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By and large, the remarkable progress in visual object recognition in the last few years has
been fueled by the availability of huge amounts of labelled data paired with powerful,
bespoke computational resources. This has opened the doors to the massive use of deep
learning, which has led to remarkable improvements on new challenging benchmarks.
While acknowledging this point of view, in this paper I claim that the time has come to begin
working towards a deeper understanding of visual computational processes that, instead
of being regarded as applications of general purpose machine learning algorithms, are
likely to require tailored learning schemes. A major claim of in this paper is that current
approaches to object recognition lead to facing a problem that is significantly more difficult
than the one offered by nature. This is because of learning algorithms that work on images
in isolation, while neglecting the crucial role of temporal coherence. Starting from this
remark, this paper raises ten questions concerning visual computational processes that
might contribute to better solutions to a number of challenging computer vision tasks.
While this paper is far from being able to provide answers to those questions, it contains
some insights that might stimulate an in-depth re-thinking in object perception, while
suggesting research directions in the control of object-directed action.
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1 INTRODUCTION

The construction of huge supervised visual data bases has significantly contributed to the spectacular
performance of deep learning. However, the extreme exploitation of the truly artificial
communication protocol of supervised learning has its drawbacks, including the vulnerability to
adversarial attacks, which might also be tightly connected to the negligible role typically played to the
temporal structure. Are not we missing something? It looks like Nature did a great job by using time
to “sew all the video frames”, whereas it goes unnoticed to our eyes! At the dawn of pattern
recognition, when we also began to cultivate the idea of interpreting natural video, in order to
simplify the problem of dealing with a huge amount of information we removed time, the connecting
thread between frames. As a consequence, all tasks of pattern recognition were turned into problems
formulated on collections of images, where we only exploited spatial regularities and neglected the
crucial role of temporal coherence. Interestingly, when considering the general problem of object
recognition and scene interpretation, the joint role of the computational resources and the access to
huge visual databases of supervised data has contributed to erect nowadays “reign of computer
vision”. At a first glance this is reasonable, especially if you consider that video were traditionally
heavy data sources to be played with. However, a closer look reveals that we are in fact neglecting a
fundamental clue to interpret visual information, and that we have ended up facing problems where
the extraction of the visual concepts is mostly based on spatial regularities. On the other hand, reigns
have typically consolidated rules from which it’s hard to escape. This is common in novels and real
life. “The Three Princes of Serendip” is the English version of “Peregrinaggio di tre giovani figliuoli
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del re di Serendippo,” published by Michele Tramezzino in
Venice on 1557. These princes journeyed widely, and as they
traveled they continually made discoveries, by accident and
sagacity, of things they were not seeking. A couple of centuries
later, in a letter of 28 January 1754 to a British envoy in Florence,
the English politician and writer Horace Walpole coined a new
term: serendipity, which is succinctly characterized as the art of
finding something when searching for something else. Couldn’t
similar travels open new scenario in computer vision? Couldn’t
the visit to well-established scientific domains, where time is
dominating the scene, open new doors to an in-depth
understanding of vision? We need to stitch the frames to
recompose the video using time as a thread, the same thread
we had extracted to work on the images at the birth of the
discipline.We need to go beyond a peaceful interlude and think of
reinforcing the currently few contributions on learning theories
based on video more than on images!

This paper is a travel towards the frontiers of the science of
vision with special emphasis on object perception. We drive the
discussion by a number of curious questions that mostly arise as
one tries to interpret and disclose natural vision processes in a
truly computational framework. Unfortunately, as yet, we are far
away from addressing the posed questions. However, this paper
takes the position that asking right questions on the discipline
might themselves stimulate its progress.

2 CUTTING THE UMBILICAL CORD WITH
PATTERN RECOGNITION

In the eighties, SatosiWatanabe wrote a seminal book (Watanabe,
1985) in which he pointed out the different facets of pattern
recognition. Most of the modern work on computer vision for
object perception fits withWatanabe’s view of pattern recognition
as statistical decision making and pattern recognition as
categorization. Based on optimization schemes with billions of
variables and universal approximation capabilities, the
spectacular results of deep learning have elevated this view of
pattern recognition to a position where it is hardly debatable.
While the emphasis on a general theory of vision was already the
main objective at the dawn of the discipline (Marr, 1982), its
evolution has been mostly marked by significant experimental
achievements. Most successful approaches seem to be the natural
outcome of a very well-established tradition in pattern
recognition methods working on images, which have given
rise to the present emphasis on collecting big labelled image
databases (e.g., Deng et al., 2009). However, in spite of these
successful results, this could be the time of an in-depth rethinking
of what we have been doing, especially by considering the
remarkable traditions of the overall field of vision. Couldn’t it
be the right time to exploit the impressive literature in the field of
vision to conquer a more unified view of object perception?

In the last few years, a number of studies in psychology and
cognitive science have been pushing truly novel approaches to
vision. In (Kingstone et al., 2010), it is pointed out that a critical
problem that continues to bedevil the study of human cognition is
related to the remarkably successes gained in experimental

psychology, where one is typically involved in simplifying the
experimental context with the purpose to discover causal
relationships. In so doing we minimize the complexity of the
environment and maximize the experimental control, which is
typically done also in computer vision when we face object
recognition. However, one might ask whether such a
simplification is really adequate and, most importantly, if it is
indeed a simplification. Are we sure that treating vision as a
collection of unrelated frames leads a simplification of learning
visual tasks? In this paper we argue this not the case, since
cognitive processes vary substantially with changes in context.
When promoting the actual environmental interaction,
Kingstone et al. (2010) introduce a novel research approach,
called, “Cognitive Ethology”, where one opts to explore first how
people behave in a truly naturally situation. Once we have
collected experience and evidence in the actual environment
then we can move into the laboratory to test hypotheses. This
strongly suggests that also machines should learn in the wild!

Other fundamental lessons come from the school of robotics
for whatever involves the control of object-directed actions. In
(Benjamin et al., 2011), it is pointed out that “the purpose of
vision is very different when looking at a static scene to when
engaging in real-world behavior.” The interplay between
extracting visual information and coordinating the motor
actions is a crucial issue to face for gaining an in-depth
understanding of vision. One early realizes that manipulation
of objects is not something that we learn from a picture; it looks
like you definitely need to act yourself if you want to gain such a
skill. Likewise, the perception of the objects you manipulate can
nicely get a reinforcement form such as mechanical feedback. The
mentioned interplay between perception and action finds an
intriguing convergence in the natural processes of gaze control
and, overall, on the focus of attention (Ballard, 1991). It looks like
animate vision goes beyond passive information extraction and
plays an important role in better posing most vision tasks.

The studies in computer vision might benefit significantly also
from the exploration of the links with predictive coding Rao and
Ballard (1999) that have had a remarkable impact in
neuroscience. In that framework one is willing to study
theories of brain in which it constantly generates and updates
a “mental model” of the environment. Overall, the model is
supposed to generate its own predictions of sensory input and
compare them to the actual sensory input. The prediction error is
expected to be used to update and revise the mental model. While
most of the studies in deep learning have been focused on the
direct learning of object categories, there are a few contributions
also in the direction of performing a sort of predictive coding by
means of auto-encoding architectures (Ronneberger et al., 2015).
This neural network, which is referred to as an U-net, is used for
medical image segmentation.

3 DEALING WITH VIDEO INSTEAD OF
IMAGES

While the processing of video has been massively investigated for
a number of computer vision tasks, including tracking and action
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recognition, the emphasis on methods rooted on still images has
currently been dominating the state of the art in object
recognition approaches. In this paper we argue that there are
strong arguments to start exploring the more natural visual
interaction that animals experience in their own environment
for all perception tasks. The idea of shifting to video is very much
related to the growing interest of learning in the wild that has been
explored in the last few years1. The learning processes in the wild
have a different nature with respect to those that are typically
considered in machine learning. While ImageNet (Deng et al.,
2009) is a collection of unrelated images, a video supports
information only when motion is involved. In presence of still
images that last for awhile, the corresponding stream of equal
frames only conveys the information of a single image–apart from
the duration of the interval in which the video has been kept
constant. As a consequence, visual environments mostly diffuse
information only when motion is involved. As time goes by, the
information is only carried out by motion, which modifies one
frame to the next one according to the optical flow. Once we
deeply capture this fundamental feature of vision, we realize that a
different theory of machine learning is needed that must be
capable of naturally processing streams instead of a collection
of independent images. An important ingredient for such a theory
is that of emphasizing the role of the position (pixel) on which the
decision is carried out and, even more, the role of time in the
recognition processes doesn’t seem to play a central role. It looks
like we are mostly ignoring that we are in front of spatiotemporal
information, whose reduction to isolated patterns might not be a
natural approach especially for the complex tasks that we have
been recently tackling. While there are already remarkable
contributions on computer vision approaches that perform
semantic labelling, most methods struggle for massive labeling
that is difficult to achieve and definitely far away from natural
human skills.

It is worth mentioning that pixel-based computations and
segmentation have been successfully addressed in important real-
world applications. In the last decades, the massive production of
electronic documents, along with their printed version, has given
rise to specialized software tools to extract textual information
from optical data. Most optical documents, like tax forms or
invoices, are characterized by a certain layout which dramatically
simplifies the process of information extraction. Basically, as one
recognizes the class of a document, its layout offers a significant
prior on what we can expect to find in its different areas. For those
documents, the segmentation process can often be given a
somewhat formal description, so as most of the problems are
reduced to deal with the presence of noise. Basically, the
knowledge on the document layout typically offers the
opportunity of providing robust solutions. The noise doesn’t
compromise significantly the presence of segmentation, that is
in fact very well driven by the expectations provided in each pixel
of the documents. These guidelines have been fueling the field of

document analysis and recognition (DAR), whose growth in the
last few years has led to impressive results (Marinai et al., 2005).
Unfortunately, in most real-world problems, as we move to
natural images and vision, the methodology used in DAR is
not really effective. The reason is that there is no longer a reliable
anchor to which one can cling for segmenting the objects of a
scene. While we can provide a clear description of characters and
lines in optical documents, the same doesn’t hold for the picture
of a car which is mostly hidden by a truck during the overtaking.
Humans exhibit a spectacular detection ability by simply relying
on small glimpses at different scale and rotations. In no way are
those cognitive processes reducible to the well-posed
segmentation problems of chars and lines in optical
documents. As we realize that there is a car, we can in fact
provide its segmentation. Likewise, if an oracle gives us the
segmented portion of a car, we can easily classify it.
Interestingly, we don’t really know which of the two processes
is given a priority–if any. We are trapped into the chicken-egg
dilemma on whether classification of objects must take place first
of segmentation or vice versa. Amongst others, this issue has been
massively investigated by in (Borenstein and Ullman, 2002) and
pointed out in (Ullman, 1979). This intriguing dilemma might be
connected with the absence of focus of attention, which
necessarily leads to holistic mechanisms of information
extraction. Unfortunately, while holistic mechanisms are
required at a certain level of abstraction, the segmentation is a
truly local process that involves low level features.

The bottom line is that most problems of computer vision are
posed according to the historical evolution of the applications
more than via an in-depth analysis of the underlying
computational processes. While this choice has been proven to
be successful in many real-world cases, stressing this research
guideline might lead, on the long run, to sterile directions.
Somewhat outside the mainstream of massive exploration of
supervised learning, Poggio and Anselmi (Poggio and Anselmi,
2016) pointed out the crucial role of incorporating appropriate
visual invariances into deep nets to go beyond the simple
translation invariance that is currently characterizing
convolutional networks. They propose an elegant
mathematical framework on visual invariance and enlighten
some intriguing neurobiological connections. Couldn’t it be
the case that the development of appropriate invariances
might be exactly what is needed to go one step beyond?

4 QUESTIONS AND INSIGHTS

A good way to attack important problems is to pose the right
question. To quote Tukey:

Far better an approximate answer to the right question, which
is often vague, than the exact answer to the wrong question,
which can always be made precise.

Overall, posing appropriate questions can open a debate and
solicit answers. However, the right questions cannot be easily
posed since, while they need to have a big pictures in mind, we

1See, e.g., https://sites.google.com/site/wildml2017icml/. Of course, the spirit of
learning in the wild goes beyond video, but there is in fact a natural match
between them
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also need the identification of reasonable intermediate steps. It is
often the case that while addressing little problems,
inconsistencies arise that suggest the formulation of better
questions. In this section, we formulate ten questions on the
emergence of visual skills in nature that might contribute to the
development of a new approach to computer vision that is based
in processing of video instead of huge collections of images.

4.1 How can we Go Beyond “Intensive
Supervision”?
We start with a fundamental question that reveals a commonly
recognized limitation of current studies in computer vision:

Q1: How can animals acquire visual skills without
requiring “intensive supervision”?

Everybody working in the broad area of artificial intelligence
and in the field of cognitive science has been stimulated by this
question. Yet, it has not been addressed as it definitely deserves!
For example, it is well-known that the acquisition of the abstract
notion of objects goes well beyond shape interpretation. It has
been pointed out that a fundamental abstraction process arises
when considering the object interactions in the environment,
which does convey affordance (Gibson, 1950; Gibson, 1966;
Gibson and Boston 1979). While this cognitive property is
clearly of fundamental importance, we have not seen its
significant exploitation in state of the art object recognition
systems, yet.

The recent remarkable achievements in computer vision come
from a different mechanism with respect to human vision which
is based on tons of supervised examples—of the order of millions.
The different environmental interactions that one can conceive in
computers makes it possible to stress this artificial protocol of
learning that is supported by mathematical foundations from
decades and, more recently, by professional software tools.
Interestingly, humans could not be exposed to such a boring
interaction. Hence, strictly speaking, the mechanisms behind
supervised learning are artificial and offer a space for
machines to conquer visual skills that humans couldn’t
replicate in such a context. Of course, there is no need to be
surprised by the spectacular capabilities that machines can
achieve under such an artificial communication protocol, just
like nobody gets surprised by the computer speed in performing
multiplications.

On the other hand, because of the completely different
environmental interaction, humans conquer the capability of
recognizing objects just by a few supervisions. If we are
interested in the scientific foundations of vision, we should
aspire for an in-depth explanation of this remarkable
difference between humans recognition capabilities and
present computer vision technologies. Because of the expected
saturation of performance of systems based on state of the art
technologies, the time has already come to face the question. This
has been advocated in a number of papers (see e.g., Lee et al.,
2009; Ranzato et al., 2007; Goroshin et al., 2015; Tavanaei et al.,
2016), and the interest in this kind of exploration is growing.

It turns out that when the posed question is analyzed more
carefully, one easily comes into the conclusion that the answer
must be searched in the different learning protocols in humans
and computers (e.g., active learning and active vision, see
Aloimonos et al., 1988). In a sense, we need to focus on the
role of a continuous environmental interaction during the “life of
the agent.” The interaction is not only carried out through
symbolic communication but also it seems to rely primarily on
continuous-based information exchange. The reward for
successful actions is dominating the visual learning process in
animals of any specie. These actions range from drinking milk
from the mother’s breast to obstacle avoidance. Hence, those
actions basically result in reinforcement learning processes that
contribute to the development of the visual skills. An eagle, like
any predator, is early driven by the objective of capturing the
prey, that strongly contributes to the development of the visual
skills. It is worth mentioning that for newborns, like for other
primates, the acquisition of visual skills also benefits from the
joint development of motion control. As soon as a baby begins
the first experiences of object manipulation, such a task is
paired with visual development. Successful manipulations are
due to the correct visual interpretation which, in turn, is
reinforced by the concrete acts of touching and moving.
Hence, this is just a way to “supervise” and reinforce visual
skills as the outcome of other processes taking place in the
environment. Interestingly, at that time, linguistic skills are
nearly absent, which clearly indicates that, just for other
animals, the learning of vision undergoes its own
developmental phases, while the interplay with language
comes later on.

Of course, in nature the discussion on the acquisition of
vision cannot neglect the fundamental role of genetic
inheritance, that has a fundamental impact on the cognitive
developmental steps. It is worth mentioning that remarkable
differences have been discovered between different species
of animals, in terms of the balance between their genome
and their learning acquisition from the environment. For
example, while chicks acquire significant visual skills early
on (Wood and Wood, 2020), it takes months for humans,
that clearly need to conquer more sophisticated skills at the
perceptual level.

Interestingly there are intriguing connections with recent
achievements in machine learning, where we have been
constantly underlying the crucial role of transfer learning
mechanisms (Pan and Yang, 2010) in many real-world
problems. Clearly, whenever we transfer knowledge to the
learning agent, this simplifies its own visual tasks and, as a
consequence, the agent can learn by relying on less supervised
examples. However, one should bear in mind that the current
generation of neural networks that are currently used in
transfer learning relies on the development of “individuals”
that are strongly limited from a “genetic viewpoint”, since
they haven’t been exposed to visual natural interactions. The
learned features that are “genetically” transmitted are typically
developed under supervised learning on classification that,
even for large databases, might be biased by the specific
benchmark.
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4.2 What is the Role of Time?
As stated at the end of the previous section, a remarkable
distinction between humans and state of the art machines is
that they operate within a very different learning environment.
The visual interaction that we experiment in nature leads us to
face the following fundamental question:

Q2: How can animals gradually acquire visual skills in
their own environments?

Apparently, such a gradual learning scheme also takes place in
machine learning. But, can we really state that the “gradual”
process of human learning is somewhat related to the “gradual”
weight updating of neural networks? A closer look at the
mechanisms that drive learning in vision tasks suggests that
current models of machine learning mostly disregard the
fundamental role of “time”, which shouldn’t be confused with
the iteration steps that mark the weight update. First, notice that
learning to see in nature takes place in a context where the classic
partition into learning and test environment is arguable. On the
other hand, this can be traced back to early ideas on statistical
machine learning and pattern recognition, which are dominated
by the principles of statistics. In the extreme case of batch mode
learning, the protocol assumes that the agent possesses
information on its life before coming to life. Apparently this
doesn’t surprise computer vision researchers, whereas it sounds
odd for the layman, whose viewpoint shouldn’t be neglected,
since wemight be trapped into an artificial world created when no
alternative choice was on the horizon. The adoption of mini-
batches and even the extreme solution of on-line stochastic
gradient learning are still missing a true incorporation of time.
Basically, they pass through the whole training data many times, a
process which is still far from natural visual processes, where the
causal structure of time dictates the gradual exposition to video
sources. There is a notion of life-long learning that is not captured
in current computational schemes, since we are ignoring the role
of time which imposes causality.

Interestingly, when we start exploring the alternatives to huge
collections of labelled images, we are immediately faced with a
fundamental choice, which arises when considering their
replacement with video collections. What about their
effectiveness? Suppose you want to prepare a collection to be
used for learning the market segment associated with cars (luxury
vehicles, sport cars, SUVs/off-road vehicles, . . . ). It could be the
case that a relatively small image database composed of a few

thousands of labelled examples is sufficient to learn the concept.
On the other hand, in a video setting, this corresponds with a few
minutes of video, a time interval in which it is unreasonable to
cover the variety of car features that can be extracted from 10,000
images! Basically, there will be a lot of near-repetitions of frames
which support scarse information with respect to the abrupt
change from picture to picture. This is what motivates a true
paradigm shift in the formulation of learning for vision. In nature,
it is unlikely to expect the emergence of vision from the
accumulation of video. Hence, couldn’t we do same? A new
communication protocol can be defined where the agent is simply
expected to learn by processing the video as time goes by without
its recording and by handling human-like vocal interactions.
Interestingly, this gets rid of the need to accumulate and
properly handle huge collections of labelled images, which
would represent a paradigm shift in computer vision and
might opens great opportunities to all research centers to
compete in another battlefield.

At any stage of child development, it looks like only the visual
skills that are required to face the current tasks are acquired. One
might believe that this is restricted to natural processes, but we
conjecture that the temporal dimension plays a crucial role in the
well-positioning of most challenging cognitive tasks, regardless of
whether they are faced by humans or machines. The formulation
of learning in the temporal dimension likely becomes more and
more important when we begin to address a number of challenges
that are also outlined in the other questions posed in the paper.
The role of time becomes crucial when considering the extraction
of good features. This is in fact an issue that, as the interest in
transfer learning has been demonstrating, has becoming more
and more relevant. While in the literature we have been typically
concerned with feature extraction that is independent of classic
geometric transformation, it looks like we are still missing the
astonishing human skill of capturing distinctive features when
looking at ironed and rumpled shirts! There is no apparent
difficulty to recognize shirts by keeping the recognition
coherence in case we roll up the sleeves, or we simply curl
them up into a ball for the laundry basket. Of course, there
are neither rigid transformations, like translations and rotation,
nor scale maps that transforms an ironed shirt into the same shirt
thrown into the laundry basket. Is there any natural invariance?

In this paper, we claim that motion invariance is in fact the
only one that we need. Translation, scale, and rotation
invariances, that have been the subject of many studies, are in
fact instances of invariances that can be fully gained whenever we
develop the ability to detect features that are invariant under
motion. If my finger moves closer and closer to my eyes then any
of its representing features that is motion invariant will also be
scale invariant. The finger will become bigger and bigger as it
approaches my face, but it is still my finger! Clearly, translation,
rotation, and complex deformation invariances derive from
motion invariance. Humans life always experiments motion,
so as the gained visual invariances naturally arise from
motion. Studies on different types of invariances in vision
have been so rich and massively investigated that one can
suspect that there is something missing in the claim that
enforcing motion invariance only suffices to learn. The

BOX 1 | The bottom line is that for the posed question to be addressed
one must dramatically change the agent environmental interactions.
Interestingly, it is not the lack of technology for mimicking human interaction
that mostly prevents us from going beyond “intensive supervision”, but
the lack of a theory to support the appropriate computational mechanisms.
From one side, this is a stimulating scientific challenge. From the other side,
the development of a similar theory would likely contribute to open new
technological perspectives where machines learn to seen by a on-line
scheme without needing visual databases.
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emergence of information-based laws of learning can take
place and, consequently, a natural formulation of learning
to see in the temporal dimension relies on the principle of
Material Point Invariance, which blesses the pairing of any
feature of a given object, including the brightness, with its own
velocity.

We can somewhat parallel the idea of brightness invariance
that is used for the estimation of the optical flow for imposing a
fundamental invariance condition on any visual feature φ. Hence,
the following consistency condition holds true:

φ xφ t( ), t( ) � φ xφ 0( ), 0( ) � cφ, ∀t ∈ 0, T[ ] (1)
where xφ(t) denotes a trajectory of the associated feature φ and
cφ ∈ R. It is worth mentioning that motion invariance is not
alway desirable since perception and action also need to develop
features that provide different reactions in front of motion. For
example, this makes it possible to learn the meaning of “vertical”
and “horizontal” positions and to react to moving objects. When
thinking of the trajectory xφ(t) we must bear in mind that if we
consider that feature extraction takes place under focus of
attention mechanisms then the visual agent always experiences
motion. Formally, for any pair (x, t) (pixel-time), let xφ(t) = x and
_xφ(t) � vφ(x, t) be. Given the optical flow vφ. Then motion
invariance of feature φ can be expressed by

dφ xφ t( ), t( )
dt

� ∇φ x, t( ) · vφ x, t( ) + φt x, t( ) � 0. (2)

This shares the formal structure of the transport equation of
brightness invariance, but it is important to notice that this
equation is stating a principle which is not supposed to be
violated. While brightness invariance represents an
approximation, the conjunction stated by Eq. 2 is expected to
hold perfectly. Basically (φ, vφ) is an indissoluble pair that plays a
fundamental role in the learning of the visual features that
characterizes the object. Notice that, just like the color
components of a color video typically share the same velocity,
also different features can be aggregated with the same velocity.

What if an object is gradually deformed into another one? One
can think of cat which is very slowly transformed to a dog! This
relates to the metaphysical question of whether and how things
persist over time. Philosophers regards things as concrete
material objects as well as pure abstract objects which are
associated with concepts and ideas2. Concepts can drift as
video changes very slowly, which can deceive any intelligent
agent who relies on motion invariance only, provided that
such an agent fails at detecting slow motion. While one can
always argue about the possibility of achieving certain thresholds
for slow motion detection, when trusting motion invariance one
must be ready to accept the problem of concept drift.
Interestingly, as will be pointed out in the reminder of the

paper, the development of focus of attention mechanisms
helps facing also this problem.

It could be the case that the extraction of very efficient
information from visual processes that has captured the
attention for decades of computer scientists and engineers
benefits from a sort of pre-algorithmic phase where we primarily
need to understand basic perceptual laws of vision that hold
regardless of the nature of the agent. This research guideline
has been stimulating the conception of variational laws of
learning that can capture the elegance and the simplicity of
natural behavior (Betti and Gori, 2016; Betti et al., 2018). When
following this approach one promotes the role of time by following
principles that have a very well-established tradition in physics.
Most importantly, one begins to challenge the indisputable
principle that learning can be regarded as the outcome of an
optimization process that operates on the risk function. Clearly,
there is something wrong with this principle in nature, since the
agent doesn’t possess the risk at the time of its birth! While such a
risk can be gradually constructed and the adoption of stochastic
gradient is a poweful idea for capturing the underlying statistics, we
are basically attacking a different problem with respect to what all
species of animals are expected to face in nature.

4.3 Can Animals see in a World of Shuffled
Frames?
One might figure out what human life could have been in a world
of visual information with shuffled frames.

Q3: Could children really acquire visual skills in such an
artificial world, which is the one we are presenting to
machines? Don’t shuffled visual frames increase the
complexity of learning to see?

A related issue has been faced in (Wood, 2016) for the
acquisition of visual skills in chicks. It is pointed out that
“when newborn chicks were raised with virtual objects that
moved smoothly over time, the chicks developed accurate
color recognition, shape recognition, and color-shape binding
abilities.” Interestingly, the authors notice that in contrast, “when
newborn chicks were raised with virtual objects that moved non-
smoothly over time, the chicks’ object recognition abilities were
severely impaired.” When exposed to a video composed of
independent frames taken from a visual database, like
ImageNet, that are presented at classic cinema frame rate of
24 fps, humans seem to experiment related difficulties in non-
smooth visual presentation.

BOX 2 | The bottom line is that while we struggle for the acquisition of
huge labeled databases, the true incorporation of time might led to a
paradigm shift in the process of feature extraction. We promote the study of
the agent life based on the ordinary notion of time, which emerges in all
its facets. The incorporation of motion invariance might be the key for
overcoming the artificial protocol of supervised learning. We claim that such
an invariance is in fact the only one that we need.

2This discussion was stimulated by Marcello Pelillo who pointed out intriguing
links with The “Ship of Theseus Puzzle” and “The Puzzle of the Statue and the
Clay.”
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Hence, it turns out that our spectacular visual skills completely
collapse in a task that is successfully faced in computer vision! As
a consequence, one might start formulating conjectures on the
inherent difficulty of artificial versus natural visual tasks. The
remarkably different performance of humans and machines has
stimulated the curiosity of many researchers in the field. Of
course, you can start noticing that in a world of shuffled
frames, a video requires an order of magnitude more
information for its storing than the corresponding temporally
coherent visual stream. This is a serious warning that is typically
neglected in computer vision, since it suggests that any
recognition process is likely to be more difficult when
shuffling frames. One needs to extract information by only
exploiting spatial regularities in the retina, while disregarding
the spatiotemporal structure that is offered by nature. The
removal of the thread that nature used to sew the visual
frames might prevent us from the construction of a good
theory of vision. Basically, we need to go beyond the current
scientific peaceful interlude and abandon the safe model of
restricting computer vision to the processing of images.
Working with video was discouraged at the dawn of computer
vision because of the heavy computational resources that it
requires, but the time has come to reconsider significantly this
implicit choice. Not only it is the case that humans and animals
cannot see in a world of shuffled frames, but it is likely that they
could not learn to see in such an environment. Shuffling visual
frames is the implicit assumption of most of present vision
technology that, as stated in the previous section, corresponds
with neglecting the role of time in the discovery of visual
regularities. No matter what computational scheme we
conceive, the presentation of frames where we have removed
the temporal structure exposes visual agents to a problem where a
remarkable amount of information is delivered at any
presentation of new examples. When going back to the
previous discussion on time, one clearly see its natural
environmental flow that must be somehow synchronized with
the agent’s computational capability. The need for this
synchronization is in fact one of the reasons for focussing
attention at specific positions in the retina, which confers the
agent also the gradual capability of extracting information at pixel
label. Moreover, as already pointed out, we need to abandon the
idea of recording a data base for statistical assessment. There is
nothing better than human evaluation in perceptual tasks, which
could stimulate new ways of measuring the scientific progress of
the discipline (see Section 5).

The reason for formulating a theory of learning on video
instead of on images is not only rooted in the curiosity of grasping
the computational mechanisms that take place in nature. A major
claim in this paper is that those computational mechanisms are
also fundamental in most of computer vision tasks.

4.4 How can Humans Perform Pixel
Semantic Labeling?
Many object recognition systems are based on an opportune pre-
processing of video information represented by a vector, which is
subsequently processed for class prediction. Surprisingly enough,
the state of the art approaches that follow this guideline already
offer quite accurate performance in real-world contexts, without
relying on the semantic labelling of each pixel. Basically, a global
computational scheme emerges that is typically made more and
more effective when the environment in which the machine is
supposed to work is quite limited, and it is known in advance. The
number of the classes that one expects to recognize in the
environment affects the performance, but very high accuracy
can be achieved without necessarily being able to perform the
object segmentation and, therefore, without needing to perform
pixel semantic labeling. However, for an agent to conquer visual
capabilities in a broad context, it seems to be very useful to rely on
more specific visual skills. When thinking of a video, the
information that one can extract is not only driven by time
but also by spatial information. We humans can easily describe a
scene by locating the objects in specific positions, and we can
describe their eventual movement. This requires a deep
integration of visual and linguistic skills, that are required to
come up with compact, yet effective video descriptions. However,
in any case humans can successfully provide a very accurate
labeling of single pixels, which leads us to pose the following
question:

Q4: How can humans exhibit such an impressive skill of
properly labelling single pixels without having received
explicit pixel-wise supervisions? Is it not the case that
such a skill must be a sort of “visual primitive” that
cannot be ignored for efficiently conquering additional
skills on object recognition and scene interpretation?

Interestingly, in humans semantic pixel labelling is by driven
by the focus of attention, another fundamental features that, as we
will see in the remainder of the paper, is at the core of all
important computational processes of vision. While pixel-
based decisions are inherently interwound with a certain
degree of ambiguity, they are remarkably effective. The
linguistic attributes that we can extract are related to the
context of the pixel that is taken into account for label
attachment, while the ambiguity is mostly a linguistic more
than a visual issue. In a sense, this primitive is likely in place
for conquering higher abstraction levels. How can this be done?
The focus on single pixels allows us to go beyond object
segmentation based on sliding windows. Instead of dealing
with object proposals (Zitnick and Dollár, 2014), a more
primitive task is that of attaching symbols to single pixels in
the retina. The task of semantic pixel labelling leads to focussing
attention on the given pixel, while considering the information in
its neighborhood. This clearly opens the doors to an in-depth re-
thinking of pattern recognition processes. It is not only the frame
content, but also where we focus attention in the retina that does
matter.

BOX 3 | It appears that, while ignoring the crucial role of temporal
coherence, the formulation of most of present computer vision tasks lead us
to tackle problems that are remarkably more difficult than those nature has
prepared for us!
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Human ability of exhibiting semantic labeling at pixel level is
really challenging. The visual developmental processes conquer
this ability nearly without pixel-based supervisions. It seems that
such a skill is mostly the outcome of the acquisition of the
capability to perform object segmentation. This is obtained by
constructing the appropriate memberships of the pixels that
define the segmented regions. When thinking of the classic
human communication protocols, one early realizes that even
though it is rare to provide pixel-based supervision, the
information that is linguistically conveyed to describe visual
scenes makes implicit reference to the focus of attention. This
holds regardless of the scale of the visual entity being described.
Hence, the emergence of the capability of performing pixel
semantic label seems to be deeply related to the emergence of
focus of attention mechanisms. The most striking question,
however, is how can humans construct such a spectacular
segmentation without a specific pixel-based supervision!
Interestingly, we can focus on a pixel and attach meaningful
labels, without having been instructed for that task.

4.5 What is the Role of Receptive Fields and
Hierarchical Architectures?
Beginning from early studies on the visual structure of the cortex
(Hubel and Wiesel, 1962), neuroscientists have gradually gained
evidence that it presents a hierarchical structure and that neurons
process the video information on the basis of inputs restricted to
receptive fields. Interestingly, the recent spectacular results of
convolutional neural networks suggests that hierarchical
structures based on neural computation with receptive fields
play a fundamental role also in artificial neural networks
(LeCun et al., 2015). The following questions naturally arise:

Q5: Why are the visual mainstreams organized
according to a hierarchical architecture with receptive
fields? Is there any reason why this solution has been
developed in biology? Why is its “replication” in neural
networks so successful?

First of all, we can promptly realize that, even though neurons
are restricted to compute over receptive fields, deep structures
rely on large virtual contexts for their decision. As we increase the
depth of the neural network, the consequent pyramidal
dependence that is established by the receptive fields increases
the virtual input window used for the decision, so that higher
abstraction is progressively gained as we move towards the
output. Hence, while one gives up to exploit all the
information available at a certain layer, the restriction to
receptive field does not prevent from considering large

windows for the decision. The marriage of receptive fields
with deep nets turns out to be an important ingredient for a
parsimonious and efficient implementation of both biological and
artificial networks. In convolutional neural networks, the
assumption of using receptive fields comes with the related
hypothesis of weight sharing on units that are supposed to
extract the same feature, regardless of where the neurons are
centered in the retina. In so doing we enforce the extraction of the
same features across the retina. This makes sense whereas, in
general, it does not make sense to extract features depending on
the pixel in the retina. The same visual clues are clearly positioned
everywhere in the retina and the equality constraints on the
weights turn out to be a precise statement for implementing a sort
of invariance under translation.

Clearly, this constraint has neither effect on invariance under
scale nor under rotation. Any other form of invariance that is
connected with deformable objects is clearly missed and is
supposed to be learned. The current technology of
convolutional neural networks in computer vision typically
gains these invariances thanks to the power of supervised
learning by “brute force.” Notice that since most of the tasks
involve object recognition in a certain environment, the
associated limited amount of visual information allows to go
beyond the principle of extracting visual features at pixel level.
Visual features can be shared over small windows in the retina by
the process of pooling, thus limiting the dimension of the
network. Basically, the number of features to be involved has
to be simply related to the task at hand, and we can go beyond the
association of the features with the pixels. However, the
acquisition of human-like visual skills is not compatible with
this kind of simplifications since, as stated in the previous section,
humans can perform pixel semantic labeling. There is a
corresponding trend in computer vision where convolutional
nets are designed to keep the connection with each pixel in
the retina at any layer so as to carry out segmentation and
semantic pixel label. Interestingly, this is where we need to
face a grand challenge. So far, very good results have been
made possible by relying on massive labelling of collections of
images. While image labeling for object classification is a boring
task, human pixel labeling (segmentation) is even worse! Instead
of massive supervised labelling, one could realize that motion and
focus of attention can be massively exploited to learn the visual
features mostly in an unsupervised way. A recent study in this
direction is given in (Betti and Gori, 2018), where the authors
provide evidence of the fact that receptive fields do favor the
acquisition of motion invariance which, as already stated, is the
fundamental invariance of vision. The study of motion invariance
leads to dispute the effectiveness and the biological plausibility of
convolutional networks. First, while weight sharing is directly
gained by translational invariance on any neuron, the vice versa
clearly does not hold. Hence, we can think of receptive field based
neurons organized in a hierarchical architecture that carry out
translation invariance without sharing their weights. This is
strongly motivated also by the arguable biological plausibility
of the mechanism of weight sharing (Ott et al., 2020). Such a lack
of plausibility is more serious than the supposed lack of a local
computational scheme in Backpropagation, which mostly comes

BOX 4 | The primitive of pixel semantic labelling is likely crucial for the
construction of human-like visual skills. There should be a hidden supervisor
in nature that, so far, has nearly been neglected. We conjecture that it is the
optical flow which plays the central role for object recognition. The
decision on its recognition must be invariant under motion, a property that
does require a formulation in the temporal direction.
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from the lack of delay in the forward model of the neurons (Betti
and Gori, 2019).

4.6 Why Two Different Main Visual
Processing Streams?
In Section 2 we have emphasized the importance of bearing in
mind the neat functional distinction between vision for action
and vision for perception. A number of studies in neuroscience
lead to the conclusion that the visual cortex of humans and other
primates is composed of two main information pathways that are
referred to as the ventral stream and the dorsal stream (Goodale
and Milner, 1992; Goodale and Keith Humphrey, 1998). We
typically refer to the ventral “what” and the dorsal “where/how”
visual pathways. The ventral stream is devoted to perceptual
analysis of the visual input, such as object recognition, whereas
the dorsal stream is concerned with providing spatial localization
and motion ability in the interaction with the environment. The
ventral stream has strong connections to the medial temporal
lobe (which stores long-term memories), the limbic system
(which controls emotions), and the dorsal stream. The dorsal
stream stretches from the primary visual cortex (V1) in the
occipital lobe forward into the parietal lobe. It is
interconnected with the parallel ventral stream which runs
downward from V1 into the temporal lobe.

Q6:Why are there two different mainstreams? What are
the reasons for these a different neural evolutions?

This neurobiological distinction arises for effectively facing
visual tasks that are very different. The exhibition of perceptual
analysis and object recognition clearly requires computational
mechanisms that are different with respect to those required for
estimating the scale and the spatial position. Object recognition
requires the ability of developing strong invariant properties that
mostly characterize the objects themselves. By and large scientists
agree that objects must be recognized independently of their
position in the retina, scale, and orientation. While we subscribe
to this point of view, a more careful analysis of our perceptual
capabilities indicates that these desirable features are likely more
adequate to understand the computational mechanisms behind
the perception of rigid objects. The elastic deformation and the
projection into the retina gives in fact rise to remarkably more
complex patterns that can hardly be interpreted in the framework
of geometrical invariances. We reinforce the claim that motion

invariance is in fact the only invariance which does matter. Related
studies in this direction can be found (Bertasius et al., 2021). As
the nose of a teddy bear approaches child’s eyes it becomes larger
and larger. Hence, scale invariance is just a byproduct of motion
invariance. The same holds true for rotation invariance.
Interestingly, as a child deforms the teddy bear a new visual
pattern is created that, in any case, is the outcome of themotion of
“single object particles.” The neural enforcement of motion
invariance likely takes place in the “what” neurons. Of course,
neurons with built-in motion invariance are not adequate to
make spatial estimations or detection of scale/rotation. Unlike the
“what” neurons, in this case motion does matter and the neural
response must be affected by the movement.

4.7 Why do Some Animals Focus Attention?
It is well-known that the presence of the fovea in the retina leads
to focus attention on details in the scene. Such a specialization of
the visual system is widespread among vertebrates, it is present in
some snakes and fishes, but among mammals is restricted to
haplorhine primates. In some nocturnal primates, like the owl
monkey and in the tarsier, the fovea is morphologically distinct
and appears to be degenerate. An owl monkey’s visual system is
somewhat different from other monkeys and apes. As its retina
develops, its dearth of cones and its surplus of rods mean that this
focal point never forms. Basically, a fovea is most often found in
diurnal animals, thus supporting the idea that it is supposed to
play an important role for capturing details of the scene (Ross,
2004). But why haven’t many mammals developed such a rich
vision system based on foveate retinas? Early mammals, which
emerged in the shadow of the dinosaurs, were likely forced to live
nocturnal lives so as to avoid to become their pray (Sohn, 2019).
In his seminal monograph, Gordon Lynn Walls (Walls, 1942)
proposed that there has been a long nocturnal evolution of
mammals’ eyes, which is the reason of the remarkable
differences with respect to those of other vertebrates. The idea
became known as the “nocturnal bottleneck” hypothesis
(Gerkema et al., 2013). Mammals’ eyes tended to resemble
those of nocturnal birds and lizards, but this does not hold for
humans and closely related monkeys and apes. It looks they re-
evolved features useful for diurnal living after they abandoned a
nocturnal lifestyle upon dinosaur extinction. It is worth
mentioning that haplorhine primates are not the only
mammals which focus attention in the visual environment.
Most mammals have quite a well-developed visual system for
dealing with details. For example, it has been shown that dogs
possess quite a good visual system that share many features with

BOX 5 | Hierarchical architectures and receptive fields seems to be
tightly connected in the development of abstract representations. However,
we have reasons to doubt that weight sharing happens in biological networks
and that the removal of this constraint facilitates the implementation of
motion invariance. The architectural incorporation of this fundamental
invariance property, as well as the match with the need for implementing the
focus of attention mechanisms likely needs neural architectures that are more
sophisticated than current convolutional neural networks. In particular,
neurons which provide motion invariance likely benefit from dropping the
weight sharing constraint.

BOX 6 | These analyses are consistent with neuroanatomical evidence
and suggest that “what” and “where” neurons are important also in
machines. The anatomical difference between the two processing streams is
in fact the outcome of a different functional role. While one can ignore
such a difference and rely on the rich representational power of big deep
networks, the underlined difference stimulates the curiosity of discovering
canonical neural structures to naturally incorporate motion invariance, with
the final purpose being that of discovering different features for perception
and action.
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those of haplorhine primates (Beltran et al., 2014). A retinal
region with a primate fovea-like cone photoreceptor density has
been identified but without the excavation of the inner retina. A
similar anatomical structure, that has been observed in rare
human subjects, has been named fovea-plana. Basically, the
results in (Beltran et al., 2014) challenge the dogma that
within the phylogenetic tree of mammals, haplorhine primates
with a fovea are the sole lineage in which the retina has a central
bouquet of cones. In non-primate mammals, there is a central
region of specialization, called the area centralis, which also is
often located temporal to the optic axis and demonstrates a local
increase in photoreceptor and retinal ganglion cell density that
plays a role somehow dual with respect to the fovea. Like in
haplorhine primates, in those non-primate mammals we
experience focus of attention mechanisms that are definitely
important from a functional viewpoint.

This discussion suggests that the evolution of animals’ visual
system has followed many different paths that, however, are
related to focus of attention mechanisms, that are typically
more effective for diurnal animals. There is, however, an
evolution path which is definitely set apart, in which the frog
is most classic representer. More than 60 years ago, the visual
behavior of the frog posed an interesting question (Lettvin et al.,
1959) which is mostly still on the table. In the words of the
authors:

The frog does not seem to see or, at any rate, is not
concerned with the detail of stationary parts of the
world around him. He will starve to death surrounded
by food if it is not moving. His choice of food is
determined only by size and movement.

No mammal experiments such a surprising behavior!
However, the frog is not expected to eat like mammals. When
tadpoles hatch and get free, they attach themselves to plants in the
water such as grass weeds, and cattails. They stay there for a few
days and eat tiny bits of algae. Then the tadpoles release
themselves from the plants and begin to swim freely,
searching out algae, plants and insects to feed upon. At that
time their visual system is ready. Their food requirements are
definitely different from what mammals need and their visual
system has evolved accordingly for catching flying insects.
Interestingly, unlike mammals, the studies in (Lettvin et al.,
1959) already pointed out that the frogs’ retina is
characterized by uniformly distributed receptors with neither
fovea nor area centralis. Interestingly, this means that the frog
does not focus attention by eye movements. When the discussion
focuses on functional issues the following natural questions arise:

Q7:Why are the fovea and the area centralis convenient?
Why do primates and other animals focus attention,
whereas others, like the frog, do not?

One can easily argue that any action that animals carry out
needs to prioritize the frontal view. On the other hand, this leads
to the detriment of the peripheral vision, that is also very
important. In addition, this could apply for the dorsal system

whose neurons are expected to provide information that is useful
to support movements and actions. Apparently, the ventral
mainstream, with neurons involved in the “what” function,
does not seem to benefit from foveate eyes. Apart from recent
developments, most state of the art computer vision models for
object recognition, just like frogs, do not focus attention, since
they carry out a uniform massive parallel computation on the
retina. Just like frogs, the cameras used in computer vision
applications are uniformly distributed, but machines seem to
conquer human-like recognition capabilities on still images.
Interestingly, unlike frogs, machines recognize quite well food
properly served in a bowl. This capability might be due to the
current strongly artificial communication protocol. Machines
benefit from supervised learning of tons of supervised pairs, a
process which, as already pointed out, cannot be sustained in
nature. On the other hand, as already pointed out, in order to
attack the task of understanding what is located in a certain
position, it is natural to think of eyes based on fovea or on area
centralis. The eye movements with the corresponding trajectory
of the focus of attention (FOA) is also clearly interwound with the
temporal structure of video sources. In particular, humans
experience eye movements when looking at fixed objects,
which means that they continually experience motion. Hence,
also in case of fixed images, conjugate, vergence, saccadic, smooth
pursuit, and vestibulo-ocular movements lead to the acquisition
of visual information from relative motion. We claim that the
production of such a continuous visual stream naturally drives
feature extraction, since the corresponding convolutional filters,
charged with representing features for object recognition, are
expected not to change during motion. The enforcement of this
consistency condition creates a mine of visual data during animal
life! Interestingly, the same can happen for machines. Of course,
we need to compute the optical flow at the pixel level so as to
enforce the consistency of all the extracted features. Early studies
on this problem (see Horn and Schunck 1981), along with related
improvements (see e.g., Baker et al., 2011) suggests to determine
the velocity field by enforcing brightness invariance. As the
optical flow is gained, it can be used to enforce motion
consistency on the visual features. These features can be
conveniently combined with those responsible of representing
objects. Early studies driven by these ideas are reported in Gori
et al., (2016), where the authors propose the extraction of visual
features as a constraint satisfaction problem, mostly based on
information-theoretic principles and early ideas on motion
invariance.

The following remarks on focus of attention coming from
nature seem to be important for conquering efficient visual skills
for any intelligent agent. Basically, it looks like we are faced with
functional issues which mostly obeys information-based
principles.

• The FOA drives the definition of visual primitives at pixel
level. The already mentioned visual skill that humans
possess to perform pixel semantic labeling clearly
indicates the capability of focusing on specific points in
the retina with high resolution. Hence, FOA is needed if we
want to perform such a task.
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• Eye movements and FOA help estimating the probability
distribution on the retina. At any time a visual agent clearly
needs to possess a good estimation of the probability
distribution over the pixels of the retina. This is
important whenever we consider visual tasks for which
the position does matter. This involves both the where
and what neurons. In both cases it is quite obvious that
any functional risk associated with the given task should
avoid reporting errors in regions of the retina where there is
a uniform color. The probability distribution is of
fundamental importance and it is definitely related to
saliency maps built on focus of attention trajectories.

• FOA very well fits the need for receptive fields and deep nets.
We have already discussed the marriage between receptive
fields and deep networks. Interestingly, the FOA
mechanisms emphasize the role of a single receptive field
in the computational process that takes place at any time.
The saccadic movements contribute to perform “temporally
segmented computations” over the retina on the different
sequences produced by micro-saccadic movements. In
addition, in (Betti and Gori, 2018), the authors provide
evidence of the fact that receptive fields do favor the
development of biologically-plausible models based on
local differential equations.

• Eye movements and FOA are the basis for establishing
invariant laws.. The interplay between the FOA and the
invariance properties is the key for understanding human
vision and general principles that drive object recognition
and scene interpretation. In order to understand the nice
circle that is established during the processes of learning in
vision, let us start exploring the very nature of eye
movements in humans. Basically, they produce visual
sequences that are separated by saccadic movement,
during which no information is acquired3. Interestingly,
each of those sequences is composed of pixels that somehow
share common visual features. In case of micro-saccades the
corresponding micro-movements explore regions with a
remarkable amount of details that are somehow
characterized by certain features. The same holds true for
smooth pursuit, where the invariance of the extracted
feature turns out to be a sort of primitive consistency
property: objects do not change during their motion.
Hence, any visual feature associated with “what neurons”
must be invariant under any eye movement, apart from
saccadic movements. Clearly, such an invariance has a true
unsupervised nature. A deep net based on the discussed
convolutional structure can in fact learn a set of latent
features to be motion invariant This results in an
impressive collection of “labelled data” that nature offers
for free. The eye movements and the FOA significantly
contribute to enhance the motion invariance since, as
already pointed out, humans always experience motion in

a frame of reference located on the retina. When thinking of
the “what” neurons for which invariances need to be
imposed, we can promptly realize that those which are
close to the output are better suited for the enforcing of
invariances. It is in fact quite obvious that for many of those
invariances to take place we need a strong computational
capability of the “what neuron.” Interestingly, this seems to
suggest that “where” neurons could better be located in the
early layers of the hierarchy whereas “what” neurons require
higher abstraction.

• FOA helps disambiguation at learning time. A puzzle is
offered at learning time when two or more instance of the
same object are present in the same frame, maybe with
different poses and scales. The FOA in this case helps
disambiguating the enforcement of motion invariance.
While the enforcement of weight sharing is ideal for
directly implementing translation invariance, such a
constraint doesn’t facilitate other more complex
invariances that can better be achieved by its removal.

• FOA drives the temporal interpretation of scene
understanding. The importance of FOA is not restricted
to feature and object invariance, since it involves also the
interpretation of visual scenes. It is in fact the way FOA is
driven which sequentially selects the information for
conquering the scene interpretation. Depending on the
purpose of the agent and on its level of scene
understanding the FOA is consequently moved. This
process clearly shows the fundamental role of the
selection of the points where to focus attention, an issue
which is described in the following section.

• FOA helps disambiguating illusions. Depending on where an
agent with foveate eyes focuses attention, concepts that,
strictly speaking, don’t exist can emerge, thus creating an
illusion. A noticeable example is the Kanizsa’s triangle, but it
looks like other illusions arise for related reasons. You can
easily experiment that as you approach any detail, it is
perfectly perceived without any ambiguity. A completion
mechanism arises that leads us to perceive the triangle as
soon as you move away from figure and the mechanism is
favored by focussing attention on the barycenter.
Interestingly, the different views coming from different
points where an agent with foveate eyes focuses attention
likely helps disambiguating illusions, a topic that has been
recently studied in classic convolutional networks Kim et al.
(2019), Baker et al. (2018).

• FOA helps to address the problem of “concept drift”. When
discussing motion invariance we mentioned the problem of
concept drift. Clearly, this could dramatically affect the
practical implementation of the motion invariance.
However, amongst different types of FOA trajectories,
the saccadic movements play the fundamental role of
resetting the process, which clearly faces directly
problems of concept drift.

The analysis on foveated-based neural computation nicely
explains also the reason why humans cannot see video with a
number of frames per second that exceeds the classic sampling

3There is in fact a rich literature on this topic, from which it is clearly stated that
subject cannot see his own saccades in a mirror, that is there is in fact saccadic
suppression (Matin, 1974).
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threshold. It turns out that this number is clearly connected with
the velocity of the scan paths of the focus of attention. Of course,
this is a computational issue which goes beyond biology and
clearly affects machines as well.

4.8 What Drives Eye Movements?
Foveate animals need to move their eyes to properly focus
attention. The previous discussion has emphasized the
importance of performing appropriate movements, which
motivates the following question naturally arises:

Q8: What are the mechanisms that drive eye
movements?

Human eyes make jerky saccadic movements during ordinary
visual acquisition. One reason for these movements is that the fovea
provides high-resolution in portions of about 1, 2°. Because of such a
small high resolution portions, the overall sensing of a scene does
require intensive movements of the fovea. Hence, the foveate
movements do represent a good alternative to eyes with a
uniformly high resolution retina. The information-based principles
discussed so far lead us to conclude that foveate retinas with saccadic
movements is in fact a solution that is computationally sustainable
and very effective. Fast reactions to changes in the surrounding visual
environment require efficient attention mechanisms to reallocate
computational resources to most relevant locations in the visual
field. While current computational models keep improving their
predictive ability thanks to the increasing availability of data, they are
still far away from the effectiveness and efficiency exhibited by foveate
animals. An in-depth investigation on biologically-plausible
computational models of focus of attention that exhibit
spatiotemporal locality is very important also for computer vision,
where one relies on parallel and distributed implementations. The
research carried out by (Faggi et al., 2020) suggests an interpretation
based on a computational model where attention emerges as a wave
propagation process originated by visual stimuli corresponding to
details and motion information. The resulting field obeys the
principle of inhibition of return, so as not to get stuck in potential
holes, and extend previous studies in (Zanca et al., 2020) with the
main objective of providing spatiotemporal locality. In particular, the
idea ofmodeling the focus of attention by a gravitational processfinds
its evolution in the corresponding local model based on the Poisson
equation on the corresponding potential. Interestingly, Newtonian
gravity yields an instantaneous propagation of signals, so as a sudden
change in the mass density of a given pixel immediately affects the
focus of attention, regardless of its location on the retina. These
studies are driven by the principle that there are in fact sources which
drive attention (e.g., masses in a gravitational field). At early cognitive

stages, attention mechanisms are mostly driven by the presence of
details andmovements. This is the reason why thementionedmasses
formodeling the focus of attention have been based on themagnitude
of the gradient of the brightness in the retina and on the optical flow.
Interestingly, in children the mechanisms that drive the focus of
attention are strongly connected with the developmental stages.
Newborns and children in their early stages of evolution only
focus attention on details and movements and on a few recurrent
visual patterns like faces. As time goes by, visual features acquire a
semantic value and, consequently, the focus of attention is gradually
driven by specific intentions and corresponding plans. Of course, this
is only possible after having acquired some preliminary capability of
recognizing objects. Interestingly, as the forward process that facilitate
high level cognitive tasks from the focus of attention becomes
effective a corresponding backward process begins the
improvement of the focus of attention. A reinforcement loop is
generated which is finalized to optimize the final purpose of the agent
in its own learning environment.

4.9 Why is Baby Vision Blurred?
There are surprising results that come from developmental
psychology on what a newborns see. Basically, their visual acuity
grows gradually in earlymonths of life. Interestingly, Charles Darwin
had already noticed this very interesting phenomenon. In his words:

It was surprising how slowly he acquired the power of
following with his eyes an object if swinging at all
rapidly; for he could not do this well when seven and
a half months old.

At the end of the seventies, this early remark was given a
technically sound basis (see, e.g., Dobson and Teller 1978). In the
paper, three techniques, — optokinetic nystagmus (OKN),
preferential looking (PL), and the visually evoked potential
(VEP)— were used to assess visual acuity in infants between
birth and 6 months of age. More recently (Braddick and
Atkinson, 2011), provides an in-depth discussion on the state
of the art in the field. It is clearly stated that for newborns to gain
adult visual acuity, depending on the specific visual test, several
months are required. The following question naturally arises:

Q9: Why does it take 8–12 months for newborns to
achieve adult visual acuity? Is the development of
adult visual acuity a biological issue or does it come
from higher level computational laws of vision?

This brings up the discussion on the “protection” of the
learning agent from information overloading, which might be

BOX 7 | The above items provide strong evidence for the reasons why
foveate eyes turn out to be very effective for scene understanding.
Interestingly, we can export the information-based principle of focussing
attention to computer retinas by simulating eye movements. There is
more: machines could provide multiple focuses of attention which could
increase their visual skills significantly.

BOX 8 | What drives the focus of attention is definitely a crucial issue,
simply because of its already discussed fundamental role. We conjecture that
this driving process must undergo a developmental process, where we
begins with details and optical flow and proceed with the fundamental
feedback from the environment which is clearly defined by the specific
purpose of the agent.
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of fundamental importance also in computer vision. The blurring
of the video at an early stage of learning is compatible with a
broader view of learning that, in addition to the involvement of
the classic synaptic connections, this provides a direct
“simplification of the input.” Regardless of this specific input
modification, the underlying idea is that the process of learning
consists of properly filtering the input with the purpose of
gradually acquiring the information. The development of any
computation model that adheres to this view is based on
modifying the connections along with an appropriate input
filtering so that the learning agent always operates at an
equilibrium point (Betti et al., 2021).

4.10 What is the Interplay With Language?
The interplay of vision and language is definitely one of the most
challenging issues for an in-depth understanding of human vision.
Along with the associated successes, the indisputable adoption of
the supervised learning protocol in most challenging object
recognition problems caused the losing of motivations for an
in-depth understanding of the way linguistic information is
synchronized with visual clues. In particular, the way humans
learn the name of objects is far away from the current formal
supervised protocol. This can likely be better grasped when we
begin considering that top level visual skills can be found in many
animals (e.g., birds and primates), which clearly indicates that their
acquisition is independent of language.

Hence, as we clarify the interplay of vision and language we will
likely address also the first question on how to overcome the need
for “intensive artificial supervision.” Since first linguistic skills arise
in children when their visual acuity is already very well developed,
there is a good chance that early simple associations between
objects and their names can easily be obtained by “a few
supervisions” because of the very rich internal representation
that has already been gained of those objects. It is in fact only a
true independent hidden representation of objects which makes
possible their subsequent association with a label! The capability of
learning motion-invariance features is a fundamental information-
based principle regardless of biology, which might somehow drives
the development of “what” neurons.

The interplay of language and vision has been very well
addressed in a survey by Lupyan (2012). It is claimed that
performance on tasks that have been presumed to be non-
verbal is rapidly modulated by language, thus rejecting the
distinction between verbal and non-verbal representations.
While we subscribe to the importance of sophisticated
interactions, we also reinforce the claim that capturing the
identity of single objects is mostly a visual issue. However,
when we move towards the acquisition of abstract notions of

objects than the interaction with language is likely to be very
important. One needs to separate single objects coming in visual
contexts with their own identity with respect to abstract notions
of objects. We can see a specific chair, but it’s a different story to
recognize that we have a chair in front of us.

In Section 4.7 we addressed the issue of motion invariance by
claiming that it must properly be considered in the unified
framework of focus of attention. We experience eye
movements either on still images or during motion. In the
first case we can see micro-saccadic movements, whereas
moving objects are properly tracked. While the enforcement of
visual feature invariance makes sense in both cases, there is a
fundamental difference from an information-based viewpoint:
The object tracking does provide information on the object
movement, so that one can propagate the label to all the
pixels that are connected with the pixel where we focus
attention by a non-vanishing optical flow. This conveys an
enormous amount of labelled information on the moving
object and on its related segmentation. There is more! While
during micro-saccadic movements many invariant features can
be developed and it is not clear which one–if any–refers to an
explicit object as a whole, during smooth pursuit, thanks to the
optical flow, the moving object, with its own label, provides an
internal representation gained under this motion invariance that
is likely to be the secret for bridging the linguistic attachment of
labels to objects.

The opportune exploitation of optical flow in visual information
is of paramount importance for the evolution of theories of vision.
In the last few years we have also seen a number of contributions in
egocentric vision, where the assumption is that also the camera is
moving. Interestingly, any sophisticated filtering of such an
external movement might neglect the importance of undergoing
developmental steps just like those that are fundamental for
capturing the interplay with language. Clearly, if you have
already gained good visual skills in object recognition, it is quite
easy to check whether you yourself are moving!

Once again, the discussion carried out so far promotes the
idea that for a visual agent to efficiently obtain the capabilities
of recognizing objects from a few supervisions, it must
undergo some developmental steps aimed at developing
invariant representations of objects, so the actual linguistic
supervision takes place only after the development of those
representations. But, when should we enable a visual agent to
begin with the linguistic interaction? While one might
address this question when attacking the specific
computational model under investigation, a more natural
and interesting way to face this problem is to re-formulate the
question as:4

Q10: How can we develop “linguistic focusing
mechanisms” that can drive the process of object
recognition?

BOX 9 | When promoting the role of time, the arising pre-algorithmic
framework suggests extending the learning process to an appropriate
modification of the input, that is finalized to achieve the expected “visual
acuity” at the end of the process of learning. In doing so, one can think
of generalization processes that are based on the convergence to fixed
values of the weight connections, but also on an opportune “small
perturbation” of the input.

4There’s not a morning I begin without a thousand questions running through my
mind . . . The reason why a bird was given wings If not to fly, and praise the sky . . .
–From Yentl, “Where is it Written?” –I.B. Singer, The Yeshiva Boy
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This is done in a spectacular way in nature! Like vision,
language development requires a lot of time. Interestingly, it
looks like it requires more than vision. The discussion in Section
4.9 indicates that the gradual growth of visual acuity is a possible
clue to begin with language synchronization. The discussed
filtering process offers a protection from visual information
overloading that likely holds for language as well. As the
visual acuity gradually increases, one immediately realizes that
the mentioned visual-language synchronization has a
spatiotemporal structure. At a certain time, we need to inform
the agent about what we see at a certain position in the retina. An
explicit implementation of such an association can be favored by
an active learning process: the agent can ask itself what is located
at (x, t). However, what if you cannot rely on such a precious
active interactions? For example, a linguistic description of the
visual environment is generally very sophisticated and mentions
objects located in different positions of the retina, without
providing specific spatiotemporal information. Basically, this is
a sort of weak supervision that is more difficult to grasp. However,
once again, developmental learning schemes can significantly
help. At early stage of learning the agent’s tasks can be facilitated
by providing spatiotemporal information. For example, naming
the object located where the agent is currently focussing attention
conveys information by a sort of human-like communication
protocol. As time goes by, the agent gains gradually the capability
of recognizing a few objects. What really matters is the confidence
that is gained in such a task. When such a developmental stage is
reached, linguistic descriptions and any sort of natural language
based visual communication can be conveniently used to
reinforce the agent recognition confidence. Basically, these
weak supervisions turn out to be very useful since they can
profitably be attached where the agent came up with a
prediction that matches the supervision.

5 THE “EN PLAIN AIR” PERSPECTIVE

Posing the right questions is the first fundamental step to gain
knowledge and solve problems. The intent of this paper is to provide
insights and to contribute to a shift in the direction in which
computer vision is presently being practiced in the deep learning
community. However, one might wonder what could be the most
concrete action for promoting studies on the posed questions. So far,
computer vision has strongly benefited from themassive diffusion of
benchmarks which, by and large, are regarded as fundamental tools
for performance evaluation. However, it is clear that they are very
well-suited to support the statistical machine learning approach
based on huge collections of labelled images. This paper, however,
opens the doors to explore a different framework for performance

evaluation. The emphasis on video instead of images does not leads
us to think of huge collection of video, but to adopt a different
approach in which no collection at all is accumulated! Just like
humans, machines are expected to live in their own visual
environment. What should be the scientific framework for
evaluating the performance and understand when a theory
carries out important new results? Benchmarking bears some
resemblance to the influential testing movement in psychology
which has its roots in the turn-of-the-century work of Alfred
Binet on IQ tests (Binet and Simon, 1916). Both cases consist of
attempts to provide a rigorous way of assessing the performance or
the aptitude of a (biological or artificial) system, by agreeing on a set
of standardized tests which, from that moment onward, become the
ultimate criterion for validity. On the other hand, it is clear that the
skills of any visual agent can be quickly evaluated and promptly
judged by humans, simply by observing its behavior. Thus, we could
definitely rely on a crowdsourcing performance evaluation scheme
where registered people can inspect and assess the performance of
software agents (Gori et al., 2015). We use the term en plein air to
mimic the French Impressionist painters of the 19th-century and,
more generally, the act of painting outdoors. This term suggests that
visual agents should be evaluated by allowing people to see them in
action, virtually opening the doors of research labs. The en plein air
proposal allows others to test our algorithms and to contribute to this
evaluation method by providing their own data, their own results, or
the comparisons with their own algorithms.

While the idea of shifting computer vision challenges into the wild
will deserves attention one cannot neglect the difficulties that arise
from the lack of a truly lab-like environment for supporting the
experiments. The impressive progress in computer graphics, however,
offers a very attractive alternative that can dramatically facilitate the
developments of approaches to computer vision that are based on the
on-line treatment of the video (see, e.g., Meloni et al., 2020).

Needless to say, computer vision has been fueled by the
availability of huge labelled image collections, which clearly
shows the fundamental role played by pioneer projects in this
direction (see, e.g., Deng et al., 2009). The ten questions posed in
this paper will likely be better addressed only when scientists will
put more emphasis on the en plein air environment. In the
meantime, the major claim of this paper is that the experimental
setting needs to move to virtual visual environments. Their
photorealistic level along with the explosion of the generative
capabilities makes these environments better suited to new
performance evaluation of computer vision.
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BOX 10 | Computer vision and natural language processing have been
mostly evolving independently one each other. While this makes sense, the
time has come to explore the interplay between vision and language with the
main purpose of going beyond the protocol of supervised learning for
attaching labels to objects. Interestingly challenges arises in scene
interpretation when we begin considering the developmental stages of vision
that suggest gaining strong object invariance before the attachment of
linguistic labels.
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