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ABSTRACT 

Spectrum sensing is one of the most important steps in cognitive radio. In this paper, a new fully-distributed collabora-
tive energy detection algorithm based on diffusion cooperation scheme and consensus filtering theory is proposed, 
which doesn’t need the center node to fuse the detection results of all users. The secondary users only exchange infor-
mation with their neighbors to obtain the detection data, and then make the corresponding decisions independently ac-
cording to the pre-defined threshold. Simulations show that the proposed algorithm is more superior to the existing cen-
tralized collaborative energy detection algorithm in terms of the detecting performance and robustness in the insecurity 
situation. 
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1. Introduction 

Cognitive radio (CR) [1] is a spectrum sharing technol-
ogy that allows unlicensed (secondary) users to operate 
in the licensed spectrum bands. It effectively improves 
the spectrum utilization in wireless communications [2]. 

Spectrum sensing is one of the key technologies of 
cognitive radio systems, and its purpose is to timely de-
tect ‘spectrum holes’ and makes use of it. At present, the 
spectrum sensing algorithms mainly include matched 
filtering [3], cyclostationary feature detection [4] and 
energy detection [5]. The energy detection is the simplest 
method, which doesn't need the prior knowledge of pri-
mary user and is simple to implement [6].Since the de-
tection problem such as ‘hidden terminal’ may be ap-
peared relying on solely one terminal or node, the 
multi-node cooperative strategy in cognitive radio is re-
searched and become one of the effective measures to 
solve the problem [7-11]. 

Based on whether depending on center node or not, 
multiple node energy detection algorithms can be divided 
into two kinds of cooperative models, that is, centralized 
and distributed. Currently, most collaborative spectrum 

sensing algorithms can be viewed as centralized one. It 
means that center node (i.e. fusion center) can use the 
observed data or detection results of secondary users, and 
then decides whether the primary user is present. But 
there are some limits for the performance when the 
channels to the center node are under deep fading [10]. 
And this approach requires sufficient communications 
resources to transmit the data, which could easily lead to 
network congestion and increase the risk of the network 
collapse due to the presence of the central node [11]. 
However，in the distributed approach, where all nodes 
are in equal position and there is no center node, every 
node exchanges information only with its neighborhoods 
to achieve cooperative energy detection. [12] proposes a 
diffusion cooperation strategy based on peer-to-peer dif-
fusion protocol, which attracts widespread concern due 
to its simple distributed architecture and low computa-
tional complexity. 

In this paper, a distributed cooperative energy detec-
tion algorithm based on the diffusion strategy is proposed, 
in which the diffusion collaboration strategy is applied 
into spectrum sensing, and combines with consensus 
filtering theory to obtain a fully distributed energy detec-
tion algorithm. The proposed algorithm is simulated and 
compared with the existing collaborative algorithms. 

*This work is supported by National Science and Technology Major 
Project (2012ZX03003005-002). 
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2. Energy Detectioin and Network Topology 

2.1. Energy Detection Model 

In this paper, we assume all users experience independ-
ent and identically distributed (iid) fading communica-
tion environment. Figure 1 depicts the block-diagram of 
an energy detector. 

In the diagram, the received signal  is filtered by 
a bandpass filter with the center frequency 

( )y t

sf , and the 
bandwidth of interest B. This filter is followed by a 
squaring device  to measure the received energy 
and an integrator 0  is operated over the observation 
intervalＴ. At last, the detection statistic of the integra-
tor’s output, Y, is compared with a threshold, λ, to decide 
whether primary user is present. 
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For implementation simplicity, the goal of spectrum 
sensing is viewed as two hypotheses test, 
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where  is the received signal by secondary user and ( )y t
( )s t  is transmitted signal of the primary user, h is the 

channel amplitude and  is the additive white Gaus-
sian noise (AWGN) with mean zero and variance 

( )n t
2 . 

0H  and 1H  represent the absence and the presence of 
the primary user, respectively. We also denote by   the 
signal-to-noise ratio (SNR). Correspondingly, the deci-
sion statistic Y has the following form [5], 
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where 2
2TB  denotes the central chi-square distribution 

with 2TB degrees of freedom, 2
2 (2 )TB   denotes the 

non-central chi-square distribution with 2TB degrees of 
freedom and the parameter of 2 . 

In the centralized collaborative scheme, center node 
uses the observed data or detection results of all secon-
dary users to get the fusion result, and then compares 
with the pre-defined threshold   to make a final deci-
sion. 

2.2. The Diffusion-based Collaborative  
Distributed Network Model 

In the distributed energy detection scenario with diffu-
sion collaborative strategy [12], the network formed by 
the secondary users can be represented by an undirected 
graph  (Figure 2).The graph consists of a set 
of nodes and a set of edges 
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Figure 1. Block diagram of an energy detector. 

{( , ) , }E i j i j V  . 

If two secondary users are connected by an edge, it 
means that they satisfy  and can mutually ex-
change information. For convenience of description, we 
often refer node i as i-th secondary user. Denote the 
neighbors of node i by 

( , )i j E

{ ( , ) }iN j 
N

V i j E V  , and 
the number of elements in i  is denoted by i  (also 
called the degree of node i). E.g., the neighbor of node 1 
is 

d

1 {1,2, }N n  and 1 3d  . 
In the above distributed network, at time 0k  , every 

user i sets i( 0)ix k Y 

* ( )i

 as its local state variable. The 
collaboration strategy of diffusion is represented by Fig-
ure 3, where every node i in the network continuously 
combines the measurement results from its neighbor-
hoods, and gains a fusion result. Those iterations are 
done repeatedly until a common result (i.e. steady state) 
is reached, x x k , for any user i at a certain time k. 
This process may be considered as the consensus filter-
ing problem. Therefore, we can make use of consensus 
filter theory to attain collaborative spectrum sensing. 

2.3. Consensus Filtering Theory 

By achieving consensus, the individual variable ix  
progressively converges to the common value *x , for 
each i V  i.e. 

( ) ,ix k x k     

)j

             (3) 

Our scheme is based on the recent results in weighting 
consensus algorithms [15], which the iterative formula is 
as follows: 
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Figure 2. Distributed network with n nodes. 
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Figure 3. Network with a diffusion cooperation strategy. 
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where, it is assumed that state variable  of the user 
i is the measurement iY  at discrete time 

(0)ix
0k  ,  

and ij  are denoted the weighting factors. ij

iiw
0w w   

means that nodes i and j are not connected. Currently, 
possible choices for the weighting coefficients w are the 
Metropolis, the Laplacian and the nearest neighbor rules 
[16-18]. For simplicity, we choose to use the nearest 
neighbor rule which the combiner matrix  is defined 
as follows: 
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According to the weighting factors, the diffusion co-
operative scheme (4) can be interpreted as that every 
node i exchanges information with its neighbors, and 
then updates itself measurement based on its own previ-
ous states and its neighbors. 

3. Diffusion-Based Algorithm for Spectrum 
Sensing 

When the network topology is setup, every node estab-
lishes communication links with its neighborhoods. The 
proposed diffusion-based collaborative spectrum sensing 
algorithm includes three stages, energy measurement, 
diffusion cooperative and decision. 

1. Let n denotes the number of users collaborating. 
Each node utilizes the spectrum sensing model (Figure 1) 
to make its measurements about primary users signal. i  
is denoted the measurement result of user i, and all  

 are random variables with independent 
and identical distribution by equation (2). 

Y

( 1,2, , )iY i n 

2. According to the network topology, every user uses 
the neighbors’ measurements  to coopera-
tively fuse. Those iterations are done repeatedly until a 
steady state is reached. Finally, we can obtain the deci-
sion statistic  of the proposed algorithm which is the 

, ijY j N
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average measurements of all users, i.e. 
1
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D ii
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We define , therefore 1
n
i iMT  Y 1

D Mn
T T . According 

to the characteristic of the chi-square distribution, there is 
no primary signal present under 0H , we have 

2
2~M nTBT                 (6) 

1 2
2~D nTBn

T                (7) 

Under the hypothesis of 1H , all secondary users ex-
perience the same fading environment, and the detection 
threshold is determined only by the distribution of DT  
under 0H . So, there is no need to derive the distribution 
of DT  under 1H . 

3. Every secondary user compares the average meas-
urement result with the pre-defined threshold λ (Figure 

1), and then makes a corresponding decision independ-
ently to get the final result of fusion locally, 
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where the decision threshold λ is determined by the 

equation ( )
DT d d ff t dt P




  and the probability 

density function 
DTf  of the random variable TD can be 

derived from equation (7). 

4. Simulation Results and Discussions 

The performance of spectrum sensing algorithm is evalu-
ated in terms of detection probability d  and false alarm 
probability

P

fP . As expected, the larger detection prob-
ability indicates that the performance of the algorithm is 
the better under a certain false alarm probability. In the 
simulation, we assume that  and 0.1fP  5TB   at the 
selected center frequency sf . There are 100000 times 
Monte Carlo simulation. 

The detection performance of the proposed diffusion- 
based scheme for different number of collaborative spec-
trum sensors is shown in Figure 4. In the comparison, 
we can see that the performance of proposed scheme 
have a significant improvement with increasing number 
of collaborative spectrum sensors. For example, the de-
tection probability of only one user is about 52% when 
SNR is -5dB, while the number of the secondary users 
increases to 5 and 10, the detection probability raises to 
about 67% and 75%, respectively. 

As to the network model with 10 users (Figure 2), 
Figure 5 shows the performance of the proposed diffu-
sion-based scheme, the existing OR-rule and AND-rule 
collaborative scheme, respectively. From the simulation 
results, it can be observed that the proposed diffusion- 
based compares with the existing two kinds of algorithm  
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Figure 4. Detection performance comparison for different 
number of collaborative spectrum sensors. 
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