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Abstract 
In most textbooks, lens aberrations are usually described in the briefest possi-
ble manner, without any attempt for their proper derivation. At the same 
time, monographs which do go into more detail are often inaccessible to most 
students and non-specialists interested in deeper understanding of this topic. 
This article tries to fill this gap and provide an introduction to what happens 
when basic formulas of Geometrical Optics are extended by third-order terms 
in Taylor’s expansion of ( )sin α . The presentation is accessible to most un-
dergraduate students as it requires only some knowledge of basic calculus and 
planar geometry. The resulting five aberrations are then described in detail, 
including a novel derivation of the exact shape of coma. A simple Mathema-
tica program is included to facilitate numerical exploration of the magnitude 
of the resulting aberrations for various optical systems. 
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1. Introduction 

This article assumes that the reader is familiar with basic principles and formulas 
of Geometric Optics (see [1] or [2]). Being a continuation of [3], it similarly 
deals with only axially symmetrical refracting surfaces of spherical shape, com-
bined into more complex optical systems. Light is considered to consist of a col-
lection of monochromatic rays; its wavelike properties are ignored. A light ray is 
then identified with its path, consisting of straight-line segments which change 
direction (according to Snell’s law—see [4]) only at a boundary between two 
optical media with different light speed. We assume that any such ray deviates 
from the axis of rotational symmetry by only a small angle (measured in ra-
dians), and explore what happens when the paraxial (i.e. first-order) approxima-
tion is extended by including quadratic and cubic terms in the corresponding 
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Taylor expansion. 
The basic idea is to let a pencil or rays originate at a point-like object, and 

trace their individual paths until they meet again at a single point called the im-
age of the original object. Unfortunately, such a convergence is achieved only 
approximately, when ignoring all but the first terms in the expansion of ( )sin α , 
where α  is the angle by which a ray’s direction deviates from the axis of sym-
metry; this is the approach of most textbooks with the usual results summarized 
in [3]. Now we explore what happens when third-order terms are included when 
tracing individual paths of a pencil of rays, and show that these terms are re-
sponsible for so called aberrations of the resulting image; the purpose of this ar-
ticle is to classify them into five different types, and derive formulas to demon-
strate their nature, shape and magnitude. To avoid duplication, we deliberately 
skip topics covered in detail in [3], such as: making distinction between real and 
virtual images, introducing and utilizing cardinal points of an optical system, is-
sues related to aperture and the corresponding vignetting, etc. 

Our goal is to provide deeper understanding of a topic which students often 
encounter only as a collection of rather puzzling graphs and formulas [5]. Yet 
the mathematical prerequisites to follow our presentation are quite elementary: 
Taylor expansion of simple functions, basic algebra of low-degree polynomials, 
and rudimentary knowledge of two-dimensional geometry (circles and straight 
lines in particular). A computer program is also presented, to enable students to 
explore various configurations of lenses in terms of the resulting aberrations. 
Rather than presenting any new results, we concentrate on rigorous yet mathe-
matically elementary validation of existing formulas, including a novel deriva-
tion of the exact form of coma (a rather intriguing aberration). 

All subsequent formulas are presented to cubic accuracy; this is occasionally 
emphasized by using the   sign (similarly, the ≈ sign indicates linear accuracy 
only), while the: = sign implies “is defined as”. Locations and directions are 
three-component quantities; the x and y components consist of linear and cubic 
terms, the z (axis of rotational symmetry) component has absolute and quadratic 
terms only. A single (double) dot over a symbol refers to its linear (quadratic) 
part. 

Our notation and conventions follow the readily available, open-access refer-
ence [3]. 

2. Single-Surface Refraction 

Let a single ray start at an object’s location 0 0 0, ,x y z�� —note that our objects 
are points—and follow a unit direction 

2 2
0 0

0 0 0: , ,1
2

u v
u v

+
= −

� �
w                     (1) 

until a new medium of a relative (to the previous medium) refractive index n is 
reached; the boundary between the two media is an axially symmetric spherical 
surface of radius R (measured from its apex to the sphere’s center—a negative 
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value indicates that the surface is concave), and an apex at ( )0,0, g . One can 
show that this happens at 

2 2
0 0

1 1 1 0 0 0 0 0, , , , , ,1
2

u v
x y z x y z q u v

+
+ −

� �
��

             (2) 

where 

02 2
a gbq g z
R

+ + − ��
                      (3) 

with 

( ) ( )2 2
0 0 0 0:a x gu y gv= + + +� � � �                    (4) 

2 2
0 0:b u v= +� �                           (5) 

Rewriting (2) in a more explicit form, we get 

1 1 1 0 0 0 0 0 0 0 0, , , , , ,1
2 2 2
gb a gbx y z x gu y gv z g z u v

R
 + + + − + + − 
 

� ��� ��
   (6) 

Note that the z component simplifies to 

1 2
az g
R

+
                         (7) 

Proof. Substituting components of the right hand side (RHS from now on) of 
(2) into the equation of the spherical surface, we get 

( ) ( )
22 2

2 2 20 0
0 0 0 0 0 

2
u v

x qu y qv q q z R g R
 +

+ + + + − + − − 
 

� �
� � � � ��

       (8) 

Solving for q can be done directly (a quadratic equation yields two solutions; 
we have to pick the correct solution and expand it up to quadratic terms); alter-
nately, we can proceed iteratively, as follows: eliminating small quantities from 
(8) yields 

( )2 2q R g R− − =                        (9) 

which implies that, to the same accuracy, q g≈  ( 2q g R= +  would take us to 
the wrong face of the surface). Similarly, expanding the same equation up to li-
near terms results in 

( )2 2g q R g R+ − − =�                      (10) 

implying that q�  (the linear part of q) must be equal to zero. And finally, the 
quadratically accurate version of (8), namely 

( ) ( )
22 2

2 2 20 0
0 0 0 0 0 

2
u v

x gu y gv g q g z R g R
 +

+ + + + + − + − − = 
 

� �
� � � � �� ��     (11) 

where the last term of the left hand side can be expanded to 
2 2

2 0 0
02  

2
u v

R R q g z
 +

− − + 
 

� �
�� ��                   (12) 

results in 

https://doi.org/10.4236/am.2021.127036


J. Vrbik 
 

 

DOI: 10.4236/am.2021.127036 524 Applied Mathematics 
 

02 2
a gbq z
R

= + −�� ��                        (13) 

 

Note that (6) is correct for all, i.e. convex, concave, and flat (R positive, nega-
tive, and infinite) spherical surfaces. 

At the point of entry, the corresponding unit normal (to the surface to be en-
tered) is then given by 

1 1
2, ,1

2
x y a
R R R

− − −m                    (14) 

(note that its z component is always positive), which further implies that 

( ) ( )22
0 0 2

11 1
22

n a c bn n
n RR
−  − + ⋅ − ⋅ − + + + 

 
w m w m       (15) 

where 

( ) ( )0 0 0 0 0 0:c x gu u y gv v= + + +� � � � � �
 

Proof. To prove (15), we need both m  and 0w  to quadratic accuracy only; 
it is thus sufficient to use 

0 0 0 0
2, ,1

2
x gu y gv a

R R R
+ +

≈ − − −
� � � �

m               (16) 

We then get (to cubic accuracy) 

0 21
2 2

c b a
R R

⋅ − − −w m                    (17) 

This implies that 

( )22 2
0 2 2

21
2 2

c a c b an n b n
R nR nR nR

− + ⋅ − − − − − −w m       (18) 

which leads to (15). 
The ray’s new direction is then given by 

( )22
0 0 01n

n

 + − + ⋅ − ⋅ 
 

w m w m w m
              (19) 

whose x component is, based on (14) and (15) 

0
1 1 12 2

1 1
22

u n n a c bu x x
n nR Rn R R

− −  − − + + 
 

�
              (20) 

with an analogous ( x y→  and u v→ ) expression for the y component. Note 
that 0u  and 1x  contribute both their linear and cubic parts. Also note that we 
do not need to keep track of the z component of a unit vector, since it is always a 
simple function of the first two components. 

3. Multiple Surfaces 

The whole procedure can then be repeated, starting with 1 1 1, ,x y z g−  and  
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2 2
1 1

1 1, ,1
2

u vu v +
−
� �

, and using a new set of 1g , 1R  and 1n  values (we now  

have to start correspondingly indexing these) until a second spherical boundary 
is reached, and so on. Note that, to use the same procedure, we must move the 
coordinate origin along the z axis to the apex of the first surface, so that the new 
z component has only quadratic terms again. In this manner we can continue till 
we reach the last surface of the optical system. 

A single step of this process is summarized by the following Mathematica 
program 

 

 
 

whose first argument X has the following fully general form 

{ } { }{ } { } { }{ }{ }, , , , , , , ,x y x y z u v u v� � ��� ��� � � ��� �����                (21) 

(the rest of them are self-explanatory). Triple dot indicates cubic terms of the 
corresponding components. The output computes the location and direction of 
the ray upon entering the next surface. It can then be used as the first argument 
of the subsequent call to “step” (with new values of g, R and n), and so one, thus 
following the ray from one surface to the next, till reaching the end of the optical 
system. We present some examples of this in due course, but let us first explore 
what to expect of the final output, after k such steps have been taken. 

4. Optical Systems 

It is obvious that, starting with { } { }{ } { } { }{ }{ }0 0 0 0, , 0,0 ,0, , , 0,0x y u v  and ad-
vancing through k steps of this procedure, the resulting first two components (of 
both location and direction) will consist of only linear and cubic terms in 

0 0 0, , x y u  and 0v . These results must be invariant under each of the following 
two (with respect to the y-z, and to the x-z plane) reflections, i.e. after simulta-
neous x x→ − , u u→ −  (and/or y y→ − , v v→ − ) replacement; this reduc-
es the number of potential linear terms from four to two, and cubic terms from 
twenty to ten, thus: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3 2 2 2
0 0 1 0 2 0 0 3 0 0 4 0 0

2 3 2 2
5 0 0 6 0 7 0 0 8 0 0 0 9 0 0 0 0 0 0

k k k k
k k k

k k k k k k

x A x C u E u E u v E x u E x v

E x u E x E x y E y u v E x y v E y u

= + + + + +

+ + + + + +
   (22) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

3 2 2 2
0 0 1 0 2 0 0 3 0 0 4 0 0

2 3 2 2
5 0 0 6 0 7 0 0 8 0 0 0 9 0 0 0 0 0 0

k k k k
k k k

k k k k k k

u B x D u F u F u v F x u F x v

F x u F x F x y F y u v F x y v F y u

= + + + + +

+ + + + + +
   (23) 

and their x y↔ , u v↔  analogs. The cubic coefficients are further con-
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strained by rotational symmetry, meaning that all equations must be invariant 
under the following replacement: ( ) ( )0 0 0cos sinx x yβ β→ − ,  

( ) ( )0 0 0sin cosy x yβ β→ + , ( ) ( )0 0 0cos sinu u vβ β→ −  and  
( ) ( )0 0 0sin cosv u vβ β→ + . This implies that 

( ) ( )
1 2

k kE E=                          (24) 

( ) ( )
6 7

k kE E=                          (25) 

( ) ( ) ( )
8 3 4

k k kE E E= −                        (26) 

( ) ( ) ( )
9 5 0

k k kE E E= −                        (27) 

and their ( )kF  analogs. The easiest way to verify these is to use induction: the 
constraints certainly hold for the initial components (having no cubic terms at 
all); feeding an X which has a general form of the RHS of (22) and (23), re-
stricted by (24) to (27), into “step”, and checking that the coefficients of the 
output meet the same restrictions completes the proof (which we leave as an ex-
ercise). 

Note that the recursive formula for the linear coefficients of the (22/23) trans-
formation can be expressed in a simple matrix form, thus 

( ) 1 1

1 1

1
11

k
k k k k

k k kk
k k k k

k k k k

g
A C A C

R g nnB D B D
n R n R

− −

− −

 
    = + −−         

         (28) 

which follows from generalization of (6) and (20). Since the determinant of the 
first RHS matrix is 1 kn , and the second RHS matrix is the unit matrix when 

1k = , we get the following expression for the determinant of the left-hand-side 
matrix 

1

1
k k k k k

jj

A D B C
n

=

− =
∏

                    (29) 

These formulas are interesting in their own right, but also essential for the 
proof of our next statement. 

The coefficients of (22/23) are further restricted by the following identities 

( ) ( ) 1
3 4 11 1

1 1

1 13 k kk k
ki ii i

i j i jj j

E E C
R n R n

−

−= =

= =

 
 − = − ⋅
 
 
∑ ∑

∏ ∏
        (30) 

( ) ( ) 1
5 0 11 1

1 1

1 13 k kk k
ki ii i

i j i jj j

E E A
R n R n

−

−= =

= =

 
 − = − − ⋅
 
 
∑ ∑

∏ ∏
       (31) 

( ) ( )
3 4 11 1

1 1

1 13 k kk k
ki ii i

i j i jj j

F F D
R n R n−= =

= =

 
 − = − ⋅
 
 
∑ ∑

∏ ∏
       (32) 

( ) ( )
5 0 11 1

1 1

1 13 k kk k
ki ii i

i j i jj j

F F B
R n R n−= =

= =

 
 − = − − ⋅
 
 
∑ ∑

∏ ∏
       (33) 
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Proof. To prove (30) and (32), we first re-state them in the following form 

1

1
k k kk

k jj

x S C
R n

=

 
 = +
 
 ∏

�                  (34) 

k k ku S D=�                        (35) 

where � , applied to a cubic polynomial in 0 0 0, ,x y u  and 0v , returns the 
coefficient of 2

0 0x u  minus three times the coefficient of 2
0 0x v , and kS  is the 

expression in parentheses on the RHS of (32). 
Secondly, since 

0 0k k kx A x C u= +�                        (36) 

0 0k k ku B x D u= +�                        (37) 

(and their x y↔ , u v↔  analogs), it is easy to verify that 

( )2 2 0k k kx y x+ =� � ��                      (38) 

( ) ( )
1

k
k k k k k k k k k k k

jj

C
x u y v x C A D B C

n
=

+ = − − = −
∏

� � � � ��         (39) 

( ) ( )2 2

1

2
2 k

k k k k k k k k k
jj

D
u v x D A D B C

n
=

+ = − − = −
∏

� � ��          (40) 

( ) ( )2 2

1

2
2 k

k k k k k k k k k
jj

C
x y u C A D B C

n
=

+ = − =
∏

� � ��           (41) 

( ) ( )
1

k
k k k k k k k k k k k

jj

D
x u y v u D A D B C

n
=

+ = − =
∏

� � � � ��          (42) 

( )2 2 0k k ku v u+ =� � ��                      (43) 

We now proceed by induction: (34) and (35) are certainly true for 0k =  (the 
initial values of location and direction have no cubic terms), and the statements 
are assumed correct for k. The objective is to prove that they must then hold for 

1k + . 
We get, for the first component of the generalized (i.e. 0 k→  and 1 1k→ + ) 

version of (6), 

( )2 2 2 2
1

1 1
1

2
2 2

k k k k k k k k k
k k k k k

k k

x y g x u y v x y
x x g u u

R R
+

+ +
+

  + + + +
= + + −      

� � � � � � � �
�� �   (44) 

based on the fact that the 2
1kg +  proportionate and b proportionate terms con-

tribute zero. The RHS is equal to 

1
1

11 1 1

1 1 11
1 11 1

1

1 1

k k k k
k k k k kk k k

k j k j k jj j j

k k k kk k
k j k jj j

C g D C
S C g S D

R n R n R n

S C S C
R n R n

+
+

+= = =

+ + ++
+ += =

  + + + + −
 
 
   
   = + = +
   
   

∏ ∏ ∏

∏ ∏

     (45) 
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which proves (30). 
Similarly, based on the generalized version of (20), 

( )

( )

1

1 1

1 1 1

2 2 2 2
11

12
11 1

1

1
2

k

k kk

k k k

k k k k k k kk k k
k

kk k

u

n xu
n n R

x u y v g u vn u v
x

Rn R

+

+ +

+ + +

++
+

++ +

 −
= +


 + + +− +  + +
 

  

�

�

� � � � � � � �
�





 

( )

( )

1 1
11 11 1

1
1 11

1 1 1 1

1 11 1
2

1 1 1 1 11 1 1

1
1

1 1

1 1

1 1

21

1

k
k k k

kk j k jj j

k
k k k kk

k k k jj

k k kk k k k
k k k

k k k j k j k jj j j

k
k k

k k

D
S

nR n R n

n
S C g D

n R R n

g R Dn C g D
n R R n R n R n

n
S C

n R

+ +
++ += =

+
+ ++

+ + + =

+ ++ +

+ + + + += = =

+
+

+ +

 
 = + −
 
 

 −  + + +
 
 
 +−  + − − +
 
 

−
= +

∏ ∏

∏

∏ ∏ ∏
( )1 1 1

1 1
1 1

1k k k
k k k

k k

R g n
D S D

n R
+ + +

+ +
+ +

 + −
=  

 

  (46) 

thus proving (32). Note that we have replaced kS  by the correspondingly ad-
justed 1kS +  (the first big parentheses); also that this time it is the a proportio-
nate term which contributes zero. 

Proving (31) and (33) is then done in a practically identical way; one has only 
to modify the definition �  (to: the coefficient of 2

0 0x u  minus three times 
the coefficient of 2

0 0y u ), and replace C by A and D by B. 

5. Image Construction 

Without a loss of generality, we now assume that the object is placed at ,0,0x , 
and trace a ray with an initial direction of 

( ) ( ) 2cos , sin ,1 2v v vβ β −                   (47) 

This will make all terms containing a power of 0y  equal to zero in the 
(22/23) equations, thus simplifying them to read 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

3 2
1 3

22 2 3
4 5 6

3 2 2
1 8 0

1 cos 2
cos cos

2
sin cos

sin 2
sin sin sin

2

k k
k k k

k k k

k k k
k k

x A x C v E v E xv

E xv E x v E x

y C v E v E xv E x v

β
β β

β β

β
β β β

+
= + + +

+ + +

= + + +

    (48) 

and analogous expansions of ku  and kv . 
Once we have reached the last (say kth) surface of the optical system, we create 

an imaginary, flat ( 1kR + = ∞ ), st1k +  surface at a distance 1kg +  from the last 
surface’s apex (the corresponding 1kn +  at the kth surface is equal to 1, since the 
optical medium remains the same); we choose 1kg +  in such a way to make 
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1kC +  equal to zero, resulting in all rays emanating from our image converge (to 
linear accuracy) to a single point. Since, based on (28) with 1k k→ + , 

1 1k k k kC C g D+ += +                       (49) 

this is achieved by taking 1
k

k
k

C
g

D+ = − . Thus, any object with the initial z coordinate  

equal to 0 (thus defining the object plane—objects located in this plane form 
what we call a scenery) will come into a sharp (i.e. to the first order approxima-
tion) focus in thus created image plane. 

Nevertheless, the cubic terms of the final location of our image indicate that 
the convergence is not perfect: the image is either slightly misplaced from its 
ideal location (thus distorting the shape of the original scenery), or smeared in a 
variety of ways. Since we have made 1kC +  equal to zero, this implies that 

( ) ( )1 1
3 43k kE E+ += , which, together with (26), enables us to further simplify coordi-

nates of the final image’s location to 
( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 13 2
1 1 1 4

1 12 3
5 6

1 1 13 2 2
1 1 4 0

cos 2 cos 2

cos

sin sin 2 sin

k k
k k

k k

k k k
k

x A x E v E xv

E x v E x

y E v E xv E x v

β β

β

β β β

+ +
+ +

+ +

+ + +
+

= + + +

+ +

= + +

      (50) 

6. Aberrations 

Let us now explore how these cubic terms affect the quality of the image. 
• The 3x  term displaces the location of the image away from (towards)— 

depending on the sign of ( )1
6

kE + —the optical axis; this effect increases with 
the magnitude of ( )1

6
kE + , but also with the distance of the image from the 

axis, thus causing a distortion of the original scenery (see Figure 1). 
• The 3v  terms smear each image (ideally, a single point) into a small disk 

whose size is proportional to ( )1
1

kE + , with most rays concentrated at its cen-
ter, and of diminishing (with 3r− , where r is the distance from this center) 
light intensity towards its edges; this is called spherical aberration and it is 
the same for all images, regardless of their distance from the optical axis (see 
Figure 2). 

• The 2xv  terms similarly smear the image into a 60˚ wedge pointing towards 
the optical axis, with a high-intensity apex at the image’s original location, 
and of decreasing intensity as it spreads up (see Figure 2); this is the 
so-called coma—the size of the wedge is proportional not only to ( )1

4
kE +  but 

also to its distance from the optical axis. 
• The 2x v  terms have two different manifestations: their average effect, 

namely 
( ) ( )

( ) ( )
1 1

25 0 cos , sin
2

k kE E
x v vβ β

+ ++
⋅               (51) 

can be removed by changing the k

k

C
z

D
= −  image plane to 
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Figure 1. Positive and negative distortion. 

 

 
Figure 2. Spherical aberration, coma and astigmatism. 

 
( ) ( )1 1

25 0

2

k k
k

k k

C E E
z x

D D

+ ++
= − − ⋅                   (52) 

i.e. a slightly curved (spherical, to a sufficient approximation) surface of radius 

( ) ( )1 1
5 0

k
k k

D
E E+ ++

 (we call it the screen from now on); this aberration is called the 

medial field curvature. 
• The remaining 

( ) ( )
( ) ( )

1 1
25 0 cos , sin

2

k kE E
x v vβ β

+ +−
⋅ −               (53) 

then yields a disk of uniform intensity (on the new screen—it would form an el-
lipse in the original image plane). The size of the disk is determined by the sys-
tem’s aperture—see [6], but it is also proportional to the first two factors in (53), 
thus becoming point-like again for images close to the optical axis. 

More interestingly, by further modifying the screen’s curvature (making its 

radius equal to ( )1
52

k
k

D
E +

), we may fully remove the first component of (53), thus  

making all rays staying in the x-z plane intersect at a single point (their tangen-
tial focus), while the remaining rays smear into a straight-line segment in a per-
pendicular-to-x-z (also known as sagittal) direction. Similarly, when the radius  
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changes to ( )1
02

k
k

D
E +

, it is the perpendicular rays which converge to the sagittal  

focus, while the rest of them create a line segment in the x direction. This effect 
is called astigmatism (see Figure 2). 

We should now mention that these formulas have been derived assuming a 
conical pencil of rays whose central ray is parallel to the z axis. But this would 
often result in most of these rays missing the first spherical surface (which is al-
ways of only a finite radial extent). It is therefore important to redirect the cone 
towards the central part of this surface; this can be achieved by changing (47) to 

( ) ( )cos , sin ,xv v
g

β β− �                   (54) 

so that (to a good approximation) the central ray (properly called chief of pri-
mary ray, see [7]) enters the first surface at its apex. This maximizes the size of 
the light pencil which will pass through the optical system and build the corres-
ponding image (the situation is actually more complicated—the cone should be 
directed at the so-called entrance pupil, but discussing this would take us beyond 
the scope of this article). This will correspondingly change the ( )1kE +  coeffi-
cients in (50), but it will not change the general form of it; this is easy to prove, 
and it is also automatically achieved by our Mathematica program. 

7. Examples 
7.1. Simple Lens 

When an optical system consists of more than one lens, finding general formulas 
for individual aberrations is not feasible (they would be extremely lengthy func-
tions of many parameters). We thus choose to do this only for the simplest 
possible optical system, namely a single lens with identically shaped surfaces (of 
radius R and -R) at zero distance from each other (the thin-lens approximation, 
which works reasonably well when their distance is small). To get the answer, all 
we need to do is to type: 

 

 
 

Note that to find 1kg +  (denoted h and H in the program) of the image plane, 
we had to eliminate the v term in the linear part of the first component of the 
image’s location. 

Running this code yields the following results: there is zero distortion, while 
the remaining aberration terms are 

( ) ( ) ( ) ( ) 23 cos , 1 sin  field curvature/astigmatismQ n n x vβ β− ⋅ + +
 

( ) ( ) ( ) ( )
2

22 1 1 2 cos 2 ,sin 2   comagQ n n g x v
R

β β
 

− + − − ⋅ + 
 

   (55) 
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( ) ( )
2

3
2 cos ,sin  spherical aberrationgQ W v

R
β β− ⋅

 
where 

( )( )
( ) ( ) ( )( )2 2 3

1
2 1

2 4 4 3 2 2 1

nQ
n g n R

W g n n n n g n R R

−
=

− −

= − − + − + − −

        (56) 

n is the lens’ index of refraction and g is the distance from the object to the first 
surface. 

Note that the largest value of x is given by g multiplied by the so-called field of 
view, while the largest v is given by the radius of the lens’ x-y extent divided by g; 
this is important to realize when comparing coefficients of different aberrations. 

7.2. Objects at Infinity 

When the object’s distance from the optical system (our g1) is orders of magni-
tude larger than the size of the system itself, it is convenient to employ a differ-
ent approach: the object’s location can then be specified by the incoming rays’ 
direction (they arrive practically parallel to each other), and x and y become the 
first two coordinates of the point at which any such ray enters the 0z =  plane. 

This necessitates reversing the role of x and v when interpreting the resulting 
aberrations: the term proportional to v3 now represents distortion while the term 
which goes with x3 yields spherical aberration, etc. We demonstrate how this 
works, also using a thin lens, but this time allowing its two surfaces to be of dif-
ferent radius, say R1 and R2. 

 

 
 

This results in the sum of the following terms 

( )( )
31 2

1 2

0,1  distortion
2 1

R R v
n R R

⋅
− +  

( ) ( ) ( ) ( ) 21 3 cos , 1 sin  field curvature/astigmatism
2

n n xv
n

β β− ⋅ + +   (57) 

( ) ( ) ( ) ( )
2

1 2 2 2

1 2

1
2 cos 2 ,sin 2  coma

2
n R R n R

x v
nR R

β β
+ − +

⋅ +       (58) 

( ) ( ) ( ) ( )
23 2 2

1 2 2 1 2 1 2 2 3
2 2
1 2

2
cos ,sin  

2
n R R n R R R nR R R

x
nR R

β β
+ − + − +

− ⋅
 

the last being the spherical aberration. 

7.3. Cooke Triplet 

This is an old (going back to 1935) design of a camera objective consisting of 
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three lenses (see [6]); the actual details are obvious from the following Mathe-
matica code (all distances and radii are in mm). 

 

 
 

The program yields the usual sum of four aberration terms plus, as a by-product 
(see [3]), the focal length of the system (of 98.66 mm). 

We have already mentioned that the largest value of x/g is determined by the 
system’s field of view which is, in this case, about 25 degrees (this can be estab-
lished by using the same program to follow a principal ray entering the system at 
25 degrees and noting that its location upon reaching the last lens is at its very 
edge—all three lenses have roughly the same diameter of about 200 mm; this 
implies that a ray entering at a higher angle would not make it through the sys-
tem). Similarly, the largest value of v  is to a good approximation given by the 
corresponding radius (100 mm), divided by g. To be able to directly compare in-
dividual aberrations, we then express them all in powers of 

( ) sin 25
xX

g
=

˚
                       (59) 

100
v gV ⋅

=                           (60) 

instead of the original x and v. Note that both X and V are now dimensionless, 
each having the maximum possible value of 1. 

This is achieved by extending our program by the following extra line: 

 
The result is still an expression too lengthy to quote here, due to its g depen-

dence. But a simple graph reveals that the expression rather quickly converges 
(becoming sufficiently accurate when 1000 mmg > ) to its g →∞  limit of 

( ) ( )
( ) ( ) ( ) ( )

3 2

2 3

0.166,0 0.202cos ,0.278sin

0.050 2 cos 2 ,sin 2 0.074 cos ,sin

X X V

XV V

β β

β β β β

− −

− ⋅ + − ⋅
 

where all coefficients are in mm. This should be compared to the size of the ac-
tual image, which our program locates at 

41.694,0 X−                        (61) 

8. Conclusion 

We would like to reiterate that this article has focused on a single issue of 
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third-order aberrations of spherically symmetric system of lenses, and has deli-
berately avoided many other important issues related to optical-system design. 
We also acknowledge that the ultimate goal of understanding aberrations is to be 
able to design optical systems which minimize these; something we have not at-
tempted in this article since this goes well beyond its scope. We have also 
skipped discussing yet another important, so-called chromatic aberration, which 
is due to the index of refraction changing with the color of the light. We have 
similarly avoided any mention of wavelike nature of light, and the limitations 
this imposes on forming an image of an object. Our bibliography lists several 
books (e.g. [4] and [7]) which provide more information on many of the topics 
left out by this article. 
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