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Abstract: In this study, the synchronization problem of chaotic systems using integral-type sliding
mode control for a category of hyper-chaotic systems is considered. The proposed control method
can be used for an extensive range of identical/non-identical master-slave structures. Then, an
integral-type dynamic sliding mode control scheme is planned to synchronize the hyper-chaotic
systems. Using the Lyapunov stability theorem, the recommended control procedure guarantees that
the master-slave hyper-chaotic systems are synchronized in the existence of uncertainty as quickly as
possible. Next, in order to prove the new proposed controller, the master-slave synchronization goal
is addressed by using a new six-dimensional hyper-chaotic system. It is exposed that the synchroniza-
tion errors are completely compensated for by the new control scheme which has a better response
compared to a similar controller. The analog electronic circuit of the new hyper-chaotic system using
MultiSIM is provided. Finally, all simulation results are provided using MATLAB/Simulink software
to confirm the success of the planned control method.

Keywords: nonsingular control; hyper-chaotic system; integral-type sliding mode control; orbital design;
finite-time synchronization

1. Introduction
1.1. Background and Motivation

In past decades, the synchronization and stability of nonlinear systems and related
techniques have attracted the attention of researchers. Chaos phenomenon developed
by creating irregular phenomena can be desirable for many applications and undesirable
for many other applications [1–4]. For example, chaotic systems with optimal conditions
can be used in secure communications [5], cryptography [6], economics [7], aerospace [8],
event-triggered communication [9], masking communication [10], transportation [11], me-
chanics [12], power systems [13] and other sciences. Chaos theory also has been considered
in stochastic systems [14], memristor-based circuits [15], neural systems [16], finite-size
systems [17], urban systems [18], quantum systems [19], Takagi–Sugeno (TS) fuzzy sys-
tems [20,21], etc. A specific method is used to synchronize chaotic and super-chaotic
systems with the possibility of oscillation of two or more systems. One approach is to syn-
chronize two nonlinear systems from the master-slave perspective [22]. This approach was
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first reported by Pecora and Carroll, who were able to develop an effective approach [23].
These researchers believed that the phenomenon of chaotic synchronization could create
new ways to achieve secure communication. In this method, the slave system modes
must be adjusted with a control approach so that they eventually reach the master system.
Controlling the nonlinear systems and chaotic behaviors for achievement of finite-time
synchronization is a very interesting topic [9,24]. Controlling the chaotic behaviors in order
to achieve finite-time synchronization is a very interesting topic that has been considered
in recent years [25]. Various methods have been used to control the chaos [26,27]. Among
the existing methods, sliding mode control has unique features. Sliding mode control is
a robust and simple procedure that forces system modes to be placed on the switching
surface, eventually converge to the origin, and be maintained in the same position [28].
For fast convergence, it is necessary to select a sufficiently large switching surface, which
may lead to instability and increase the chattering phenomenon [29]. This will lead to
many problems, including excessive control effort to increase energy consumption and
the failure of mechanical components, including actuators [30]. Many control techniques
have been used to overcome these problems [31,32]. Nonsingular integral-type control law
is an efficient and optimal method that is designed based on nonlinear models and can
create features such as the reduction of stress in actuators, elimination of chattering effects,
convergence of finite-time, and high resistance to uncertainty [33,34].

1.2. Literature Review

In [35], the finite-time synchronization problem of a category of receiver-transmitter
chaotic systems with unknown perturbations and uncertainties is considered. This paper
presents a new fractional sliding surface and suitable adaptive rules for unknown system
parameters. Finite-time synchronization is performed using the new Adaptive Sliding
Mode Controller (ASMC) and unstable oscillations are removed from the system. It has
been shown that with the application of the new controller, the system becomes fully robust,
and the suggested method can be used for a wide range of nonlinear systems. In [36],
sliding mode control problems for nonlinear systems with time-varying delays and exterior
disturbances are discussed. The derivative of the time varying delay is considered to
be bounded by a free bounded real number rather than by one. Then, using Lyapunov
stability, several stable asymptotic global conditions for the sliding surface are obtained.
In this paper, the system modes converge to the origin indefinitely and asymptotically.
In [37], an adaptive backstepping controller technique is presented to solve stabilization and
finite-time synchronization problems of two master-slave fractional-order nonlinear and
chaotic systems. The method proposed in [37] ensures asymptotic stability and finite-time
synchronization for fractional-order nonlinear and chaotic systems. In the so-called article,
there are problems with finite-time synchronization. In [38], the state tracker is studied
for spacecrafts using a new adaptive integral terminal sliding mode control approach.
In this manuscript, a fundamental fault tracking control method is proposed to confirm
the spacecraft tracking performance in the existence of a fault, exterior turbulence, and
actuator saturation when the spacecraft’s rotational inertia is known. Next, a modified
control method with adaptive rules is designed to compensate for actuator error and
uncertainties, which includes external perturbation and rotational inertia uncertainty. One
of the advantages of this method is that the suggested new control approach can provide
the advantages of integral terminal sliding control, for instance, uniqueness and small
steady-state errors. In [39], a new terminal sliding control technique is planned for trajectory
tracking of a robotic airship. This controller is able to avoid the problem of singularity
and improve the convergence time. The stability of the control system is guaranteed using
the Lyapunov function. The considered technique can guarantee finite-time convergence;
however, it does not remove the chattering phenomenon. In [40], a new second-order
SMC, which can be employed for dealing with the output constraints, is designed. It
is shown that, under the output constraint, the slider variable can still reach origin in
finite time. In this manuscript, the chattering phenomena is beheld and an addition in the
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initial conditions prevents the switching surface and time derivative from converging to
equilibrium. Reference [41] proposes a novel design of a robust integral-type sliding control
with optional time-related switching rules for uncertain switched systems. According to
the suggested common Lyapunov function method, a robust integral sliding control surface
is designed, which is robust to the uniquid uncertainty. According to the results obtained
from this article, there are also problems related to the chatting phenomenon in this article.

1.3. Contribution

Considering all of these cases, the finite time synchronization of N-dimensional hyper-
chaotic systems using the nonsingular integral-type controller is studied in this study. The
benefits of the suggested technique are as follows: (i) This method is employed for an
extensive range of hyper-chaotic systems; (ii) this method provides faster convergence; and
(iii) this method is free of chattering and unstable fluctuations. Its main contributions are
listed as follows:

• N nonsingular integral-type controller design for the category of N-dimensional
hyper-chaotic systems;

• The design of a new nonsingular integral-type controller for fast synchronization;
• The design of finite-time synchronization of a new six-dimensional master-slave systems;
• A plan that ensures finite-time stability and eliminates the effects of the chatting phenomenon.

1.4. Paper Organization

The manuscript is prepared as follows: in Section 2, a general class of first-order
systems and related theorems are introduced. The main results, including the finite-time
integral-type hyper-chaotic synchronization, integral sliding surface design, and finite-time
tracker design, are discussed in Section 3. The introduction of a new 6-D hyper-chaotic
system for finite-time synchronization, the circuit realization of the new hyperchaotic
system, and simulations related to the implementation of the planned method on the
hyperchaotic system are demonstrated in Section 4. Lastly, some concluding remarks are
stated in Section 5.

2. System Definition and Preliminaries

The nonlinear system with disturbance is considered to be

.
x(t) = ( f (x(t)) + ∆ f (x(t))) + g(x(t))u(t) + d(t) (1)

where x(t) ∈ Rn is the vector of the states, and u(t) ∈ Rn represents the control vec-
tor; f (x(t)) ∈ Rn and g(x(t)) ∈ Rn×n denote the known nonlinear functions where
|g(x(t))| 6= 0. The bounded continuous nonlinear functions ∆ f (x(t)) ∈ Rn and d(t) ∈ Rn

denote the parameter uncertainties and disturbance terms; R is the set of real constants.
The control purpose is to follow the desired reference trajectory xd(t) ∈ Rn in the presence
of perturbations. The reference signal xd(t) is a time differentiable function. The tracking
error signal is given as

e(t) = x(t)− xd(t) (2)

In this paper, a nonsingular second order terminal sliding tracker is proposed for a
nonlinear system in the presence of a disturbance (1) where the suggested technique has a
rapid reaching law.

Definition 1. The nonlinear time-invariant system is formed by

.
x(t) = f (x) (3)

where f (x) : D → Rn is the continuous function on an open neighborhood D of equilibrium points.
The equilibrium is locally finite-time stable if the subsequent circumstances are guaranteed:

(I) It should be stable asymptotically in subset D̂ ⊆ D;
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(II) It should be finite-time convergent in subset D̂. A convergence time t1(x0) exists with
x(t, x0)→ 0 as t→ t1(x0) and stays equal to zero thereafter. In addition, if D̂ = Rn, then
the equilibrium is considered to be globally finite-time stable.

Definition 2. The affine nonlinear time-invariant system is considered to be

.
x(t) = f (x) + g(x)u(t) (4)

where x(t) ∈ Rn is the state, u(t) ∈ Rn is the controller, |g(x)| 6= 0, and f (0) = 0. The feedback
control law u(t) = Π(x, t) is a finite-time tracker if the origin of the system (4) becomes finite-time
stable.

Lemma 1. Let x ∈ ℵ ⊂ Rn,
.
x = I(x), I : Rn → Rn be a continuous functional on an open

neighborhood ℵ of the origin and locally Lipschitz on ℵ\{0} with I(0) = 0. Consider that there is
a continuous functional V : ℵ → R where the functional is positive-definite. The time derivative
of the function is negative on ℵ\{0}, and real positive values m, 0 < α < 1 and a neighborhood
N ⊂ ℵ of origin exist, where

.
V + mVα ≤ 0 on N\{0}. Consequently, the origin is finite time

stable. Then, for any given t0, the Lyapunov functional V converges to zero in finite time as

ts =
V(t0)

1−α

m(1− α)
(5)

with ts as the settling time.

3. Main Results
3.1. Integral Terminal Sliding Surface

In order to satisfy the finite-time tracking approach, the terminal integral sliding
surface is designed as

s(t) = kpe(t) + ki

∫ t

0
e(τ)q/pdτ + kd

.
e, (6)

where kp, ki, kd denote the positive scalars, and q and p signify odd positive values satisfying
q < p. When the initial value of tracking error is zero, the tracking subject can be assumed
as the error remaining on the surface s(t) = 0. When the states reach the sliding surface, it
stays on it while sliding to the conditions e(t) = 0 and

.
e(t) = 0.

When the error signals reach the sliding surface s = 0, we have

kpe(t) + ki

∫ t

0
e(τ)q/pdτ + kd

.
e = 0 (7)

and
.
s = 0 is obtained, which gives

..
e = −

kp

kd

.
e− ki

kd
eq/p (8)

Construct the Lyapunov candidate functional as

V0 = 0.5
.
e2
+

ki p
kd(q + p)

e1+q/p (9)

where differentiating V0 and employing Equation (8) yields

.
V0 =

.
e

..
e +

ki p
kd(q + p)

(
q
p
+ 1
)

eq/p .
e =

.
e
(
−

kp

kd

.
e− ki

kd
eq/p

)
+

ki
kd

eq/p .
e = −

kp

kd

.
e2 ≤ 0. (10)
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This means that when the error reaches the surface (6), it asymptotically converges to
the origin. The error state is a uniformly bounded function. Because V0 is a positive-definite
functional and the time-derivative of V0 is negative semi-definite, lim

t→∞
V0 = V0(∞) exists

for V0(∞) ∈ R+. Because of the errors’ boundedness, the term
.

V0 is uniformly continuous.
Consequently, by using Barbalat’s lemma, it is confirmed that lim

t→∞

.
e(t) is equal to zero. One

obtains from Equation (6) that lim
t→∞

e(t) = 0. To conclude, the tracking error converges the

origin asymptotically.

3.2. Finite-Time Integral-Type Hyper-Chaotic Synchronization

Consider the hyper-chaotic master system as

dxim(τ)

d(τ)
= Λ1xim(τ) + Λ2 f (xim(τ)) (i = 4, . . . , N) (11)

where xim(τ) ∈ Ri are state variables, f (xim(τ)) is a nonlinear function, and Λ1, Λ2 ∈ Ri×i

are the known constant matrices of the hyper-chaotic master system (11). Similarly, for the
hyper-chaotic slave system, we have

dxis(τ)

d(τ)
= Λ1xis(τ) + Λ2 f (xis(τ)) + Bui(τ) + di(τ) (i = 4, . . . , N) (12)

where xis(τ) ∈ Ri are state variables, ui(τ) ∈ Ri is the control input, B ∈ Ri×1 are control
gains, and di(τ) ∈ Ri×1 are the total uncertainties of the hyper-chaotic slave system (12). In
general, the sum of uncertainties di(τ) is bounded and is assumed to be as follows:

|di(τ) | ≤ γ (13)

where γ denotes a positive constant.

Assumption 1. Let the synchronization errors of (11) and (12) be

e(τ) = xs(τ)− xm(τ) (14)

Subtracting Equation (11) from Equation (12) yields

.
ei(τ) = Λ1xis(τ) +Λ2 f (xis(τ)) + Bui(τ) + di(τ)−Λ1xim(τ)−Λ2 f (xim(τ))

= Λ1(xis(τ)− xim(τ)) + Λ2( f (xis(τ))− f (xim(τ))) + Bui(τ) + di(τ)

= Λ1ei(τ) + Λ2 f (ei(τ)) + Bui(τ) + di(τ)

(15)

where f (ei(τ)) = ( f (xis(τ))− ( f (xim(τ))).
Based on Equation (15), the input control ui(τ) can be designed as

ui(τ) = −B−1
i Ŕi(τ), (i = 4, . . . , N) (16)

where Ŕi(τ) = Λ1ei(τ) + Λ2 f (ei(τ)) + di(τ) and B−1
i is the inverse matrix of Bi.

Theorem 1. By properly selecting the controller (16), the hyper-chaotic systems (11) and (12) and
the system error (14) can be asymptotically converged to the origin.

Proof. Let us consider the integral-type candidate Lyapunov function (9):

.
v0 = k

(
Ŕi(τ) + Biui(τ)

)2 (17)
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where k = − kp
kd

. By placing Equations (15) and (16) in Equation (17):

.
v0 = k

(
Λ1ei(τ)di(τ) + Λ1ei(τ)Biui(τ) + Λ1Λ2ei(τ) f (ei(τ)) + Λ2 f (ei(τ))di(τ)

+Λ2Bi f (ei(τ))ui(τ) + Biui(τ)di(τ) + Ψ2
1

)
(18)

where Ψ1 is equal to

Ψ1 =
Λ1ei(τ) + Λ2 f (ei(τ)) + Biui(τ) + di(τ)

2
(19)

By applying controller (17) to Equation (19), we get

.
v0 = k

(
Λ1ei(τ)di(τ) + Λ1Λ2ei(τ) f (ei(τ)) + Ψ2

1 + Ψ2
2

)
(20)

where Ψ2 is equal to
Ψ2 = Λ1ei(τ) + Λ2 f (ei(τ)) + di(τ) (21)

By choosing Λ1(Λ2 f (ei(τ)) + di(τ))ei(τ) ≤ ξ in the bounded form, we get

.
v0 ≤ k

(
ξ + Ψ2

1 + Ψ2
2

)
(22)

where ξ is a positive constant matrix. Placing k = −kp/kd in Equation (22) yields

.
v0 ≤ −

kp

kd

(
ξ + Ψ2

1 + Ψ2
2

)
(23)

Hence, the Lyapunov functional (9) is decreases gradually and the finite-time switching
manifold (6) is convergent to zero in finite time. �

3.3. Finite Time Tracker Design

In order to reach the surfaces in finite time, an improved dynamic manifold is
described by

σ(t) = s(t)− (I(t) + R(t))s(0) (24)

where I(t) ∈ R and R(t) ∈ R denote two exponential functions with

I(t) = l1 exp(−φ1t) + l2 exp(−φ2t) + l3 (25)

R(t) = l4 exp(−φ3t)− l3 (26)

where φ1, φ2, φ3 > 0 and li(i = 1, . . . , 4) represent constant gains. The improved dynamic
surface (24) speeds up the dynamic response with a fast decay rate. The initial condition of
(25) and (26) is considered to be

I(0) + R(0) = 1 (27)

which can be simplified as
l1 + l2 + l4 = 1 (28)

The boundary condition of (25) and (26) in finite time is also calculated by

I(ts) + R(ts) = 0 (29)

which can be simplified as

l1 exp(−φ1ts) + l2 exp(−φ2ts) + l4 exp(−φ3ts) = 0. (30)
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Parameters l1 and l2 are calculated from (28) and (30) as

l1 =
(1− l4) exp(−φ2ts) + l4 exp(−φ3ts)

exp(−φ2ts)− exp(−φ1ts)
, t ≤ ts (31)

l2 =
−(1− l4) exp(−φ1ts)− l4 exp(−φ3ts)

exp(−φ2ts)− exp(−φ1ts)
. t ≤ ts (32)

By taking the time-derivative of (24), one finds

.
σ(t) =

.
s(t)−

( .
I(t) +

.
R(t)

)
s(0) (33)

where, by using (6), one has

.
σ(t) = kp

.
e(t) + kie(t)

q/p + kd
..
e(t)−

( .
I(t) +

.
R(t)

)
s(0) (34)

In light of (1) and (2), Equation (34) can be written as

.
σ(t) = kp

(
f (x(t)) + ∆ f (x(t)) + g(x(t))u(t) + d(t)− .

xd(t)
)
+ kie(t)

q/p + kd(
.
f (x(t)) + ∆

.
f (x(t))

+
.
g(x(t))u(t) + g(x(t))

.
u(t) +

.
d(t)− ..

xd(t))−
( .

I(t) +
.
R(t)

)
s(0)

(35)

Theorem 2. The nonlinear system with disturbance is considered as (1). The control input is
formed as

.
u(t) = −kd

−1g(x(t))−1{kp
(

f (x(t)) + g(x(t))u(t)− .
xd(t)

)
+ kie(t)

q/p

+(φ1l1 exp(−φ1t) + φ2l2 exp(−φ2t) + φ3l4 exp(−φ3t))s(0) + kd
.
g(x(t))u(t)

+kd
.
f (x(t))− kd

..
xd(t) + κ sgn(σ(t))|σ(t)|η + γσ(t) + δ sgn(σ(t))}

(36)

where κ and γ are two arbitrary positive coefficients, and δ is a positive constant satisfying

δ ≥ ‖kp(∆ f (x(t)) + d(t)) + kd

(
∆

.
f (x(t)) +

.
d(t)

)
‖ (37)

Then, the sliding manifold (24) is forced to converge to the origin in finite time.

Proof. The Lyapunov functional is constructed by

V1(σ(t)) =
1
2

σ(t)Tσ(t) (38)

From (25), (26), and (35), the term
.
σ(t) is rewritten as

.
σ(t) = kp

(
f (x(t)) + ∆ f (x(t)) + g(x(t))u(t) + d(t)− .

xd(t)
)
+ kie(t)

q/p

+kd

( .
f (x(t)) + ∆

.
f (x(t)) +

.
g(x(t))u(t) + g(x(t))

.
u(t) +

.
d(t)− ..

xd(t)
)

+(φ1l1 exp(−φ1t) + φ2l2 exp(−φ2t) + φ3l4 exp(−φ3t))s(0)

(39)

Using the differentiation of the above Lyapunov functional and by using (39), we yield

.
V1(σ(t)) = σ(t)T{kp

(
f (x(t)) + ∆ f (x(t)) + g(x(t))u(t) + d(t)− .

xd(t)
)
+ kie(t)

q/p

+kd

( .
f (x(t)) + ∆

.
f (x(t)) +

.
g(x(t))u(t) + g(x(t))

.
u(t) +

.
d(t)− ..

xd(t)
)

+(φ1l1 exp(−φ1t) + φ2l2 exp(−φ2t) + φ3l4 exp(−φ3t))s(0)}
(40)

where substituting (36) into (40) yields

.
V1(σ(t)) = kpσ(t)T(∆ f (x(t)) + d(t)) + kdσ(t)T

(
∆

.
f (x(t)) +

.
d(t)

)
−σ(t)T(γσ(t) + κ sgn(σ(t))|σ(t)|η + δ sgn(σ(t))

)
.

(41)
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In light of (37), Equation (41) can be simplified as

.
V1(σ(t)) ≤ kpσ(t)T(∆ f (x(t)) + d(t)) + kdσ(t)T

(
∆

.
f (x(t)) +

.
d(t)

)
− κ‖σ(t)‖η+1 − γσ(t)Tσ(t)

−δσ
(
t)T sgn(σ(t)

)
≤ −γ‖σ(t)‖2 − κ‖σ(t)‖η+1 ≤ −αV1(σ(t))− βV1(σ(t))

η
(42)

with η = (η + 1)/2 < 1, 0 < α = 2γ and 0 < β = 2η(κ). Hence, the Lyapunov function (38)
is gradually decreased and the finite time switching manifold (24) is convergent to zero in
finite time. �

4. Simulation Results
4.1. Introduction and Formulation

In what follows, to prove the effectiveness of the planned controller and hyper-chaotic
synchronization, we use a new six-dimensional hyper-chaotic system. All numerical
simulations in Sections 4.1, 4.3 and 4.4 were performed with the MATLAB/Simulink
toolbox, the ode45 solver, and a step size of 1 ms. The new system is as follows:

.
x1 = a1(x2 − x1)− a2x5.
x2 = a3x1 − a4x4 − x1x3.

x3 = −a5x3 + x2
1.

x4 = a6(x2 + x5) + x6 + k|x3|.
x5 = a7x2 − x6.

x6 = −a8x1 + a9(x2 + x4)− x5

(43)

where k ∈ (0, 5.5) is a hyper–chaotic control parameter. The hyper–chaotic system (43) has
the following initial conditions and parameters:

x1(0) = −0.6, x2(0) = 2.7, x3(0) = −5.4, x4(0) = 7.3, x5(0) = 2.4, x6(0) = −2,
a1 = 19.8, a2 = 1.2, a3 = 22, a4 = 18.6, a5 = 7.5, a6 = 3.7, a7 = 6.9, a8 = 5.3, a9 = 0.87

(44)

Figure 1 displays the 2D phase portraits of the new system (43) with the parameters
(44) and three different initial conditions. Figure 2 displays the 2D phase portraits of the
new system (43) with the parameters (44) and a different hyper–chaotic control parameter.
As it turns out, the new system is sensitive to changes in the initial conditions.
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initial conditions: (a) [−0.01, −0.1, −0.01, −0.1, −0.01, −2.5], (b) [−0.1, −0.1, −0.1, −2.5, −0.1, −0.1]
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Figure 3 shows Lyapunov exponents of the hyper-chaotic system in exchange for a
change in the control parameter k ∈ (0, 5.5). One of the attractions of the new system is the
existence of four positive Lyapunov exponents, which are

LE1 = 1.752, LE2 = 1.335, LE3 = 0.958, LE4 = 0.92, LE5 = 0, LE6 = −1.513 (45)

Mathematics 2022, 9, x FOR PEER REVIEW 9 of 22 
 

 

Figure 3 shows Lyapunov exponents of the hyper-chaotic system in exchange for a 
change in the control parameter 𝑘 ∈ (0,5.5). One of the attractions of the new system is 
the existence of four positive Lyapunov exponents, which are LE = 1.752, LE = 1.335, LE = 0.958, LE = 0.92, LE = 0, LE = −1.513 (45)

 

Figure 3. Lyapunov exponent spectrum of the new system (43) in 𝒌 ∈ (𝟎, 𝟓. 𝟓) 
4.2. Circuit Realization of the New Hyperchaotic System 

The analog electronic schematic of the new hyper-chaotic system (43) using MultiSIM 
is given in Figure 4. 

Figure 3. Lyapunov exponent spectrum of the new system (43) in k∈(0, 5.5).

4.2. Circuit Realization of the New Hyperchaotic System

The analog electronic schematic of the new hyper-chaotic system (43) using MultiSIM
is given in Figure 4.
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The components used in this hyperchaotic circuit include 37 resistors, 6 capacitors,
2 AD633/AD multiplier ICs, 14 op-amps, and 2 1N4148 diodes. By using the Kirch-
hoff laws of the planned electronic circuit, its nonlinear equations were derived in the
subsequent form

.
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where x1, x2, x3, x4, x5, and x6 denote the voltages across capacitors C1, C2, C3, C4, C5, and
C6, correspondingly. The following circuit components were selected: R1 = R2 = 20.2 kΩ,
R3 = R12 = 333.33 kΩ, R4 = 18.8 kΩ, R5 = 21.5 kΩ, R6 = R8 = 40 kΩ, R7 = 53.33 kΩ,
R9 = R10 = 108.11 kΩ, R13 = 57.97 kΩ, R15 = 75.47 kΩ, R18 = 400 kΩ, R16 = R17 = 459.77 kΩ,
R19 = R20 = R21 = R22 = R23 = R24 = R25 = R26 = R27 = R28 = R29 = R30 = R31 = R32 = R33
= R34 = R35 = R36 = R37 = 100 kΩ, C1 = C2 = C3 = C4 = C5 = C6 = 1 nF. All active devices
were supplied with ±15 Volt and the operational amplifiers TL082CD were employed. The
phase portraits on the MultiSIM results are illustrated in Figure 5. The agreement between
the numerical results (Figure 6) and MultiSIM results (Figure 5) demonstrates the feasibility
of the proposed hyperchaotic system.
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4.3. Hyper-Chaotic Synchronization

For synchronization, we selected the hyper-chaotic system (44) as the master. Similarly,
for the hyper-chaotic slave system, we obtained

.
y1 = a1(y2 − y1)− a2y5 + d1 + u
.
y2 = a3y1 − a4y4 − y1y3 + d2 + u

.
y3 = −a5y3 + y2

1 + d3 + u
.
y4 = a6(y2 + y5) + y6 + d4 ++k|y3|+ u

.
y5 = a7y2 − y6 + d5 + u5

.
y6 = −a8y1 + a9(y2 + y4)− y5 + d6 + u

(47)

where the sum of the uncertainty and disturbances is equal to

di =



d1

d2

d3

d4

d5

d6


=



0.2 sin(17t) + 14
−0.5 cos(20t) + 10
−1.2 sin(13t) + 2.8

2 cos(11t)− 7.2
16 sin(2.4t)− 12
5 cos(14t) + 24


(48)

Figure 7 demonstrates the 3-D phase portraits of master-slave systems (43) and (47)
without controller. As it turns out, the systems behave differently.
Definition 3. The master-slave systems (43) and (47) can be synchronized in a limited time τ [42]:

lim
t→τ
‖yj − xj‖ = 0, j = 1, 2, . . . , N (49)

Assumption 2. Suppose yi(τ) = xi(τ) implies that lim
τ→∞

ei(τ).
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planned technique, all outcomes of this article are compared with the results of the 
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Figure 7. Three-dimensional phase portraits of the master system (43) with the initial conditions (44) and the
slave system (47) with the initial conditions [y1(0),y2(0),y3(0),y4(0),y5(0),y6(0)] = [−7, 6, 0.1,−3.3, 1.4,−5.7]
in the (a) x1−x4−x5 plane, (b) x1−x2−x3 plane, (c) x2−x4−x5 plane, and (d) x4−x2−x1 plane.

Assumption 3. Let the finite–time synchronization errors of systems (43) and (47) be defined as:
ei = yi − xi , i = 1, . . . , 6.

Based on Assumption 3, to study chaos synchronization, the error according to systems (43)
and (47) can be designed as follows:

.
e1 = a1(e2 − e1)− a2e4 + d1 + u

.
e2 = a3e1 − a4e4 − y1y3 + x1x3 + d2 + u

.
e3 = −a5e1 + y2

1 − x2
1 + d3 + u

.
e4 = a6(e2 + e5) + e6 + d4 + u

.
e5 = a7e2 − e6 + d5 + u

.
e6 = −a8e1 + a9(e2 − e4)− e5 + d6 + u

(50)

4.4. Numerical Results

In what follows, for hyper-chaotic finite-time synchronization, two simulator master-
slave systems (43) and (47) using MATLAB software are presented. For finite-time syn-
chronization, we used the accepted integral-type controller (36). In order to confirm the
planned technique, all outcomes of this article are compared with the results of the planned
method presented in [9]. For this purpose, we selected the controller parameters as follows:

kp = [1.32 0.708 2.26 0.02 3.04 1.08]
kd = [0.04 0.32 4.06 3.9 7.1 0.05] ki = [2.6 1.3 5 1 0.9 0.04]

κ = 32, γ = 0.22, η = 7/9
(51)

Increasing or decreasing the convergence speed, tracking accuracy, and the control
signal amplitude depends on having the proper settings for the parameters kp, ki and kd.
Increasing or decreasing the tracking accuracy and convergence rate depends on having the
proper settings for the parameters κ, γ, and η. Additionally, having an excessive increase
or improper adjustment of these three parameters can increase the amplitude of the control
signal, causing the chattering phenomenon.
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The state responses of the hyper-chaotic master-slave systems (43) and (47) compared
to the method presented in [9], are shown from Figures 8–13.
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The state trajectories of the error dynamic systems e1 − e6 compared to the method
presented in [9], are shown from Figures 14–19. According to the figures, it is obvious that
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the error system converges to the origin in finite time. Therefore, finite-time synchronization
has occurred, and the proposed controller can eliminate uncertainties in a finite-time with
better resistance.
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Based on the above outcomes, the planned control scheme is able to stabilize the
master-slave systems in finite time and achieves a good tracking performance while also
eliminating the chattering phenomenon.

5. Conclusions

This study planned a novel nonsingular integral terminal sliding control strategy
for finite-time synchronization of a category of hyper-chaotic systems. Then, an integral
sliding mode control input was suggested to synchronize hyper-chaotic systems. Using
the Lyapunov stability theorem, the planned controller scheme confirmed that master-
slave hyper-chaotic systems arrive in the existence of parameter uncertainty as quickly
as possible. To prove the applicability of the proposed controller, a new six-dimensional
hyper-chaotic system in the form of two master-slave subsystems was used. The planned
method satisfied the requirements of finite-time synchronization and properly alleviated
uncertainty while attenuating the chattering phenomenon effect. The circuit realization of
the new hyperchaotic system and simulation outcomes related to the implementation of
the recommended technique on the considered hyperchaotic systems were studied. The
proposed design method does not consider the actuator errors, and this will be realized in
future work. It is also recommended to use nonsingular integral-type controllers in power
systems, especially permanent-magnet electric motors. For the future research, we will
focus on applications with time-varying disturbances, where the switching controllers can
be employed to reduce the operating costs.
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