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Abstract: Robust finite-time control algorithms for satellite attitude maneuvers are proposed in this
paper. The standard sliding mode is modified, hence the inherent robustness could be maintained,
and this fixed sliding mode is modified to dynamic, therefore the finite-time stability could be
achieved. First, the finite -time sliding mode based on attitude quaternion is proposed and the
loose finite-time stability is achieved by enlarging the sliding mode parameter. In order to get the
strict finite-time stability, a sliding mode based on the Euler axis is then given. The fixed norm
property of the Euler axis is used, and a sliding mode parameter without singularity issue is achieved.
System performance near the equilibrium point is largely improved by the proposed sliding modes.
The singularity issue of finite-time control is solved by the property of rotation around a fixed axis.
System finite-time stability and robustness are analyzed by the Lyapunov method. The superiority of
proposed controllers and system robustness to some typical perturbations such as disturbance torque,
model uncertainty and actuator error are demonstrated by simulation results.

Keywords: finite-time control; robust control; dynamic sliding mode; satellite attitude maneuver

1. Introduction

With regard to the matter of satellite attitude control, the standard sliding mode is a
mature and widely used control algorithm. The structure of the standard sliding mode
for satellite attitude control is simple and has definite physical meaning. Moreover, the
physical meaning brings strong robustness to some typical perturbations such as unknown
disturbance, inertia matrix uncertainty and control actuator error. Some work [1–3] has been
done on the design of sliding mode controllers and has demonstrated the superiority of
the standard sliding mode. However, the system on this sliding mode has an exponential
convergence rate, which means that with infinite time, the system could reach its equilibrium
point strictly. However, some current space missions such as push-broom imaging and
staring imaging demand the fast attitude maneuver capability. In order to improve system
convergence rates, some researches focus on the field fast attitude maneuver. Li, Ye and
so on [4–7] have done some work to improve the convergence rate of standard controllers.
They pointed out that the key to improve the system convergence rate is to design angular
velocity properly. The maneuver stage with constant angular velocity is designed and
the convergence rate could be maintained during the stage. However, most of the work
did not solve the exponential convergence issue, and the terminal convergence rate could
still be improved. Zhang [8], Verbin [9] and Rojsiraphisal [10] designed the “braking
curve” of angular velocity for satellite attitude control. The trajectory of angular velocity is
optimized and the trajectory of the slowing down process is designed. The focus of their
work was improving the system convergence rate, but the exponential convergence rate
issue still exists.

In order to get finite-time stability near the system equilibrium point, researchers
have done a lot of work. Ye and Xiao and so on [11,12] designed finite-time controllers
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for satellite control. The focus of their work is the control torque allocation algorithm
and the fault tolerant algorithm. Wu [13,14] presented some methods to analyze finite
time stability, such as the Lyapunov method and the terminal sliding mode method. The
focus of his work is the structure of finite-time controllers for classic nonlinear systems
and the standard structure of the terminal sliding mode. Liang, Wang and so on [15–17]
designed finite-time controllers for satellite attitude control and the finite-time stability is
analyzed by the Lyapunov method. Some typical Lyapunov functions are proposed in their
works. Nguyen [18] designed a robust finite-time guidance law for maneuverable targets
with unpredictable evasive strategies. Khelil [19] proposed a fast finite-time convergent
guidance law with a nonlinear disturbance observer for unmanned aerial vehicle collision
avoidance. Guo [20] designed a new continuous adaptive finite time guidance law against
highly maneuvering targets. Generally, in order to get finite-time stability, the design of
the controller needs some special modifications and the system loses the inherent strong
robustness to perturbations. The design of robust finite-time controllers is another major
concern of current research.

As discussed above, model uncertainty, unknown disturbance and actuator error are
some typical perturbations in the satellite attitude system. In order to deal with perturbation
issues, researchers have done some work. Xiao [21–23] designed fault tolerant controllers,
and system model uncertainty and actuator error are estimated by the fault diagnosis
function. However, the method is suitable for several typical uncertainty models but not
suitable for the random noise model. Hu [24–26] designed some robust controllers to
system uncertainty. The sign function terms are added in the controllers and the system
uncertainty is treated as Gauss white noise with an upper bounded norm. However, the
sign function terms would bring high frequency vibrations, which is harmful to the actuator
and physical system. In order to deal with the uncertainty issue without bringing high
frequency vibration, adaptive control was developed by some researchers. Qiao [27] and
Gui [28] designed finite-tine attitude maneuver controllers considering the disturbance
torque with Gauss white noise character and sine function character. Wang [29] and Ai [30]
designed finite-time sliding modes for satellite attitude control, and the convergence time
is estimated by the proposed methods and disturbance torque with consideration of the
upper bounded norm. Some researchers [31–34] also designed finite time controllers for
robot manipulator and vehicle systems. Generally, the finite-time controller considering
overall perturbations still needs developing, and in order to deal with perturbations, the
structure of finite-time controllers is relatively complex.

In this paper, the standard sliding mode will be modified to achieve finite-time stability.
The strong robustness could be maintained by the similar structure with standard sliding
mode and robust controllers with relatively simple structures would be given, considering
some typical perturbations. Compared with existing methods, a finite time controller based
on a dynamic sliding mode will be proposed based on a standard sliding mode surface;
the advantage of a fast convergence rate and strong robustness would be combined in this
proposed method.

The structure of this paper is constructed as follows: 1. Section 1 describes the
background and innovation of this paper; 2. Section 2 gives the math models used in this
paper; 3. Section 3 describes the issue needs to be solved in this paper; 4. Section 4 presents
a finite-time controller based on attitude quaternion and proves some properties of this
controller; 5. Section 5 presents a finite-time controller based on the Euler axis and system
performance is improved comparing with that in Section 4; 6. Section 6 demonstrates the
controller performance by simulation results; 7. Section 7 concludes the paper.

2. Dynamics and Models

The dynamic model of rigid satellite could be modeled as follows [4–7]:

J
.

ω + ω×Jω = u + d (1)
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where ω is angular velocity which is a 3 × 1 vector, J is inertia matrix of satellite which is
a 3 × 3 positive definite symmetric matrix, d is 3 × 1 unknown disturbance torque with
norm upper bound ‖d‖ < d. Product matrix r× of vector r is defined as

r× =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

 (2)

generally inertia matrix J could not be accurate known and it is assumed that

J = Ĵ + J̃ (3)

where Ĵ is the inertia matrix estimation and J̃ is the error matrix. In this paper, the error
matrix J̃ could be treated as a disturbance in control system and one of the main goals is to
design adaptive law to suppress this disturbance.

The kinetic model based on Euler axis/Angle could be written as follows [4–7]
.
e = 1

2 e×
(
I3 − cot ϕ

2 e×
)
ω

.
ϕ = 1

2 eTω

(4)

where e is Euler axis and ϕ is rotate angle. Based on (4) it could be found that kinetic model
(4) has singularity issue when ϕ→ 0 i.e., the Euler axis e is not continuous near the system
equilibrium point.

The kinetic model based on attitude quaternion could be written as follows [4–7]
.
q0 = − 1

2 qT
v ω

.
qv = 1

2 (q0I3 + q×v )ω = 1
2 Fω

(5)

Considering that q and −q describes the same attitude, the scalar part of attitude
quaternion is assumed to be non-negative in this paper i.e., q0 ≥ 0.

3. Problem Formulation

In satellite attitude control issue, standard sliding mode could written as follows

s = ω + kqv, (k > 0) (6)

when system converges along the sliding mode (11) it could be found that

ω = −kqv

.
qv = 1

2 (q0I3 + q×v )ω = − 1
2 kq0qv

(7)

when system maneuvers along (6), angular velocity vector is reversed to attitude quaternion
vector and lot of work have been done based on this sliding mode. The model uncertainty
and unknown disturbance issue could be effectively solved using sliding mode (6) and it
could be concluded that the reverse property could improve system robustness. However,
based on equation (6) it could be easily found that the convergence rate of qv is exponen-
tial which means system would reach the equilibrium point with infinite time and the
convergence rate needs to be improved.

In order to improve system convergence rate, finite-time controller is an effective
method. Generally in order to achieve the finite-time stability, fraction order feedback is
used as follows to construct the sliding mode.

.
x = −ksign(x)|x|r, 0 < r < 1 (8)
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where sign(x) is the sign function of vector x.
Sliding mode (8) would bring another issue i.e., the singularity issue. Since the control

torque is always related to
..
x i.e., the 2nd derivative of x, the singularity term xr−1 would be

brought into the controller. In order to deal with the singularity issue some typical finite-
time controllers are designed [4,11,13]. However, system robustness issue is not taken into
consideration and the reverse property does not hold in these works. System robustness
needs to be improved to suppress the perturbations such as inertia matrix uncertainty and
unknown disturbance. In summary, the robustness issue and singularity issue should be
both taken into consideration to design the robust finite-time controller.

Based on the discussion above, the goal of this paper could be as: design finite time
controller for satellite stabilization issue and following properties should be satisfied:

1. Comparing with standard sliding mode, system convergence rate near the equilibrium
point should be largely improved;

2. Finite-time stability should be satisfied i.e., there exist positive scalar ε and T to satisfy
‖qv‖ ≤ ε f or ∀t ≥ T ;

3. The singularity issue should be solved i.e., qv,
.
qv, ω,

.
ω are all bounded during the

whole control process;
4. The controller should be robust to inertia matrix uncertainty and unknown distur-

bance torque.

4. Finite-Time Controller Based on Attitude Quaternion

In paper [5], the author pointed out that the fixed sliding mode caused the low conver-
gence rate and a dynamic sliding mode is constructed in this paper. The maneuver stage
with constant angular velocity and converge stage with a constant angular acceleration is
designed based on the update law of sliding mode parameter k, and the system convergence
rate is largely improved when compared with the standard sliding mode. Inspired by the
method in [5], the finite-time sliding mode proposed in this paper could written as follows:

s = ω + kqv

.
k =


0 ‖s‖ > ε1

k
2 (1− α)βq0‖qv‖

α−1 ‖s‖ ≤ ε1

(9)

1/2 < α < 1, β = k(t0)/‖qv(t0)‖α−1 (10)

where the initial value of k and satisfies k(t0) > 0, ε1 is a small positive scalar, α, β are all
positive scalars.

Sliding mode (9) has the same structure as standard sliding mode hence the reversed
property could be maintained. Moreover, the same structure could make it possible to
design a robust finite-time controller based on standard sliding mode methods. Based on
(9) it could be found that the maneuver process is constructed as two stages: in the first
stage i.e., ‖s‖ > ε1, system performance is totally same as that of standard sliding mode,
and sliding mode parameter k is fixed; in the second stage i.e., ‖s‖ ≤ ε1, it could be treated
that system has reached the sliding mode and angular velocity vector has been reversed
to attitude quaternion vector. In this stage, sliding mode parameter k begins to update.
Moreover, based on the update law of k it could be found that k is monotonically increasing
to effect the exponential convergence rate. The key work of this paper is the update law of
sliding mode parameter k and when system convergences along (9) i.e., s = 0, system (5)
would converges to its equilibrium point within finite time, and during this process ω and
.

ω are all norm upper bounded.
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First the finite-time stability on sliding mode (9) is discussed. When system reaches
sliding mode (9), define as follows and calculate its derivative it could be got that

Vq = qT
v qv = ‖qv‖

2 (11)

.
Vq = 2qT

v
.
qv = −kq0qT

v qv = −kq0‖qv‖
2 (12)

In order to achieve the goal of finite-time stability, the derivative of Lyapunov function
should satisfy following inequality

.
Vq ≤ −γq0‖qv‖

α+1, with α ∈ (0, 1) , γ > 0 (13)

Comparing with (12) and (13) it could be got that if there exist positive scalar γ to satisfy
following inequality, the finite-time stability could be ensured.

k = γ‖qv‖
α−1 (14)

In order to satisfy finite-time condition (14), fixed parameter k is not feasible since the
right part of (14) tends to infinite, and a very large k would cause the control torque an
angular velocity exceed system upper bound drastically. Hence it is necessary to design a
time-variable parameter k and its update law to satisfy (14) and that is how the dynamic
sliding mode (9) is got. In fact, select parameters as follows, it could be got that

γ = k(t0)/‖qv(t0)‖α−1, β = γ (15)

Noticing that the structure of sliding mode parameter update law in (9), it could be got that

k(t0) = γ‖qv(t0)‖α−1

.
k = 1

2 k(1− α)βq0‖qv‖
α−1 = 1

2 k(1− α0)γq0‖qv‖
α−1 =

dγ‖qv‖
α−1

dt

(16)

Based on (15) and (16) it could be found that finite-time condition (14) is satisfied, and (12)
could be transformed to

.
Vq = 2qT

v
.
qv = −kq0qT

v qv = −kq0‖qv‖
2 ≤ −βq0‖qv‖

α+1 = −βq0Vα+1/2
q (17)

System converge time satisfies

t f ≤
2V

1−α
2 (t0)

βq0(t0)(1− α)
(18)

The next step is to prove on sliding mode (9), ω,
.

ω are all norm upper bounded. It is
obviously that angular velocity ω satisfies following property and is norm upper bounded.

‖ω‖ = ‖−kqv‖ = ‖qv‖
α (19)

Calculate the derivative of angular velocity ω it could be got that

.
ω = −k

.
qv −

.
kqv

= −k(q0I3 + q×v )(−kqv)− k
2 (1− α)βq0‖qv‖

α−1qv

= q0k2qv − k
2 (1− α)βq0‖qv‖

α−1qv

= q0β2‖qv‖
2α−1e− 1

2 (1− α)β2q0‖qv‖
2α−1e

(20)
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Consider that 1/2 < α < 1, hence ω,
.

ω are all norm upper bounded during the whole
maneuver process, and the demand control torque is also norm upper bounded i.e., the
singularity issue is solved.

Based on the discussion above it could be found that the system state on the sliding
mode (9) is norm upper bounded, however according to the update law of k it could be
found that sliding mode parameter k tends to infinity as the system convergence. Although
the system state and control actuator would not be influenced by this divergence, the
computation system would break down under sliding mode (9). Hence for engineering
practice, finite-time sliding mode (9) could be re-written as follows

s = ω + kqv

.
k =



0 ‖s‖ > ε1

k
2 (1− α)βq0‖qv‖

α−1 ‖s‖ ≤ ε1, ‖qv‖ > ε2

0 ‖s‖ ≤ ε1, ‖qv‖ ≤ ε2

(21)

where ε1 and ε2 are all small positive scalars. It could be found that the basic structure of (21)
is the same as (9), hence the system’s finite-time stability and bounded state property could
be maintained, and the only difference is that when the system approaches the equilibrium
point, the sliding mode parameter stops updating to avoid the parameter singularity issue.

The closed control loop scheme block diagram is shown as follows.
Shown as Figure 1, the control system is constructed as a sliding mode surface, con-

troller and update law. The latest one is the main contribution of this paper and it will be
described in the text.
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The next step is to propose the attitude controller after giving the sliding mode (21).
The robust finite-time controller proposed in this paper based on (21) could be written
as follows

u =



−kssigr(s) + ω× Ĵω− 1
2 kĴFω− l1sign(s) ‖s‖ > ε1

−kssigr(s) + ω× Ĵω− 1
2 kĴFω− l2sign(s)

− k
2 (1− α)βq0‖qv‖

α−1Ĵqv

‖s‖ ≤ ε1, ‖qv‖ > ε2

−kssigr(s) + ω× Ĵω− 1
2 kĴFω− l3sign(s) ‖s‖ ≤ ε1, ‖qv‖ ≤ ε2

(22)
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where ks is a positive scalar, r is a positive scalar which satisfies 0 < r < 1, vector function
sigr(x) and li are defined as follows

sigr(x) = x/‖x‖r



l1 = d + λ‖ω‖2 + k
2 λ‖ω‖

l2 = d + λ‖ω‖2 + k
2 λ‖ω‖+ k

2 λ(1− α)βq0‖qv‖
α

l3 = d + λ‖ω‖2 + k
2 λ‖ω‖

(23)

where λ is a positive scalar which satisfies λ ≥ λM

(
J̃
)

with λM

(
J̃
)

is the maximum

eigenvalue value of error inertia matrix J̃.
Controller (22) has the three following properties: (1) there is no negative power term

of system state in controller (22) hence the control torque are norm upper-bounded during
the whole control process; (2) as the system state converges, most sign function terms in
li tends to zero hence at the steady stage the actual sign function term is d to suppress
the disturbance torque; and (3) the system inertia matrix uncertainty is treated as king
of disturbance related to system state with norm upper bound and suppressed by sign
function terms, hence controller (23) is robust to model uncertainty.

The next step is to prove that governed by controller (22), system could reach sliding
mode (21) within finite-time. Select Lyapunov function as follows

Vs =
1
2

sTJs (24)

The V function satisfies following property

V ≥ 1
2

λm(J)‖s‖2 (25)

where λm(J) is the minimum eigenvalue value of matrix J.
When ‖s‖ > ε1 and ‖s‖ ≤ ε1, ‖qv‖ ≤ ε2, calculate the derivative of V function and

noticing (25) it could be got that

.
Vs = sTJ

.
s = sTJ

.
ω + ksTJ

.
qv

= sTu− sTω×Jω + sTd + k
2 sTJFω

= kssTsigr(s)− sTω× J̃ω + sTd + k
2 sTJ̃Fω

−
(

d + λ‖ω‖2 + k
2 λ‖ω‖

)
sTsign(s)

≤ −ks‖s‖r+1 + d‖s‖+ λM

(
J̃
)
‖s‖‖ω‖2 + k

2 λM

(
J̃
)
‖s‖‖ω‖

−
(

d + λ‖ω‖2 + k
2 λ‖ω‖

)
‖s‖ − d‖s‖

≤ −ks‖s‖r+1 ≤ −µV
r+1

2

(26)

When ‖s‖ ≤ ε1, ‖qv‖ > ε2 calculate the derivative of V function and noticing (25) it
could be got that
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.
Vs = sTJ

.
s = sTJ

.
ω + ksTJ

.
qv +

.
ksTJqv

= sTu− sTω×Jω + sTd + k
2 sTJFω +

.
ksTJqv

= kssTsigr(s)− sTω× J̃ω + sTd + k
2 sTJ̃Fω +

.
ksTJ̃qv

−
(

d + λ‖ω‖2 + k
2 λ‖ω‖+

.
kλ‖qv‖

)
sTsign(s)

≤ −ks‖s‖r+1 + d‖s‖+ λM

(
J̃
)
‖s‖‖ω‖2 + k

2 λM

(
J̃
)
‖s‖‖ω‖+

.
kλM

(
J̃
)
‖s‖‖qv‖

−
(

d + λ‖ω‖2 + k
2 λ‖ω‖+

.
kλ‖qv‖

)
‖s‖ − d‖s‖

≤ −ks‖s‖r+1 ≤ −µV
r+1

2

(27)

In (26) and (27), parameter µ is defined as follows

µ = ks(2/λm(J))
r+1

2 (28)

Based on (26) and (27) it could be found that system (1), (5) governed by controller (22)
could reach finite-time sliding mode (21) within finite-time, and along this sliding mode
system would converge to ‖qv‖ ≤ ε2 within finite-time.

In this section, a finite-time sliding mode based on standard sliding mode is proposed.
The basic structure, physical meaning and inherent robustness of the standard sliding
mode could be maintained, and the fixed parameter is modified to time-varying with the
typical update law. The strict finite-time time stability could be achieved by updating the
sliding mode parameter to infinite without causing the singularity issue of the system state,
however the computation system would break down by this method. Hence the finite-time
stability is loosed and when system state approaches to its equilibrium point close enough,
the parameter stops updating.

5. Finite-Time Controller Based on Euler Axis

In the last section, in order to avoid the singularity issue of the sliding mode parameter,
the system lost its strict finite-time stability. Hence, this section will discuss another finite-
time sliding mode based on the standard sliding mode to achieve strict finite-time stability
without causing any singularity issues.

According to the description in Section 2, the Euler axis could also be used to describe
attitude information, and is related to attitude quaternion tightly. However, this description
has its own singularity issue i.e., when ϕ→ 0 ,

.
e→ ∞ . The Euler axis is a unit vector and

describes the direction of the attitude quaternion; a small change in attitude quaternion
would cause a huge change in its direction when the system approaches its equilibrium
point. This would explain why, when the Euler angle tends to zero, the kinetic model of the
Euler axis is not continuous, and this property causes a huge challenge to design controllers
based on the Euler axis/angle. However, noticing that when angular velocity vector is
reversed to attitude quaternion vector i.e.,

ω = −k1qv = −k2e (29)

The kinetic model of Euler axis could be transformed to

.
e =

1
2

e×
(

I3 − cot
ϕ

2
e×
)

ω = −1
2

k2e×
(

I3 − cot
ϕ

2
e×
)

e = 0 (30)

It could be found that the singularity issue does not exist in this condition. In essence,
when angular velocity vector parallels to attitude quaternion vector, the direction of the
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Euler axis is constant. Based on this property, the sliding mode based on the Euler axis could
be constructed as two stages: (1) the system angular velocity vector should be reversed to
attitude quaternion vector; and (2) maintain the reverse property and adjust the norm of
angular velocity to achieve strict finite-time stability. Hence the finite-time sliding mode
proposed in this section could be written as follows

s = ω + ke

.
k =


0 ‖s‖ > ε1

− 1
2 q0αβk‖qv‖

α−1 − γ1g− γ2sign(g)|g|α0 ‖s‖ ≤ ε1

(31)

where ε1 is a small positive scalar, k(t0) is the initial value of k and is a positive scalar, β is
a positive scalar, α satisfies 1/2 < α < 1, α0 satisfies 0 < α < 1, γ1 and γ2 are all positive
scalars, and parameter g is defined as follows

g = k− β‖qv‖
α (32)

It could be found that the structure of sliding mode (31) is similar as (9) in the pre-
vious section; the first step is also to achieve the reverse of angular velocity and attitude
quaternion, and during this process the sliding mode parameter is fixed. When the reverse
property has been satisfied, the sliding mode parameter begins to update to achieve strict
finite-time stability.

It is worth noting that when maneuvering along the sliding mode (31), the update law,
k→ β‖qv‖

α could be achieved within finite-time. In fact, select the Lyapunov function as
follows and calculate its derivative

Vg =
1
2

g2 (33)

.
Vg = g

.
g

= g
( .

k− β
d‖qv‖

dt

)
= g

(
− 1

2 q0αβk‖qv‖
α−1 − γ1g− γ2sign(g)|g|α0 + 1

2 q0αβk‖qv‖
α−1
)

= −γ1g2 − γ2gα0+1

≤ −γ2gα0+1 = −γ2
(
2Vg

)α0+1/2

(34)

Considering the range of α0 it could be found that the error state system is finite-
time stable i.e., g→ 0 could be achieved within finite-time, hence k→ β‖qv‖

α could be
achieved within finite-time.

The next step is to discuss system stability on sliding mode (31). Define Lyapunov
function as follows

Vq = qT
v qv = ‖qv‖

2 (35)

Calculate its derivative and noticing the relationship between k and ‖qv‖, it could be got
that when near the equilibrium point

.
Vq = 2qT

v
.
qv = qT

v (q0I3 + q×v )(−ke) = −kq0‖qv‖

= −q0β‖qv‖
α+1 ≤ q0βVα+1/2

q

(36)

Hence system has strict finite-time stability on sliding mode (31). Moreover, noticing that

k = β‖qv‖
α,

.
k = −q0αβ2‖qv‖

2α−1 (37)
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Noticing that 1/2 < α < 1, hence

k = β‖qv‖
α → 0

‖ω‖ = ‖−ke‖ = β‖qv‖
α → 0

‖ .
ω‖ = ‖−k

.
e−

.
ke‖ = q0αβ2‖qv‖

2α−1 → 0

(38)

This means that on sliding mode (31) system state and sliding mode parameter has
no singularity issue during the whole convergence process. Compared to the finite-time
sliding mode in the previous section, the sliding mode (31) maintains the strict finite-time
stability and solves the parameter singularity issue. Since the norm of the Euler axis is
bounded to 1, a convergent parameter k could achieve the finite-time goal without causing
the singularity issue, and this is a main contribution of this paper. Moreover, the basic
structure of standard sliding mode is maintained in this section, and the physical meaning
and inherent robustness could be maintained in (31).

As discussed above, in order to avoid the inherent kinetic model singularity of Euler
axis, an important assumption should be made: when approaching the equilibrium point,
angular velocity vector has been reversed to attitude quaternion vector, i.e., for a small
positive scalar ε2, when ‖qv‖ ≤ ε2 is satisfied, ω = −ke has been satisfied. It is worth
noticing that except for some small angle maneuver, this assumption could be achieved
since the initial Euler angle is relatively large, hence this assumption is reasonable.

The finite-time controller based on sliding mode (31) could be written as follows

u =


−kssigr(s) + ω× Ĵω− 1

2 kĴGω− l1sign(s) ‖s‖ > ε1

−kssigr(s) + ω× Ĵω−
.
kĴe− l2sign(s) ‖s‖ ≤ ε1

(39)

where the definition of vector function sigr(·) and sign function sign(·) are totally same as
previous section, r is a positive scalar which satisfies 0 < r < 1, ks is a positive scalar, the
definition of

.
k is given in (33), matrix G and scalars li are defined as follows

G = e×
(
I3 − cot ϕ

2 e×
)


l1 = d + λ‖ω‖2 + k

2 λ
(
1 + cot ϕ

2
)
‖ω‖

l2 = d + λ‖ω‖2 + ‖
.
k‖

(40)

where λ is a positive scalar which satisfies λ ≥ λM

(
J̃
)

with λM

(
J̃
)

is the maximum

eigenvalue value of error inertia matrix J̃.
As discussed in previous section, controller (38) also has three properties: control

torque norm upper bounded, most sign function terms tend to zero and robust to inertia
matrix uncertainty.

Next step is to prove system (1) and (5) governed by controller (38) could reach the
sliding mode (31) within finite-time. Select Lyapunov function as follows

Vs =
1
2

sTJs (41)

The V function i.e., Lyapunov function satisfies

V ≥ 1
2

λm(J)‖s‖2 (42)
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When ‖s‖ > ε1, calculate the derivative of (43)

.
Vs = sTJ

.
s = sTJ

.
ω + ksTJ

.
e +

.
ksTJe

= sTu− sTω×Jω + sTd + k
2 sTJGω

= kssTsigr(s)− sTω× J̃ω + sTd + k2
2 sTJ̃Gω

−
(

d + λ‖ω‖2 + k
2 λ
(
1 + cot ϕ

2
)
‖ω‖

)
sTsign(s)

≤ −ks‖s‖r+1 + d‖s‖+ λM

(
J̃
)
‖s‖‖ω‖2 + k

2 λM

(
J̃
)(

1 + cot ϕ
2
)
‖s‖‖ω‖

−
(

d + λ‖ω‖2 + k2
2 λ
(
1 + cot ϕ

2
)
‖ω‖

)
‖s‖ − d‖s‖

≤ −k‖s‖r+1 ≤ −µV
r+1

2

(43)

When ‖s‖ ≤ ε1, calculate the derivative of (41) and noticing that angular velocity
vector has been reversed to attitude quaternion vector i.e.,

.
e = 0

.
Vs = sTJ

.
s = sTJ

.
ω + ksTJ

.
e +

.
ksTJe

= sTu− sTω×Jω + sTd +
.
ksTJe

= kssTsigr(s)− sTω× J̃ω + sTd− q0αβ2‖qv‖
2α−1sTJ̃e

−
(

d + λ‖ω‖2 + λq0αβ2‖qv‖
2α−1

)
sTsign(s)

≤ −ks‖s‖r+1 + d‖s‖+ λM

(
J̃
)
‖s‖‖ω‖2 + q0αβ2λM

(
J̃
)
‖qv‖

2α−1‖s‖

−
(

d + λ‖ω‖2 + λq0αβ2‖qv‖
2α−1

)
‖s‖ − d‖s‖

≤ −k‖s‖r+1 ≤ −µV
r+1

2

(44)

In (42) and (43), parameter µ is defined as follows

µ = k(2/λm(J))
r+1

2 (45)

Based on (43) and (44), it could be found that system (1) and (5) governed by controller
(39) could reach finite-time sliding mode (31) within finite-time, and along this sliding
mode the system would converge to the equilibrium point within finite-time; strict system
finite-time stability has been proven.

In this section, the standard sliding mode is modified to have strict finite-time stability
based on the Euler axis description. The property that norm of Euler axis is bounded is
used to design the update law of sliding mode parameter, hence the system state and
sliding mode parameter could be ensured norm upper bounded during the whole control
process. Compared with the controller proposed in last section, the controller (39) has
better convergence performance and robustness. However it is worth noticing that differs
from last section, the control method in this section needs high attitude determination,
since when approaching the system equilibrium point, a small error in attitude quaternion
would cause a huge error in the Euler axis, thus the control accuracy would be influenced.
In essence, finite-time attitude control issue is transformed to a high accuracy attitude
determination issue.
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6. Simulation

In order to demonstrate the superiority of the adaptive finite-time controller (22) and
(39) presented in this paper, the standard sliding mode controller (46) without the inertia
matrix uncertainty constructed is compared as follows:

u = −ks + ω×Jω− k1
2 (q0I3 + q×v )ω− dsgn(s)

s = ω + k1qv

(46)

Set the simulation parameters as follows

J = diag(30, 25, 20)kg ·m2, k = 0.1, ks = 10

ω(0) = [−0.03 −0.04 0.05]Trad/s, q(0) =
[

0
√

6/6
√

3/3
√

2/2
]T

(47)

Assume the disturbance torque consists of Gauss white noise and sinusoidal signal
written as follows

di = 5× 10−4randn(−1, 1) + 5× 10−4 sin t + 5× 10−4‖ωi‖randn(−1, 1) (48)

Hence the norm upper bound of disturbance torque satisfies

d = 10−3 (49)

The simulation results of standard sliding mode controller (48) are given as follows.
Based on Figures 2–4 it could be found that system converges to the equilibrium point

more than 120 s, and the steady accuracy at 150 s is about 1× 10−4rad/s of angular velocity
and 1× 10−3 of attitude quaternion. Based on the simulation parameters it could be found
that the total rotate angle is 180deg and the maneuver time is longer than 120 s, hence the
average angular velocity is about 1.5deg/s. The low convergence rate is caused by the drop
of angular velocity and this could be found in Figure 1. Moreover, based on Figure 3 it
could be found that the initial control torque is about 1.5 Nm and drops to zero drastically,
hence it could concluded that the efficiency on control torque of standard sliding mode
controller is relatively low.
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Figure 4. Curve of control torque.

6.1. Simulation for Controller Based on Attitude Quaternion

In this section, simulation results for finite-time controller (22) in Section 4 a given. Set
system parameters as follows.

Ĵ = diag(28, 24, 21)kg·m2, λ = 3, d = 10−3 (50)

Generally, larger r and k(t0) brings faster convergence rate, but the demanded control
torque is also enlarged, and smaller r makes sliding mode (9) degenerates to standard
sliding mode. Also larger ks makes system could reach the finite-time sliding mode faster,
moreover, smaller α and larger β bring better convergence rate along the sliding mode.
Considering that system performance under exponential convergence rate when away
from the equilibrium point, the superiority of finite-time property mainly reflects on the
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performance near system equilibrium point. Above all, control parameters for controller
(22) are selected as follows

ε1 = 10−3, ε2 = 10−4, r = 1/3, ks = 2

k(t0) = 0.1, α = 2/3, β = 2
(51)

Based on the discussion in previous section, system convergence time from initial
condition to the field of ‖qv‖ ≤ 10−4 could be got as follows

Ts ≤ 2 (Vs(t0)/ε2
1)

1−r/2

ks(2/λm(J))r+1/2(1−r)
≈ 14 s, Tq ≤ 2 (

1/ε2
2)

1−α/2

β(1−α)
≈ 44 s

T0 ≤ Ts + Tq = 58 s

(52)

where Ts is the time form initial state to the sliding mode, and Tq is the convergence time
along sliding mode (21).

The simulation results are shown as follows
Based on Figures 5 and 6 it could be found that system convergence time is about

30 s, which is much larger than that of the standard sliding mode, also the finite-time
stability calculated in (54) has been proved. The hsystem steady accuracy at 40 s is about
2× 10−6rad/s of angular velocity and 4× 10−8 of attitude quaternion. System performance
including convergence rate and steady accuracy is largely improved compared with that
of standard sliding mode, and the superiority of the proposed controller in this paper
is illustrated by simulation results. Based on Figures 5, 7 and 8 it could be found that
the norm of angular velocity and control torque are upper bounded during the whole
maneuver process, hence the singularity issue of finite-time control does not occur in
the proposed controller. Based on Figure 7, it could be found that the updating sliding
mode parameter k is the key to improve the system convergence rate. From the initial
value to its terminal value, parameter k has enlarged more than 3000 times (from 0.1 to
more than 30), and this property could offset the drawback brought by the exponential
convergence rate. However, it is obvious that the curve of k is very cliffy when the system
state approaches the equilibrium point, and if the system continues to update parameter
k, it would tend to infinity and cause the breakdown of the computing system. Moreover,
noting the disturbance torque and model uncertainty in the simulation configuration, it
could be concluded that controller (24) is robust to disturbance and model uncertainty.
Above all, a finite-time controller (24) based on attitude quaternion proposed in this paper
could achieve the goal of finite-time stability without causing the singularity issue, but
the cost is that the finite-time stability is not strict (the system state could only reach the
neighborhood of equilibrium point but not the actual equilibrium point within finite-time)
to avoid the breakdown of computing system.
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Figure 8. Curve of control torque.

Considering that the proposed sliding mode is modified based on standard sliding
mode, hence some advantages such as the inherent robustness could be maintained. In or-
der to demonstrate this property, set system configurations under controller (22) as follows

d = 1× 10−2 × rand(3× 1)Nm

d = 0, λ = 0, u
′
= diag(0.9, 0.8, 0.7)u

J = diag(30, 25, 20)kg ·m2, Ĵ = diag(22, 18, 15)kg ·m2

(53)

Based on (53) it could be found that the unknown disturbance torque is enlarged
to the 10−2Nm level, and the term d to suppress disturbance in controller is set to be
zero. Moreover, inertia matrix estimation has larger than 25% error comparing with actual
inertia matrix, and the term λ to suppress this perturbation is also set to be zero. The
actual control output has constant bias from desired control torque. Above all, under this
configuration system has three perturbation aspects: (1) larger disturbance and no offset
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term in controller; (2) larger model uncertainty and no offset term in controller; and (3)
control output error in actuator.

Simulation results under condition (53) are show as follows.
Based on Figures 9 and 10 it could be found that the system could still converge to

the equilibrium point under such perturbations. Comparing this group of simulation with
Figures 5–8 it could be found that the main difference is the convergence time. Based on
Figures 9–11 it could be found that system converge time is about 43 s and the convergence
time of controller (22) is about 30 s, and the steady accuracy could approximately be treated
as the same level with controller (22). Moreover, Figures 11 and 12 demonstrate that
finite-time sliding mode based on the standard sliding mode could resist some typical
perturbations such as unknown disturbance, inertia matrix uncertainty and actuator error.
Also, it is worth noting that although the demand control torque is discontinuous in
Figure 12, it could be achieved by a reaction wheel, the function of which is to produce
controlled torque by accelerating and decelerating its rotation speed, and this acceleration
could be discontinuous. This proves that by designing the sliding mode properly, the
finite-time stability and strong robustness could both be maintained.
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In this section, simulation results for finite-time controller based on attitude quaternion
are given. By the update law of sliding mode parameter, the finite-time stability could be
ensured and the inherent robustness of the standard sliding mode could both be maintained.
This is one of the main contributions of this paper and offers a new method to achieve
finite-time stability. Also, it could be found that the parameter would tend to infinity and
cause the breakdown of the computing system if the controller is not designed properly,
hence the controller in Section 4 has some risk of the breakdown of the control system.

6.2. Simulation for Controller Based on Euler Axis

In this section, the simulation results of controller in Section 5 are given. Set system
parameters as follows.

Ĵ = diag(28, 24, 21)kg·m2, λ = 3, d = 10−3 (54)

similar as discussed in Section 6.1, larger r and k(t0) brings faster convergence rate, but the
demanded control torque is also enlarged, and smaller r makes sliding mode (9) degenerates
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to standard sliding mode. Also larger ks makes system could reach the finite-time sliding
mode faster, moreover, smaller α and larger β bring better convergence rate along the
sliding mode. Larger γ1 and γ2 could ensure sliding mode parameter k reach the desired
trajectory. Considering the selection of control parameters in references [4–7], some control
parameters could be selected similarly. Generally, larger sliding mode parameters could
bring better convergence rates but the demanded control torque is also larger. Above all,
control parameters for controller (39) are selected as follows

ε1 = 10−4, r = 1/3, ks = 2, γ1 = γ2 = 2

k(t0) = 0.1, α = 2/3, β = 1
(55)

Assume that when ‖qv‖ ≤ ε2 = 10−4 is satisfied the system could be treated as
converged to the equilibrium point, and the system convergence time could be calculated
as follows:

Ts ≤ 2 (Vs(t0)/ε2)
1−r/2

ks(2/λm(J))r+1/2(1−r)
≈ 12 s, Tk ≤ 2 (β/k(t0))

1−α/2

β(1−α)
≈ 9 s

Tq ≤ 2 (
1/ε2

2)
1−α/2

β(1−α)
≈ 31 s, T0 ≤ Ts + Tk + Tq = 52 s

(56)

where Ts is the time form initial state to the sliding mode, Tk is the time of k chasing the
desired trajectory, and Tq is the convergence time along the proposed sliding mode.

The simulation results of controller (39) proposed in Section 5 is given as follows.
Based on Figures 13 and 14, it could be found that the system converges to the

equilibrium point within 30 s, and this proves the system finite-time stability calculated
in Equation (56). Moreover, the system steady accuracy at 50 s is about 2× 10−5rad/s of
angular velocity and 6× 10−7 of attitude quaternion, which satisfy the converge condition
claimed previously. Based on Figures 15 and 16, it could be found that control torque
and sliding mode parameter are all norm upper bounded and the singularity issue does
not occur in this condition. Comparing simulation results in this section with those in
Section 6.1 it could be found that system convergence time is faster in this section, and the
major improvement is the curve of sliding mode parameter k. In this section the sliding
mode parameter tends to zero, hence it is not necessary to stop the update law of the sliding
mode parameter. The robustness of the control system is strengthened by this property
compared with the controller in Section 4. It is worth noting that when maneuvering
along the proposed trajectory, the sliding mode parameter k should be strictly monotonic
decreasing. However, based on Figure 15, it could found that the parameter is not strictly
monotonic decreasing and has some wave characters. This is caused by the discontinuous
property of the Euler axis, since when approaching the equilibrium point, the Euler axis
e changes fast and is easily interfered with by random disturbance torque. Consider that
under this situation, the changing rate of e tends to infinite and the controller could not
offset this perturbation, hence the system state deviates from the desired trajectory until
the control torque overwhelms the discontinuous perturbation torque.
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Figure 16. Curve of control torque.

Similar to the discussion in the previous section, in order to demonstrate this property,
set system configurations under controller (39) are as follows:

d = 1× 10−2 × rand(3× 1)Nm+1× 10−3 × ‖ω‖rand(3× 1)Nm

d = 0, λ = 0, u
′
= diag(0.9, 0.8, 0.7)u

J = diag(30, 25, 20)kg ·m2, Ĵ = diag(22, 18, 15)kg ·m2

(57)

It could be found that under this configuration system has three aspect perturbations:
(1) larger disturbance and no offset term in controller; (2) larger model uncertainty and no
offset term in the controller; and (3) control output error in the actuator. The simulation
results under strong perturbations are given as follows.

Based on Figures 17–20, it could be found that the system could still converge to
the equilibrium point under such perturbations. Comparing this group of simulations
with Figures 13–16, it could be found that the main difference is the convergence time.
In this group of simulations, the system converges to the equilibrium point about 30 s
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slower compared with that in the controller (39). Figures 17 and 18 demonstrate that
the finite-time sliding mode (31) could achieve a high steady accuracy and resist some
typical perturbations such as unknown disturbance, inertia matrix uncertainty and actuator
error. This proves that by designing the sliding mode properly, the finite-time stability
and strong robustness could both be maintained. Generally, disturbance torque would
influence the system steady performance (a larger disturbance would bring a larger sign
function term and the system chattering issue would be aggravated), and system steady
accuracy would drop.
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Based on Table 1 it could be found that the proposed controller in this paper mostly
maintained the advantage of the standard sliding mode controller, and the system conver-
gence rate is largely improved. Also, the steady accuracy is also largely improved.

Table 1. Simulation results comparison.

Standard Sliding Mode Finite Time Based on
Attitude Quaternion

Finite Time Based on
Euler Axis

Convergence time Low Medium High

Steady accuracy Low Medium High

Robustness Strong Medium Medium

Singularity Issue None None Weak

Controller
Structure Simple Complex Complex
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In this section, performance of the finite-time controller proposed in Section 5 is
demonstrated. Compared with the controller in Section 4, the controller (39) could maintain
the strong inherent robustness of the standard sliding mode and finite-time stability and the
singularity issue of the sliding mode parameter is solved in this situation. The fixed norm of
the Euler axis beings this property and this also brings some by-effect to the system, in fact,
the control issue is transformed to an attitude determination issue since the small error of
the Euler axis could bring large perturbation to system near the system equilibrium point.

7. Conclusions

In this paper, finite-time sliding modes are proposed based on standard sliding ones. A
novel structure of finite time sliding mode surface is proposed based on a standard sliding
mode surface. A system finite time stability is achieved by implementing the update law of
sliding mode parameters and the singularity issue is avoided by using the property when
angular velocity is reversed to the attitude quaternion.

Generally, by enlarging the sliding mode parameter, the system convergence rate
could be improved significantly, and when the update law is designed properly, the desired
system performance could be achieved. Also, it could be found that when using attitude
quaternion to design the finite-time sliding mode, the sliding mode parameter tends to
infinity as the system state converges to zero and the singularity issue of control torque
is transformed to the singularity issue of the sliding mode parameter. In order to avoid
the breakdown of the computer system caused by this singularity issue, it is necessary to
stop updating the parameter when approaching the system equilibrium point. In order
to get the strictly finite-time stability, the Euler axis parameter could be used to design
a finite time sliding mode. The norm of the Euler axis is fixed, and this property brings
some convenience to the design of the finite-time sliding mode. The singularity issue is
solved and the system state, control torque and sliding mode parameters are all norm
upper bounded. However, the control issue is transformed to a measurement issue since a
small error could bring a large perturbation under some typical conditions.

Above all, two kinds of finite time sliding modes are proposed in this paper and each
has its advantages and disadvantages. When selecting the sliding mode properly based on
the onboard condition and space mission requirement, desired system performance can
be achieved.
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