 to 10639 nodes(cites). The normalized and actual tour

length in km and the testing time in seconds are reported in Table 3.

To understand how HPN is performing compared to the GPN (the state-of-the-art net-

work) in terms of the tour cost and testing time shown in Table 3, we did statistical compari-

son between these two networks. The statistical model should consider the dependency

between the observations shown in Table 3.

In other words, we should realize that the tour cost of HPN and GPN for the same instance

are correlated. Moreover, the testing times of same instance using the two networks are corre-

lated as well. Therefore, we used LME regression to explain the variability in the tour cost and

testing time (i.e. the responses) [24]. The LME regression model explains the variability of the

tour cost and testing time as a function of the network used (i.e., HPN and GPN) and the size

Table 6. The fixed effects coefficients of the model explaining the tour cost in terms of the HPN+2opt/GPN+2opt and the problem size.

Name Estimate SE tStat DF pValue Lower Upper

(Intercept) 17.96973 2.224075 8.079641 65 < .0001 13.52795 22.41152

size 0.002559 0.000488 5.243273 65 < .0001 0.001584 0.003534

MODEL_1 0.724771 0.097485 7.434709 65 < .0001 0.53008 0.919461

https://doi.org/10.1371/journal.pone.0260995.t006

Table 7. The fixed effects coefficients of the model explaining the testing time in terms of the HPN+2opt/GPN+2opt and the problem size.

Name Estimate SE tStat DF pValue Lower Upper

(Intercept) -143.885 25.28218 -5.69116 65 3.26E-07 -194.377 -93.393

size 0.106226 0.005288 20.08878 65 < .0001 0.095665 0.116786

MODEL_1 42.49765 15.33099 2.77201 65 < .0001 11.87955 73.11574

https://doi.org/10.1371/journal.pone.0260995.t007
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of the network. We used one indicator variable called “MODEL” to code the GPN and HPN.

MODEL ¼
1 when the instance was solved using GPN

0 when the instance was solved using HPN

(

In Table 4, we compared the tour cost for the HPN and GPN. A significance level of 0.05

was applied on all regression models. The p-value of the MODEL_1 indicator variable (i.e.,

GPN) is < .0001 and we conclude that the tour cost of the GPN is statistically significantly

Fig 8. Sample tours for benchmark instances.

https://doi.org/10.1371/journal.pone.0260995.g008
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higher than the tour cost of the HPN. However, as shown in Table 5, the testing time of the

HPN is statistically significantly higher than the testing time of the GPN.

We repeat the same analysis for the tour cost and the testing time of the HPN+2opt and

GPN+2opt. As shown in Tables 6 and 7, the HPN+2opt has statistically significantly lower test-

ing time and tour cost. This is expected because HPN returns a better tour as an initial point in

the solution space which helps 2opt to find a better final tour in less time. Finally, for the sake

of completeness, we visualized four constructed tours using HPN + 2opt in Fig 8.

VI. Conclusion and future work

In this work, a hybrid pointer network (HPN) is proposed for tackling both small-scale and

large-scale problems. We demonstrate that the hybrid concept with a graph-based method is

successful in improving the model performance for both scales. We used REINFORCE with

Rollout Baseline to train our model. Our results show that our model outperforms the tradi-

tional graph pointer network with a significant margin, resulting in improved model generali-

zation. Our model is still struggling to find the optimal solution for larger instances. Finding

the optimal solution for larger instances is challenging so this will be our future direction.

Our future work, we will attempt to find a robust architecture to improve the quality and

the time of solutions for large-scale problems, resulting in better model generalization. We

also want to tackle combinatorial problems with constraints, which will be an important direc-

tion for future study.
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