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ABSTRACT

Two classes of three-dimensional metric spaces are identified. They are the conventional three-
dimensional metric space and a new ‘three-dimensional’ absolute intrinsic metric space. Whereas
an initial flat conventional proper metric space IE′3 can transform into a curved three-dimensional
Riemannian metric space IM′3 without any of its dimension spanning the time dimension (or in
the absence of the time dimension), in conventional Riemann geometry, an initial flat ‘three-
dimensional’ absolute intrinsic metric space ∅ÎE3 (as a flat hyper-surface) along the horizontal,
evolves into a curved ‘three-dimensional’ absolute intrinsic metric space ∅IM̂3, which is curved (as
a curved hyper-surface) toward the absolute intrinsic metric time ‘dimension’ along the vertical, and
it is identified as ‘three-dimensional’ absolute intrinsic Riemannian metric space.
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It invariantly projects a flat ‘three-dimensional’ absolute proper intrinsic metric space ∅IE′3
ab

along the horizontal, which is made manifested outwardly in flat ‘three-dimensional’ absolute
proper metric space IE′3

ab, overlying it, both as flat hyper-surfaces along the horizontal. The flat
conventional three-dimensional relative proper metric space IE′3 and its underlying flat three-
dimensional relative proper intrinsic metric space ∅IE′3 remain unchanged. The observers are
located in IE′3. The projective ∅IE′3

ab is imperceptibly embedded in ∅IE′3 and IE′3
ab in IE′3. The

corresponding absolute intrinsic metric time ‘dimension’ is not curved from its vertical position
simultaneously with ‘three-dimensional’ absolute intrinsic metric space. The development of
absolute intrinsic Riemannian geometry is commenced and the conclusion that the resulting
geometry is more all-encompassing then the conventional Riemannian geometry on curved
conventional metric space IM′3 only is reached.

Keywords: Conventional metric space; Riemann geometry; absolute intrinsic metric space; absolute
intrinsic Riemann geometry.

1 INTRODUCTION

There is perhaps no better place to start a
fundamental theory of physics than a discourse
of the underlying space(s) and geometry(ies).
We have started this by isolating the flat four-
dimensional proper metric spacetimes and
their underlying flat two-dimensional proper
intrinsic metric spacetimes of co-existing four
symmetrical universes, referred to as positive (or
our) universe, negative universe, positive time-
universe and negative time-universe, in previous
articles [1, 2, 3, 4].

Lorentz transformation and intrinsic Lorentz
transformation (LT/∅LT) and their inverses
are derived with a new set of affine
spacetime/intrinsic affine spacetime diagrams
on the flat proper metric spacetimes and the
underlying flat proper intrinsic metric spacetimes
in the pertinent four-world picture in those papers.

The four universes exhibit perfect symmetry of
natural laws, which means that natural laws take
on identical forms in the universes, as established
in section 2 of [2] and section 2 of [3]. Perfect
symmetry of state among the universes is shown
in section 3 of [4], where it means that the
physical appearances of the universes at any
scale of observation are perfectly identical at all
times.

Symmetry of state is shown to be guaranteed by
the fact that the four members of every quartet of

symmetry-partner particles or bodies in the four
universes have perfectly identical magnitudes of
masses, perfectly identical shapes and perfectly
identical sizes, and that they are involved in
perfectly identical relative motions at all times.
The immutability of Lorentz invariance is also
shown to be a consequence of perfect symmetry
of state among the four universes in section 3 of
[4].

The flat two-dimensional proper intrinsic metric
spacetime (∅ρ′,∅cs∅t′) that underlies the
flat four-dimensional proper metric spacetime
(Σ′, cst

′) in our universe, introduced as ansatz
in the two-world picture in sub-section 4.4 of
[1], is derived formally in the four-world picture
in sub-section 1.2 of [4]. There is essentially
no outstanding issue in [1, 2, 3, 4] that could
prevent the description of the isolation of the four-
world picture in those articles as having attained
a close-form.

Now, as discussed in section 4 of [4],
the special theory of relativity/intrinsic
special theory of relativity (SR/∅SR) operate
on extended flat proper metric space-
times/underlying extended flat proper intrinsic
metric spacetimes of the four universes with
the assumed absence of strong gravitational
field. However, since SR/∅SR involve affine
spacetime/intrinsic affine spacetime (or affine
spacetime/intrinsic affine spacetime geometry)
in each universe, SR/∅SR cannot alter the
extended flat four-dimensional proper metric
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spacetime/ extended flat proper intrinsic metric
spacetime on which they operate with the
assumed absence of strong gravitational field. It
is the presence of a long-range metric force field,
such as the gravitational field, that can change
the extended flat proper metric spacetimes and
its underlying extended flat two-dimensional
proper intrinsic metric spacetimes to extended
four-dimensional relativistic metric spacetimes
and its underlying extended two-dimensional
relativistic intrinsic metric spacetimes in all finite
neighborhoods of the sources of symmetry-
partner long-range metric force fields in the four
universes.

The next natural step in the further development
of the spaces and geometrical foundation for the
theories of relativity and gravitation, in addition
to the affine spacetime/intrinsic affine spacetime
geometry for SR/∅SR in the four-world picture
developed in [1, 2, 3, 4], is the development of
the counterpart metric spacetime/intrinsic metric
spacetime geometry, which will convert extended
flat proper metric spacetimes and their underlying
extended flat proper intrinsic metric spacetimes
to extended relativistic metric spacetimes and
their underlying extended relativistic intrinsic
metric spacetimes in all finite neighborhoods of
symmetry-partner long-range metric force fields
in the four universes.

More often than not, there arises the need to
adapt a subject from its sophisticated form in
pure mathematics to an applicable form in an
applied field. The reason being that, guided by
logical and mathematical consistency only, a pure
mathematical subject can be pursued to any level
of generalization and sophistication.

In application, on the other hand, the requirement
for mathematics to describe physical reality, that
is, to model physical situations and concepts
and to satisfy physical constraints, often leads
to a lowering of the levels of sophistication and
generalization of a mathematical subject in its
applicable form.

It is therefore the responsibility of a physicist to
marry the underlying concepts and constraints
of a physical theory to the conceptual foundation
of a mathematical subject to be applied and,
in the process, as is often possible, evolve the
applicable form of the mathematical subject.
Sometimes the applicable form, having lost all
sophistication in the process of putting on a
physical or application face, bears only a crude
resemblance to the original subject. However
whatever beauty is lost in mathematics is usually
gained in terms of ease of interpretation and
transparency of connection to reality of the
resulting physical theory.

Whenever an appropriate applicable form of a
pure mathematical subject is not sought, or could
not be found due to inability to link physical
(or application) concepts with the concepts and
principles of a mathematical subject, recourse to
mathematical hypotheses and axioms becomes
inevitable in propagating the physical theory. The
resulting theory is often fraught with the problems
of interpretation and dubiety of connection to
reality in such circumstance.

One subject of pure mathematics that is of direct
relevance to fundamental physics is Riemann
geometry. Riemann geometry evolved from
elementary differential geometry of surfaces in
the Euclidean space by the usual mathematical
processes. Albert Einstein advanced an infallible
argument in support of curvature of the four-
dimensional spacetime in the gravitational
field [5] and applied Riemann geometry in an
unaltered form to the problem of gravitation on
curved spaetime.

On the other hand, the concepts of relative
space, absolute space, absolutism and observers
in physics are incorporated into Riemann
geometry and an absolute intrinsic Riemann
geometry on a certain curved ‘three-dimensional’
absolute intrinsic Riemannian metric space with
absolute intrinsic sub-Riemannian metric tensor,
is isolated in a long-range metric force field in
general in this paper.
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2 ON THE INCORPORATION
OF THE TIME DIMENSION
INTO RIEMANN GEO-
METRY IN GENERAL
RELATIVITY AND THE
PRESENT CONTEXT

Friederich Bernhard Riemann in his famous
lecture of June 10, 1854, at the Götingen
University entitled, “On the Hypotheses Which
Lie at the Foundation of Geometry”, as translated
in [6], evolved the geometry that is now named
after him. With a prophetic vision, Riemann
had raised issues during this lecture that would
have far-reaching consequences in physics. For
example, he wrote in the paper he presented at
the lecture, “... the basis of the metric relation of
a manifold must be sought outside the manifold
in the binding forces that act upon it.”

It would be a disservice to describe Riemann
lesser than a precursor of the various metric
theories of physics, with the general theory of
relativity as the leading member. However the
time dimension and the significant role it plays
in linking Riemann geometry to physics, as
developed by Albert Einstein, see pages 111 –
149 of [5], was unknown to Riemann. Riemann
simply generalized Gauss’s theory of surfaces
in the Euclidean 3-space to general curved
n−dimensional spaces (without time dimension),
where points are characterized by n coordinates
as

uν = fν(x1, x2, x3, ..., xn); ν = 1, 2, 3, ... n .
(1)

The distance element ds between two indefinitely
close points in this general n-dimensional curved
space is

ds2 =

n∑
µ,ν=1

gµν(x
1, x2, x3, ..., xn)dxµdxν , (2)

where the metric tensor gµν is defined as

gµν(x
1, x2, x3, ..., xn) =

n∑
α=1

∂fα

∂xµ

∂fα

∂xν
=

n∑
α=1

∂uα

∂xµ

∂uα

∂xν
. (3)

Albert Einstein introduced the time dimension, x0 = cst, into Riemann geometry in a direct manner
somewhat. The usual notation ct for the time dimension is being replaced by cst in this paper, having
shown that ct is actually the time dimension with zero geodesic flow and re-denoted it by cst in sub-
section 1.4 of [3]. Having added cst to the three dimensions, x1, x2 and x3, of the Euclidean 3-space,
yielding the flat four-dimensional metric spacetime (the Minkowski space) in the special theory of
relativity, see pages 37 – 65 of [5], he forwarded an argument that leads to the conclusion that the
general principle of relativity is realizable on a curved four-dimensional spacetime continuum in the
gravitational field. He thereby considered the four-dimensional spacetime as a Riemannian manifold
in the gravitational field in the general theory of relativity, see pages 111 – 149 of [5] and chapter 3 of
[7].

Albert Einstein applied Riemann geometry in an unaltered form on the proposed curved four-dimensio-
nal spacetime in the gravitational field, see pages 111 – 149 of [5] and chapter 5 of [7]. The only
significant difference in Riemann geometry without time dimension (that is, manifolds of type IMp)
and Riemann geometry with time dimension (that is, manifolds of the type IMp+q), is in the structure
of the metric tensor. While the metric tensor is elliptical with signature (++++) in a four-dimensional
Riemann space (without time dimension), it is hyperbolic with signature (+ − −−) or (− − −+) on
a curved four-dimensional spactime. As a matter of fact, it is at the point of solving Einstein’s field
equations that K. Schwarzschild introduced the hyperbolic metric tensor, so that the metric tensor
obtained could reduce to the Lorentzian metric tensor at infinity, see pages 185 – 186 of [7].
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The important point to note in the foregoing
is that, Albert Einstein introduced the time
dimension into Riemann geometry by allowing
the time dimension and the three dimensions of
space to be curved at once (or simultaneously)
to form a curved four-dimensional spacetime
continuum with Riemannian metric tensor. He
then applied Riemann geometry (for four-
dimensional Riemann space without time
dimension) in an unaltered form to the curved
four-dimensional spacetime continuum thus
obtained. This approach of introducing the time
dimension into Riemann geometry by Albert
Einstein has been referred to as direct approach
above.

However, apart from the direct approach adopted
by Einstein, there is another approach, which
shall be referred to as indirect approach, toward
the introduction of the time dimension into
Riemann geometry. The indirect approach
leads to a kind of Riemannian spacetime
geometry that is different from the conventional
Riemannian spacetime geometry of Einstein’s
direct approach.

3 ISOLATING TWO CLASS-
ES OF 3-DIMENSIONAL
RIEMANNIAN METRIC
SPACES

Let us start by considering the proper Euclidean
metric 3-space, denoted by Σ ′ in [1, 2, 3, 4], but
which shall be denoted by IE′3 in this paper, with
dimensions, x ′1, x ′2 and x ′3, and the absolute
time ‘dimension’ to be denoted by, x̂0 ≡ ĉst̂.
The proper Euclidean 3-space and the absolute
time ‘dimension’ constitutes the Galileo space
(IE′3; ĉst̂). Let us assume that due to a yet
unspecified phenomenon, the proper Euclidean
3-space becomes a curved metric space, to be
denoted by IM3, within a region of the universal

3-space, while the absolute time coordinate
remains not curved.

Let us give a graphical illustrations of the Galileo
space (IE′3; ĉst̂) and the curved metric 3-space -
absolute time ‘dimension’ (IM3; ĉs t̂). In doing this,
we shall consider IE′3 as a hyper-surface, ĉst̂ =
const., and represent it by a plane surface along
the horizontal and the absolute time ‘dimension’
ĉs t̂ by a vertical normal line to the hyper-surface,
as illustrated in Fig. 1a.

In the case of the graphical representation of
(IM3; ĉst̂), there are two possibilities. The first is
obtained by letting the hyper-surface IE′3 along
the horizontal in Fig. 1a to become a curved
hyper-surface IM3 still on the horizontal plane, so
that none of the dimensions, x1, x2 and x3 of IM3,
spans the absolute time ‘dimension’ ĉs t̂ along the
vertical, as illustrated in Fig. 1b.

The dimensions of the curved space IM3 span
the dimensions of the proper Euclidean 3-space
IE′3 only. Actually the proper Euclidean 3-space
IE′3 has evolved into the curved space IM3

within the region of 3-space being considered.
Hence the proper Euclidean space does not exist
along with IM3 within the region. Nevertheless
the curved metric space IM3 is embedded in
the global proper Euclidean 3-space IE′3 and
the coordinates x ′i of IE′3 serve as cartesian
coordinates for points on IM3, while xi are the
coordinates of IM3.

The second possibility (or case) is obtained by
allowing the dimensions, x1, x2 and x3, of the
curved space IM3 to span the absolute time
‘dimension’ ĉst̂ along the vertical solely, so that
IM3 is curved (as a hyper-surface) toward ĉst̂,
as illustrated in Fig. 1c. Intermediate cases
in which some dimensions of IM3 span the
absolute time ‘dimension’, while others do not,
are actually possible. However such cases must
be considered as generic forms of the second
case illustrated in Fig. 1c.
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Fig. 1. (a) Graphical representation of the Galileo space and (b) the Euclidean 3-space IE′3 of
the Galileo space evolves into a curved 3-dimensional (Riemannian) metric space IM3, such
that none of the dimensions of IM3 spans the absolute time ‘dimension’ along the vertical.

x =cst
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Fig. 1(c). The proper Euclidean 3-space IE′3 of the Galileo space evolves into a curved
3-dimensional (Riemannian) metric space IM3, such that the dimensions of IM3 span the

absolute time ‘dimensions’ ĉs t̂ along the vertical solely. The curved space IM3 (as a curved
hyper-surface), projects a new Euclidean 3-space IE3, with dimensions, x1, x2 and x3,

underneath itself as a flat hyper-surface along the horizontal.

Since a vacuum cannot be created along the
horizontal, the curved space IM3 will project a
new flat hyper-surface — a new Euclidean 3-
space — to be denoted by IE3, with dimensions
x1, x2 and x3 along the horizontal, as shown in
Fig. 1c. In other words, the curved space IM3

will be underlay by its projective Euclidean 3-
space IE3 in this second case. The concept
of underlying projective space does not arise in
the first case (Fig. 1b), since the curved hyper-
surface IM3 lies along the horizontal in that case.

We shall now investigate the two cases of curved
metric space formed from the Galileo space (of
Fig. 1a) described above, in order to show the
essential difference that may exist between them.

Case I: Conventional Riemannian
metric 3-space

The first case of curved metric space formed from
the Galileo space, in which each dimension of
the curved space IM3 spans one, two or all the

6
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dimensions of the proper Euclidean 3-space IE′3

that evolved into it, and none spans the absolute
time ‘dimension’ along the vertical, illustrated in
Fig. 1b, is a conventional Riemannian metric 3-
space. It is to be noted that two metric spaces
namely, the proper Euclidean 3-space IE′3 (with
Euclidean metric tensor) and the curved metric
space IM3 (with Riemannian metric tensor), do
not co-exist in Fig. 1b. This is so because IE′3

has evolved into IM3 within the given region of
the universal proper Euclidean 3-space. The
curved three-dimensional metric space, such
as encountered in the Robertson-Walker metric
tensor is an example.

Case II: A new kind of Riemannian
metric 3-space

The curved space IM3 in Fig. 1c has evolved
from the proper (or classical) Euclidean 3-space
IE′3. Hence Eqs. (4) through (6) of conventional
Riemann geometry are equally valid for the
curved space IM3 in Fig. 1c. We must simply let
n = 3 in them to have

x ′ν = fν(x1, x2, x3); ν = 1, 2, 3 , (4)

where x ′ν are the coordinates of the three-
dimensional proper (or classical) Euclidean
space IE′3 of the Galileo space that evolved
into IM3, but which still serve as the cartesian
coordinates for points on the curved space IM3,
and xν are the coordinates of IM3. The distance
element is given on IM3 as

ds2 =
3∑

µ,ν=1

gµν(x
1, x2 , x3)dxµdxν (5)

where

gµν(x
1, x2, x3) =

3∑
α=1

∂fα

∂xµ

∂fα

∂xν
=

3∑
α=1

∂uα

∂xµ

∂uα

∂xν
.

(6)
Apart from Eqs. (4) through (6) of conventional
Riemann geometry on the curved metric space
IM3 in Fig. 1c, there is a necessary further step
to be taken, which consists in obtaining the
projection of the Riemannian metric space IM3

into the horizontal to obtain the underlying new
Euclidean 3-space IE3 in that figure.

Since we have identified the first case of a
curved space that evolved from the Galileo
space, illustrated in Fig. 1b as a conventional
Riemannian metric space of type IMp; p = 3,
there is nothing new to know about it. We
shall therefore proceed to investigate the second
case illustrated in Fig. 1c. The second case
shall undergo extensive modification with further
development in this paper. We shall be led,
in a consistent manner, to the identification
of certain curved ‘three-dimensional’ absolute
intrinsic metric space for it, instead of the physical
(or relative) 3-space in Fig. 1c.

4 ISOLATING ABSOLUTE
INTRINSIC RIEMANNIAN
METRIC SPACE AND
ABSOLUTE INTRINSIC
RIEMANN GEOMETRY

Now two observers located at two distinct
positions P1 and P2 in the Riemannian metric
space IM3 in Fig. 1b or 1c are located at positions
of different Riemannian curvatures K1 and K2

respectively, where K1 and K2 are determined
relative to the reference Euclidean space IE′3.
These observers will therefore observe different
curvatures K31 and K32 respectively, of a
third position P3 on the curved space IM3.
Consequently these observers will observe
different metric tensors and construct different
Riemann geometries for the third position.

Since observers within the region of space
being considered are necessarily located on
the curved space IM3 in the first case (Fig. 1b),
there is no way of resolving the problem of the
non-uniqueness of Riemann geometry derived
by observers located at different positions in
a Riemannian metric space discussed in the
preceding paragraph in the first case. On the
other hand, Riemann geometry of the curved
space IM3 can be formulated uniquely with
respect to observers located at different positions
in the underlying Euclidean space IE3 in the
second case (Fig. 1c), as explained below.

7
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x c t= s

Fig. 2. A one-dimensional metric space curving onto the absolute time ‘dimension’ along the
vertical, projects a straight line one-dimensional metric space along the horizontal.

Let us consider a curved one-dimensional space
to constitute plane curve u, which is curved onto
the absolute time ‘dimension’ and underneath
which lies a straight line one-dimensional space
x along the horizontal (which the curved space
u projects along the horizontal), as illustrated in
Fig. 2. The curve u and its projection x shall be
taken to be one-dimensional metric spaces.

The curvatures kA and kB at points A and
B respectively of the one-dimensional curved
metric space u are given by definition, see
chapter one of [6] as

dθ

du
|A =

dtA
du

= kA (7a)

and

dθ

du
|B =

dtB
du

= kB . (7b)

The angle θ is measured relative to the one-
dimensional straight line metric space x along
the horizontal in Fig. 2. The tA and nA are the
unit tangent and unit normal vectors to the curve
u at point A, with respect to ‘one-dimensional
observers’ located along x. It can thus be said
that the curvatures kA and kB at points A and B
respectively, of the curve u are valid relative to
‘one-dimensional observer’ at point C that can be
anywhere in the dimension x along the horizontal.

Now let us consider the curvature of u at point B
relative to a ‘one-dimensional observer’ at point A
on the curve u. The projective one-dimensional
metric space x along the horizontal, on which the
‘one-dimensional observer’ at point C is located,
must be replaced by the tangent DE to the curve
u on which the ‘one-dimensional observer’ at
point A is located. The curvature of u must be
defined in terms of a different angle ϕ measured
relative to the line DE with respect to the ‘one-
dimensional observer’ at A. Hence the curvature
kBA of point B relative to point A of the curve u is
given as

dϕ

du
|B =

dt′B
du

= kBA , (8)

where t′B and n′
B are the unit tangent vector and

unit normal vector to the curve u with respect
to the ‘one-dimensional observer’ at A, which
correspond to tB and nB respectively (shown in
Fig. 2) with respect to ‘one-dimensional observer’
located anywhere along x.

We find from the above that the curvature at
a given point on a plane curve u — a one-
dimensional metric space — on the vertical x-
ĉs t̂−plane, depends on the position of the ‘one-
dimensional observer’ located along the curve
u, but is the same relative to ‘one-dimensional
observers’ located at different positions in the
one-dimensional straight line metric space x,
which the one-dimensional curved metric space

8
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u projects along the horizontal. The curvatures
kA and kB of Eqs. (7a) and (7b) are valid relative
to a ‘one-dimensional observer’ located at point C
that may be anywhere along the one-dimensional
space x. Hence the position C of such ‘observer’
does not appear as a label on kA and kB . On
the other hand, the position A of the ‘observer’
located along the curve u appears as a label on
the curvature kBA at position B of the curve u in
Eq. (8).

Now the curve u in Fig. 2 is a one-dimensional
Riemannian metric space IM1, as mentioned
above. It is a member of the second case of
Riemannian metric spaces illustrated in Fig. 1c,
which can be generated from the Galileo space
of Fig. 1a. Figure 2 and the discussion on it
above can be generalized to the case of the 3-
dimensional metric space IM3 (with dimensions
u1, u2 and u3), which is curved toward the
absolute time ‘dimensions’ ĉst̂, and which is
curved relative to its projective 3-dimensional
Euclidean space IE3 (with dimensions x1, x2 and
x3), which is also a metric space in Fig. 1c, re-
illustrated as Fig. 3.

One observes that there are two co-existing
metric spaces of different metric tensors namely,
the curved space IM3 with Riemannian metric
tensor and the underlying flat space IE3 with
Euclidean metric tensor in Fig. 3. However only
singular metric spaces are known in Riemann
geometry. This paradox raised by Fig. 3 shall be

resolved with further development of this article.
The first class of Riemannian metric spaces IM3

illustrated in Fig. 1b, which evolves from the
proper (or classical) Euclidean 3-space, does
not raise the paradox raised by Fig. 1c or Fig. 3,
since the curved hyper-surface IM3 lies along
the horizontal, thereby precluding any projective
space in Fig. 1b of conventional Riemannian
metric space. There is no duality of metric spaces
in the first case (or in conventional Riemann
geometry).

Now the Riemannian curvature KBC , and hence
the metric tensor g(BC)

ik at point B on IM3 are the
same for different positions C (or for different 3-
observers or different ‘frames’) in the underlying
Euclidean space IE3. Thus the label C of the
position of the 3-observer in IE3 is redundant and
does not have to appear on the curvature and
metric tensor at any point on the curved space
IM3. In other words, g(B)

ik and g
(A)
ik are the unique

or invariant metric tensors at points B and A
respectively on IM3, with respect to 3-observers
located at different positions in IE3 in Fig. 3.

On the other hand, the curvature and metric
tensor at a given point on the curved space IM3,
relative to an observer at another point on IM3,
depends on the position of the observer in Fig. 3.
Thus the curvature KBA and the metric tensor
g
(BA)
ik of point B on IM3, relative to an observer at

position A on IM3 in Fig. 3, contains the position
A of the observer as a label.

x =cst

:
3 1 32x xx, ,(

(

: 1 33 2x xx, ,(

(

A

B

C

Fig. 3. A 3-dimensional Riemannian metric space curving onto the absolute time ‘dimension’
along the vertical (as a curved hyper-surface) and its underlying projective Euclidean 3-space

(as a flat hyper-surface) along the horizontal.
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We shall sometimes refer to the 3-observers in
the underlying projective Euclidean space IE3 as
Euclidean observers, while observers at different
positions on the curved (or Riemann) space IM3

shall be referred to as Riemannian observers.
The foregoing paragraph simply states that the
metric tensor at any given point on the curved
metric manifold IM3 is the same with respect to
all Euclidean observers (or all ‘frames’) in the
underlying Euclidean space IE3, but depends on
the location (or the local ‘frame’) of a Riemannian
observer. We shall be concerned with the
Riemann geometry of the curved metric manifold
IM3 in the second case illustrated in Fig. 1c or
Fig. 3, relative to Euclidean observers mainly.

The curved manifold IM3 possesses a unique
Riemannian metric tensor g

(B)
ik at point B

relative to all observers in the underlying
Euclidean 3-space IE3 (or relative to all Euclidean
observers). Hence Euclidean observers will
formulate Riemann geometry on IM3 in Fig. 1c
or Fig. 3 in the context of conventional
Riemann geometry by writing general coordinate
transformations like system (4), which shall be re-
written as follows because of a certain point to be
made.

x ′ν = fν(u1, u2, u3); ν = 1, 2, 3, (9a)

hence,

gik(u
1, u2, u3) =

3∑
α=1

∂fα

∂uµ

∂fα

∂uν
=

3∑
α=1

∂x ′α

∂uµ

∂x ′α

∂uν
.

(9b)

The point to note is that x ′ν are the coordinates
of the original proper (or classical) Euclidean 3-
space IE′3 in Fig. 1a, which evolved into the
curved space IM3 in Fig. 1c or Fig. 3, while
uν are the coordinates of IM3. The Euclidean
observers in IE3 will then write a unique Gaussian
line element at point B on IM3 as

ds2 = ĉ2sdt̂
2 −

3∑
i,k=1

g
(B)
ik (u1, u2, u3)duiduk ;

(w.r.t. 3− observers in IE3) . (10)

The Euclidean 3-observers will construct
Riemann geometry in the context of conventional
Riemann geometry (Eqs. (9b) and (10)), uniquely
on the curved manifold IM3 in terms of

coordinates, u1, u2 and u3, of IM3. They will also
derive the projection of IM3 into the horizontal to
form the Euclidean space IE3, as shall be done
shortly.

Now let us change local coordinate set from
(u1, u2, u3) of one local frame to another local
coordinate set (v1, v2, v3) of another local frame
at the same position B on the curved manifold IM3

(in Fig. 3), in Eq. (10) to have the following

ds̃2 = ĉ2sdt̂
2 −

3∑
i,k=1

g̃
(B)
ik (v1, v2, v3)dvidvk ;

(w.r.t 3− observers in IE3) . (11)

The line element is invariant with re-
parametrization (or with change of local
coordinate set). By applying this between
equations (10) and (11) we have the following

g
(B)
ik (u1, u2, u3)duiduk = g̃

(B)
ik (v1, v2, v3)dvidvk

Hence

g̃
(B)
ik = g

(B)
ik

∂ui

∂vi
∂uk

∂vk
(12)

Now the Riemannian curvature KB at point B
on the manifold IM3 relative to the underlying
Euclidean 3-space IE3 in Fig. 3 is the same
for all local frames at that point. This is so
because all local frames lie on the curved hyper-
surface IM3 at the given point B and thereby
possess the same unique curvature KB relative
to IE3 as the curved hyper-surface IM3 itself.
It follows then that the metric tensor at point
B on IM3 is unchanged as one changes from
the local frame (u1, u2, u3) to the local frame
(v1, v2, v3) at this point, with respect to 3-
observers at different positions (or in different
‘frames’) in the underlying Euclidean 3-space
IE3. In other words, g̃(B)

ik (v1, v2, v3) is the same
as g

(B)
ik (u1, u2, u3), with respect to 3-observers

at different positions (or in different frames) in the
underlying Euclidean 3-space IE3.

The foregoing paragraph states a significant
difference between Riemann geometry of
a curved metric space IM3 of the second
case, in which the curved metric space (as a
curved hyper-surface), lies above its projective
Euclidean space IE3 (as a flat hyper-surface
along the horizontal) in which the observers
are located, illustrated in Fig. 1c or Fig. 3, and
the conventional Riemann geometry of the first

10



Joseph; PSIJ, 25(10): 1-20, 2021; Article no.PSIJ.77483

case in which the curved metric space IM3 is
embedded in the global Euclidean 3-space IE′3,
as illustrated in Fig. 1b. There is no projective
Euclidean space in the first case, and observers
are necessarily located on the curved metric
space IM3 within the region covered by IM3.

The significant difference between Riemann
geometries for the two cases is that both the
line element and metric tensor are invariant with
re-parametrization (ds2 = ds̃2 and gik = g̃ik),
in the second case (of Fig. 1c or Fig. 3), while
the line element is invariant but the metric tensor
transforms as Eq. (12) with re-parametrization in
the first case (of Fig. 1b). Riemann geometry
for the first case (of Fig. 1b) is obviously the
conventional Riemann geometry, as identified
earlier.

The necessary invariance with re-
parametrization of both the metric tensor and
the line element in the second case of a curved
metric space, which lies above its projective
Euclidean space in which the observers are
located (in Fig. 3), allows us to write the following
from Eq. (12)

g̃
(B)
ik = g

(B)
ik

∂ui

∂vi
∂uk

∂vk
= g

(B)
ik , (13)

hence,
∂ui

∂vi
∂uk

∂vk
= δik . (14)

Equation (14) is valid for every pair of local
coordinate sets (or local ‘frames’) at any given
point on the the curved manifold IM3 relative
to observers located at different positions in
the underlying Euclidean 3-space IE3, in the
Riemann geometry of the second case illustrated
in Fig. 1c or Fig. 3. It simply states that all local
coordinate sets at a given point on the curved
manifold IM3 are identical with respect to 3-
observers in the underlying projective Euclidean
3-space IE3, and this is true at every point of IM3,
in the Riemann geometry of the second case.

It follows from the foregoing that all local
coordinate sets, (u1, u2, u3), (v1, v2, v3),
(w1, w2, w3), etc, at any point on the curved
manifold IM3 are identical to a singular local
coordinate set with coordinates to be denoted

by (ξ1, ξ2, ξ3), with respect to all observers in the
underlying Euclidean space IE3. Thus natural
laws formulated in terms of the singular local
coordinate set (ξ1, ξ2, ξ3) at any position on IM3

are valid in terms of every local coordinate sets,
(u1, u2, u3), (v1, v2, v3), (w1, w2, w3), etc, at that
position, with respect to all observers (or ‘frames’)
in the underlying Euclidean 3-space IE3. It then
follows that laws of nature are naturally covariant
(see page 117 of [7] and page 117 [5]), on the
curved space IM3 with respect to all observers (or
‘frames’) in the underlying Euclidean 3-space IE3.

Now a space in which all local coordinate sets
(or local ‘frames’) are identical to a singular
coordinate set (or a singular local ‘frame’) at
each point of it is an absolute space, an absolute
space being a distinguished coordinate set (or
a distinguished ‘frame’), see page 2 of [7]. Thus
the curved IM3 in the second case of Riemannian
metric spaces illustrated in Fig. 1c of Fig. 3, is an
absolute space with respect to observers in the
underlying Euclidean 3-space IE3. It shall be
re-denoted by IM̂3 with curved global absolute
‘dimensions’ η̂1, η̂2 and η̂3.

The different local coordinate sets in the absolute
‘3-space’ IM̂3 shall likewise be denoted by,
(û1, û2, û3), (v̂1, v̂2, v̂3), (ŵ1, ŵ2, ŵ3), etc. A
hat label shall be used to denote absolute
coordinates/absolute intrinsic coordinates
and absolute parameters/ absolute intrinsic
parameters uniformly in this paper. The curved
absolute space IM̂3 introduced here is different
from the controversial Newtonian absolute space,
see page 2 of [7], also [8]. This is so, because
the Newtonian absolute space that supports
Newton’s mechanics is not curved.

Now, the curved absolute space IM̂3 will project
a flat hyper-surface—a flat three-dimensional
space—to be denoted by ∅IE′3

ab, along the
horizontal, such that the extended curved
global ‘dimensions’, η̂1, η̂2 and η̂3, of IM̂3

become projected as extended straight line
global dimensions, η′1

ab, η
′2
ab and η′3

ab, respectively
of ∅IE′3

ab, and the singular (or distinguished)
local coordinate sets, (ξ̂1A, ξ̂

2
A, ξ̂

3
A), (ξ̂1B , ξ̂

2
B , ξ̂

3
B),

(ξ̂1C , ξ̂
2
C , ξ̂

3
C), etc, at different positions, A, B,

C, etc, on the curved absolute space IM̂3,
become projected as singular (or distinguished)

11
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local coordinate sets, (ξ′1A′ ab, ξ
′2
A′ ab, ξ

′3
A′ ab),

(ξ′1B′ ab, ξ
′2
B′ ab, ξ

′3
B′ ab), (ξ′1C′ ab, ξ

′2
C′ ab, ξ

′3
C′ ab), etc,

at the corresponding positions, A′, B′, C′, etc, on
the projective flat space ∅IE′3

ab.

In other words, the different local coordinate
sets, (û1

A, û
2
A, û

3
A), (v̂1A, v̂

2
A, v̂

3
A), (ŵ1

A, ŵ
2
A, ŵ

3
A),

etc, all of which are equivalent to a singular (or
a distinguished) coordinate set (ξ̂1A, ξ̂

2
A, ξ̂

3
A) at a

point A on IM̂3, are projected as local coordinate
sets, (u′1

A′ ab, u
′2
A′ ab, u

′3
A′ ab), (v

′1
A′ ab, v

′2
A′ ab, v

′3
A′ ab),

(w′1
A′ ab, w

′2
A′ ab, w

′3
A′ ab), etc, all of which are

equivalent to a singular (or distinguished)
local coordinate set (ξ′1A′ ab, ξ

′2
A′ ab, ξ

′3
A′ ab) at the

corresponding point A′ on ∅IE′3
ab, and this is true

at every other corresponding pair of positions on
IM3 and ∅IE′3

ab.

The projective 3-space IE′3
ab of IM̂3 in which

all local coordinate sets (or local ‘frames’) at
any given point of it are identical to a singular
(or distinguished) coordinate set at the given
point, is itself an absolute space like IM̂3 that
projects it. The subscript “ab” on IE′3

ab and on
its global ‘dimensions’, η′1

ab, η
′2
ab and η′3

ab, and
its distinguished ‘frames’, (ξ′1A′ ab, ξ

′2
A′ ab, ξ

′3
A′ ab),

(ξ′1B′ ab, ξ
′2
B′ ab, ξ

′3
B′ ab), (ξ′1C ′ ab, ξ

′2
C ′ ab, ξ

′3
C ′ ab), etc,

at different points A′, B′, C ′, etc, on ∅IE′3
ab, is

used to denote “absolute”.

An absolute space remains an absolute space
and an absolute parameter remains an absolute
parameter in the context of absolute metric
phenomenon that causes the curvature of IM̂3.
Thus the curved absolute space IM̂3 invariantly
projects the flat primed (or proper) absolute
space IE′3

ab in the context of the absolute
phenomenon that causes the curvature of
IM̂3. This will ultimately be expressed as the
invariance, η′1

ab = η̂1 ; η′2
ab = η̂2 ; η′3

ab = η̂3;
ξ′1Aab = ξ̂1A ; ξ′2Aab = ξ̂2A ; ξ′3Aab = ξ̂3A; etc.

The projective flat absolute proper metric space
IE′3

ab of the curved absolute metric space IM̂3, in
which all local coordinate sets at any given point
of it are identical to a singular (or distinguished)
coordinate set at the given point, is certainly
different from the observed flat relative proper
(or physical) 3-space IE′3 of the Galileo space
(IE′3, ĉst̂) of Fig. 1a that we started with in this
section. Certainly different coordinate sets,

(x′1, x′2, x′3), (y′1, y′2, y′3), (z′1, z′2, z′3), etc, of
IE′3 are distinct and there is Galilean relativity on
(IE′3, ĉs t̂). The IE′3 (denoted by Σ ′ in [1]), is the
flat relative proper metric 3-space of the flat four-
dimensional relative proper metric spacetime
(Σ ′, cst

′) on which the special theory of relativity
(SR), involving affine spacetime coordinates (or
frames) operate in that article.

The projective flat absolute proper 3-space IE′3
ab

is not the space in which 3-observers are located,
but the flat relative proper (or physical) metric 3-
space IE′3, denoted by Σ ′ in [1, 2, 3, 4]. It is
therefore mandatory for us to prescribe the flat
(or Euclidean) relative proper metric 3-space IE′3

in which 3-observers are located alongside the
projective flat absolute proper metric 3-space
IE′3

ab of the curved absolute metric 3-space IM̂3,
such that IE′3

ab lies underneath (or is embedded
in) IE′3 along the horizontal. The curved absolute
space IM̂3 invariantly projects the flat absolute
proper 3-space along the horizontal in the new
geometry.

The flat absolute proper metric space IE′3
ab that is

invariantly projected along the horizontal by the
curved absolute metric space IM̂3 has been given
a prime label like the relative (or physical) proper
Euclidean 3-space IE′3 in which observers are
located, which lies over it along the horizontal.
The prime label shall be used to indicate
proper (or classical) spaces, coordinates and
parameters uniformly in this paper. Consequently
IE′3

ab is to be referred to as absolute proper space,
as done already above.

Contrary to Fig. 1c or Fig. 3 that we started
with, in which a curved physical (or relative)
proper 3-dimensional metric space IM3, which
is curved toward the absolute time ‘dimension’
along the vertical, lies above its projective relative
(or physical) Euclidean space IE3 (without prime
label), the flatness of the original relative proper
Euclidean 3-space IE′3 (in Fig. 1a) shall be left
unaffected by the evolution of the curved absolute
space IM̂3, which lies above its projective
flat absolute proper space IE′3

ab, where IE′3
ab

underlies IE′3. Consequently Fig. 3 shall be
modified as Fig. 4 temporarily, where the curved
absolute metric space lies above its projective
flat absolute proper metric space IE′3

ab that lies

12
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underneath the original flat relative (or physical)
proper metric space IE′3 in this situation.

Now, as noted earlier, two distinct observable
metric spaces of different metric tensors in
Fig. 1c or Fig. 3, have evolved from the singular
Galileo space of Fig. 1a, whereas such duality
of observable metric spaces is not observed in
nature. This has been remarked as a paradox
raised by Fig. 1c or Fig. 3 earlier. The duplication
of metric spaces in Fig. 1c or Fig. 3 has now
become a triplication of metric spaces in Fig. 4.
These are the curved absolute metric space
IM̂3 with absolute Riemannian metric tensor, the
relative (or physical) proper Euclidean metric 3-
space IE′3 with Euclidean metric tensor, in which
observers are located, and the projective flat
absolute proper metric space IE′3

ab, also with
Euclidean metric tensor in Fig. 4.

In order for the 3-observers to observe only
the flat relative proper metric 3-space IE′3 in
which they are located in Fig. 4, so that the
paradox noted above is resolved, the projective
underlying absolute proper metric space IE′3

ab

must be an intrinsic (i.e, a non-observable and
non-detectable) space to observers in IE′3. Thus
IE′3

ab shall be referred to as absolute proper
intrinsic metric space. The curved absolute
metric space IM̂3 that projects the flat absolute
proper intrinsic metric space IE′3

ab along the
horizontal, must itself be an absolute intrinsic
space. It shall therefore be renamed absolute
intrinsic metric space consequently. Thus the
non-observable absolute intrinsic metric space

IM̂3 projects the non-observable flat absolute
proper intrinsic metric space IE′3

ab along the
horizontal, leaving the flat relative (or physical)
proper metric 3-space as the only observable
space to 3-observers in it in Fig. 4.

It is natural to associate an absolute intrinsic time
metric ‘dimension’ temporarily being denoted by
η̂0 in Fig. 4, with the curved absolute intrinsic
metric space IM̂3. The absolute intrinsic metric
time dimension is not curved simultaneously from
its vertical position with IM̂3, by the absolute
intrinsic metric phenomenon that causes the
curvature of IM̂3. Consequently η̂0 lies parallel to
the absolute metric time ‘dimension’, x̂0 (= ĉs t̂),
along the vertical, as illustrated in Fig 4.

Thus one consequence of the fact deduced
earlier that the metric tensor and the line element
are both invariant with re-parametrization in
Riemann geometry in which a curved metric
3-space that is curved onto the absolute time
‘dimension’ along the vertical (as a curved hyper-
surface), lies above its projective Euclidean
3-space (as a flat hyper-surface) along the
horizontal, in which the observers are located,
illustrated in Fig. 1c or Fig. 3, is that such
Riemann geometry is realizable on a curved
non-observable and non-detectable absolute
intrinsic metric space IM̂3, in which all local
coordinate sets are equivalent to a singular (or
distinguished) local absolute intrinsic coordinate
sets, (η̂1

A, η̂
2
A, η̂

3
A), (η̂

1
B , η̂

2
B , η̂

3
B), (η̂

1
C , η̂

2
C , η̂

3
C), etc,

at different positions A, B, C, etc, on it.

projective flat absolute
proper metric ‘3-space’

flat relative proper
meric 3-space

3-

curved absolute
‘3-space’

ab
h h h, ,

ab ab ab )

)

x =
cst

h

:

:

:

Fig. 4.
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The curved absolute intrinsic metric space
lies above its projective flat absolute proper
intrinsic metric space IE′3

ab, in which all local
coordinate sets (or local ‘frames’) are equivalent
to singular (or distinguished) local coordinate
sets (or ‘frames’), (η′1

A′ab, η
′2
A′ab, η

′3
A′ab),

(η′1
B′ab, η

′2
B′ab, η

′3
B′ab), (η

′1
C′ab, η

′2
C′ab, η

′3
C′ab), etc, at

the corresponding different positions A′, B′, C′

etc, on IE′3
ab, with respect to observers in the

flat relative (or physical) proper metric 3-space
IE′3 that lies above IE′3

ab along the horizontal.
The Riemann geometry on the curved absolute
intrinsic metric space IM̂3, with respect to 3-
observers in the underlying relative proper
Euclidean metric 3-space IE′3, shall be entitled
absolute intrinsic Riemann geometry.

As the next step, let us adopt more
appropriate notations and representations
for the intrinsic spaces and the associated
intrinsic time coordinates than used above.
The notation IM̂3(η̂1, η̂2, η̂3) for the curved
absolute intrinsic metric space shall be
replaced with ∅IM̂3(∅x̂1,∅x̂2,∅x̂3). The
projective flat absolute proper intrinsic metric
space IE′3

ab(η
′1
ab, η

′2
ab, η

′3
ab) shall be re-denoted

by ∅IE′3
ab(∅x ′1

ab,∅x ′2
ab,∅x ′3

ab). The extra
subscript “ab” label is used to indicate “absolute”
as noted earlier. Hence ∅x′1

ab is an absolute
proper intrinsic space coordinate, while the prime
label is used to denote “proper”. The absolute
intrinsic metric time ‘dimension’ η̂ 0 shall likewise
be replaced by, ∅x̂0 = ∅ĉs∅t̂. By effecting these
new notations in Fig. 4, we have Fig. 5. The
non-observable and non-detectable (or hidden)
intrinsic spaces have been shown with dotted
boundaries in Fig. 5, as shall be done henceforth.

Since different local absolute proper intrinsic
coordinate sets (or local absolute proper
intrinsic ‘frames’), (∅u′1

A′ab,∅u′2
A′ab,∅u′3

A′ab),
(∅v′1A′ab,∅v′2A′ab,∅v′3A′ab),
(∅w′1

A′ab,∅w′2
A′ab,∅w′3

A′ab), etc, at a position
A′, say, in the projective absolute proper intrinsic
metric space ∅IE′3

ab are equivalent to a singular
(or distinguished) absolute proper intrinsic local
coordinate set (∅ξ ′1

A′ab,∅ξ ′2
A′ab,∅ξ ′3

A′ab), with
respect to observers in the relative proper
Euclidean metric 3-space IE′3, natural laws in
∅IE′3

ab are naturally covariant with respect to
observers in IE′3. The fact that natural laws

on the curved absolute intrinsic metric space
∅IM̂3 that projects ∅IE′3

ab along the horizontal
are naturally covariant with respect to observers
in IE′3 has been deduced in a similar manner
earlier.

It is appropriate to mention the existence of the
concepts of “intrinsic metric” and associated
“intrinsic dimensions” of metric spaces [9], in
the mathematical study of metric spaces. The
distance between two points of a metric space
relative to the intrinsic metric is defined as the
infimum of the lengths of all paths from the first
point to the second. If the space is such that there
always exists a path that achieves the infimum of
length (a geodesic) then it is a geodesic metric
space. Intrinsic dimension is applied to data
space in signal processing in information theory
[10, 11, 12]. These mathematical concepts differ
from the intrinsic Riemannian metric tensor ∅ĝµν
on absolute intrinsic Riemannian metric space
∅ÎM3 and absolute intrinsic metric dimensions,
∅x̂1, ∅x̂2 and ∅x̂3 of ∅ÎM3, being isolated in this
paper.

Now the absolute metric time ‘dimension’,
x̂0 = ĉst̂, is the outward manifestation of
the absolute intrinsic metric time ‘dimension’,
∅x̂0 = ∅ĉs∅t̂, which lies parallel to, x̂0 = ĉst̂,
along the vertical in Fig. 5. There is likewise
the outward manifestation of the projective
flat absolute proper intrinsic metric 3-space
∅IE′3

ab(∅x′1
ab,∅x′2

ab,∅x′3
ab) along the horizontal

namely, the flat absolute proper metric space,
which must be obtained by simply dropping the
symbol ∅ from ∅IE′3

ab(∅x′1
ab,∅x′2

ab,∅x′3
ab), giving

IE′3
ab(x

′1
ab, x

′2
ab, x

′3
ab).

As also first introduced as Ansatz in sub-section
4.4 of [1] and validated in sub-section 1.2 of [4],
there is a flat relative proper intrinsic metric space
that underlies the relative proper Euclidean 3-
space IE′3(x′1, x′2, x′3) namely, the flat relative
proper intrinsic metric space, which must be
obtained by incorporating the symbol ∅ into
IE′3(x′1, x′2, x′3) giving ∅IE′3(∅x′1,∅x′2,∅x′3).

The flat absolute proper metric 3-space
IE′3

ab(x
′1
ab, x

′2
ab, x

′3
ab) and the flat relative proper

intrinsic metric 3-space ∅IE′3(∅x′1,∅x′2,∅x′3),
must be incorporated into Fig. 5 in order to make
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that diagram more complete. This must be done
by letting the flat absolute proper metric 3-space
IE′3

ab to underlie (i.e. to be embedded in) the
flat relative proper metric 3-space IE′3 and the
projective absolute proper intrinsic metric 3-
space ∅IE′3

ab to underlie (i.e. to be embedded
in) the flat relative proper intrinsic metric 3-space
∅IE′3. Thus Fig. 5 must be replaced by the more
complete Figs. 6a and 6b.

Figs. 6a and 6b are actually one diagram.
They are separated for clarity only. The flat
relative proper metric 3-space IE′3 in Fig. 6b is the
outward manifestation of the flat relative proper
intrinsic metric 3-space ∅IE′3 in Fig. 6a and the
flat absolute proper metric 3-space IE′3

ab in Fig. 6b
is the outward manifestation of the flat absolute
proper intrinsic metric space ∅IE′3

ab in Fig. 6a.
The observers are the 3-observers located on
the relative proper metric space IE′3 in Fig. 6b.

The flat absolute and relative proper intrinsic
metric spaces in Fig. 6a have outward
manifestations, while the curved absolute
intrinsic metric 3-space ∅IM̂3 in Fig. 6a does not
have an outward manifestation. A fundamental
explanation of this must be sought, but for now,
the outward manifestation of the curved ∅IM̂3

namely, M̂3 in Fig. 4, is what has been converted

to ∅IM̂3 to give Fig. 5. The fact that outward
manifestation of the curved ∅IM̂3 is not required
in the absolute intrinsic Riemann geometry shall
be shown shortly in this section.

The flat absolute proper metric space IE′3
ab

is actually imperceptibly embedded in the flat
relative proper metric space IE′3 in Fig. 6b, the
two thereby appearing as IE′3 to observers in
IE′3 and ∅IE′3

ab is imperceptibly embedded in
∅IE′3 in Fig. 6a, the two thereby appearing as
∅IE′3 with respect to observers in IE′3. The
spaces in Figs. 6a and 6b are all that is required
to develop absolute intrinsic Riemann geometry
on the curved absolute intrinsic metric space
∅IM̂3(∅x̂1,∅x̂2,∅x̂3) with respect to observers
in the relative proper Euclidean 3-space IE′3 in
this article and the subsequent two articles.

The fact that the absolute metric time coordinate,
x̂0 = ĉst̂, and the absolute intrinsic metric time
coordinate, ∅x̂0 = ∅ĉs∅t̂, do not evolve with
respect to 3-observers in IE′3 in the context of the
absolute intrinsic metric phenomenon that gives
rise to the curved of ∅IM̂3 in Figs. 5 and 6a, are
shown by allowing, x̂0 = ĉst̂ and ∅x̂0 = ∅ĉs∅t̂,
to remain unchanged and not curved from their
vertical positions in those diagrams.

curved absolute
intrinsic metric ‘3-space’

flat relative proper
metric 3-space

flat absolute proper
intrinsic metric ‘3-space’

ab
h

ab h
ab

h
ab, ,(

(

3-observers

x = cs t

x = cst

:

:

:

Fig. 5. The ‘3-dimensional’ absolute intrinsic metric space curving toward the absolute
intrinsic time ‘dimension’ along the vertical, projects flat 3-dimensional absolute proper
intrinsic metric space, which lies underneath (or is embedded in) the flat relative proper

metric 3-space along the horizontal.
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curved absolute
intrinsic metric ‘3-space’

flat relative proper
intrinsic metric 3-space

flat relative proper
metric 3-space

flat absolute proper
intrinsic metric ‘3-space’

flat absolute proper
metric ‘3-space’

ab
h

ab h
ab

h
ab, ,(

(

ab
h

ab h
ab

h
ab, ,(

(

x xx, ,(

(

x xx, ,(

(

(b)

(a)

3-observers

x =cst

x = cs t

:

:

:

:

:

Fig. 6. Figure 5 made more complete by including absolute proper metric ‘3-space’ IE′3
ab as

outward manifestation of ∅IE′3
ab in Fig. 5 and the relative proper intrinsic metric 3-space ∅IE′3

that underlies IE′3 in Fig. 5.

The fact that the flat 3-dimensional relative proper
intrinsic metric 3-space ∅IE′3 with respect to
‘intrinsic 3-observers’ in it is naturally contracted
to a one-dimensional (straight line) relative
proper intrinsic metric space, denoted by ∅ρ′,
with respect to 3-observers in the relative proper
metric 3-space IE′3 overlying ∅IE′3, has been
mentioned in sub-section 4.4 of [1], as illustrated
in Figs. 6a and 6b of that article. That fact is
applied in Fig. 7 of that article and all diagrams
in the [2, 3, 4] that follow [1]. Figure 2a of
[4] also shows that the one-dimensional scalar
relative proper metric space ρ0′ of the positive
time-universe along the vertical, projects one-
dimensional relative proper intrinsic metric space
∅ρ′ into the relative proper metric Euclidean 3-
space IE′3 of our universe (as a hyper-surface)
along the horizontal.

However the three-dimensionality of ∅IE′3 shall
be preserved in this paper and shown to be
one-dimensional intrinsic metric space ∅ρ′ with
respect to 3-observers in IE′3, by another formal
procedure elsewhere. The ∅IE′3 shall then be
replace by ∅ρ′.

The following features of the new notations in
Fig. 5 make them more appropriate than those
in Fig. 4:

1. Apart from the attachment of the symbol ∅
to the usual coordinates, no new symbol
has been introduced to represent the
intrinsic coordinates. This minimizes the
number of symbols that enters into the
theory, which is aesthetically desirable.

2. The fact that the flat relative (or physical)
proper metric 3-space IE′3 is the outward
manifestation of the flat relative proper
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intrinsic metric 3-space ∅IE′3 and the
flat absolute proper metric 3-space IE′3

ab

is the outward manifestation of the flat
absolute proper intrinsic metric 3-space
∅IE′3

ab, can be seen from the new
notations. For if we remove the symbol
∅ from ∅IE′3

ab(∅x ′1
ab,∅x ′2

ab,∅x ′3
ab) we

obtain IE′3
ab(x

′1
ab, x

′2
ab, x

′3
ab), which must

be interpreted as: IE′3
ab is the outward

manifestation of ∅IE′3
ab. Likewise dropping

the symbol ∅ from ∅IE′3 gives IE′3, which
must be interpreted as: IE′3 is the outward
manifestation of ∅IE′3 and x ′1 is the
outward manifestation of ∅x ′1, etc. Also
if we remove the symbol ∅ from, ∅x̂0 ≡
∅ĉs∅t̂, we have x̂0 ≡ ĉs t̂.

The fact that the absolute proper metric
space IE′3

ab is the outward manifestation of
the absolute proper intrinsic metric space
∅IE′3

ab and, hence that, the relative (or
physical) proper metric 3-space IE′3 is
the outward manifestation of the relative
proper intrinsic metric space ∅IE′3 in
Figs. 6a and 6b, cannot be easily seen or
demonstrated with other notations, such
as the one adopted initially and illustrated
in Fig. 4.

3. Following the derivation of the two-
dimensional relative proper intrinsic metric
spacetime (also referred to as relative
proper metric nospace-notime), which
underlies the flat four-dimensional relative
proper metric spacetime (Σ ′, cst

′) in sub-
section 1.2 of [4], the symbol ∅ attached
to the intrinsic coordinates in the new
notations has the meaning of ‘void’, ‘null’
or ‘nothing’. Thus ∅space can be
referred to as ‘void-space’ or ‘null-space’,
but ‘nospace’ has been preferred, as
discussed in sub-section 1.2 of [4]. Any
distance ∅d′ of proper intrinsic space
(or proper nospace) ∅IE′3 is equivalent
to zero distance of the proper physical
Euclidean metric 3-space IE′3. This
can be seen directly from the symbol ∅
attached to ∅d′, with the meaning of ‘void’,
‘null’ or ‘nothing’, whereas the fact that
an interval of intrinsic space ∆η′ in the
notation of Fig. 4 is equivalent to zero
distance of the physical 3-space cannot be
seen directly. The fact that any interval

of intrinsic space is equivalent to zero
interval of physical space makes it non-
detectable to observers in the physical
space. The symbol ∅ attached to a space
or coordinate or a physical parameter
is used to indicate that the space or
coordinate or parameter is intrinsic, that is,
non-detectable (or hidden) to observers in
the relative proper Euclidean 3-space IE′3.

4. The proper intrinsic coordinates,
∅x ′1,∅x ′2,∅x ′3 and ∅cs∅t′, of the
relative proper intrinsic metric spacetime
(∅IE′3,∅cs∅t′), must be deemed to have
been formally derived following the formal
derivation of the two-dimensional relative
proper intrinsic metric spacetime that
underlies the flat four-dimensional relative
proper metric spacetime (IE′3, cst

′) in sub-
section 1.2 of [4], from which it is clear
that these new intrinsic coordinates and
their notations are not arbitrary creations.
The new notations for the new intrinsic
spacetime coordinates in Fig. 5 and its
more complete form of Figs. 6a and 6b
are the natural notations.

True to the title of this section, we can only talk
of a new absolute intrinsic Riemannian metric
space and the associated new absolute intrinsic
Riemann geometry, which are being unearthed in
this article. The observers with respect to whom
the new geometry is valid are all 3-observers in
the underlying flat (or Euclidean) relative proper
metric 3-space IE′3, as mentioned above.

Now in the absence of the curved absolute
intrinsic metric space ∅IM̂3 (or in the absence of
absolute intrinsic Riemann geometry), due to the
absence of a long-range absolute intrinsic metric
force field, the curved absolute intrinsic metric
3-space ∅IM̂3 in Fig. 5, or its more complete
form Fig. 6a, becomes the flat absolute intrinsic
metric 3-space ∅ÎE3, which is made manifested
outwardly in the flat absolute metric 3-space ÎE3,
obtained by simply dropping the symbol ∅ in
∅ÎE3. Thus in the absence of absolute intrinsic
Riemann geometry (or in the absence of absolute
intrinsic metric force field), the more complete
Figs. 6a and 6b must be replaced by Fig. 7.

Fig. 7 is the reference geometry in the absence
of absolute intrinsic metric force field (or absence

17



Joseph; PSIJ, 25(10): 1-20, 2021; Article no.PSIJ.77483

of absolute intrinsic Riemann geometry). The
flat relative proper metric 3-space IE′3 and its
underlying flat relative proper intrinsic metric 3-
space ∅IE′3 in Figs. 6a and 6b are absent in the
reference flat absolute metric spacetime and its
underlying flat absolute intrinsic metric spacetime
geometry of Fig. 7. The only possible 3-observers
in Fig. 7 are hypothetical ‘absolute 3-observers’
on the flat absolute 3-space ÎE3.

The location of the source of a long-range
absolute metric force field at a point on the
extended flat absolute metric space ÎE3 and the
consequent automatic location of the source of
the long-range absolute intrinsic metric force field
on ∅ÎE3 underneath the source in ÎE3, will cause
the absolute intrinsic metric space ∅ÎE3 to be
curved toward the absolute intrinsic metric time
‘dimension’ ∅ĉs∅t̂ along the vertical, thereby
becoming the curved absolute intrinsic metric
3-space ∅IM̂3 (as a curved hyper-surface), as
illustrated in Fig. 6a, in all finite neighborhood of
the sources. The curved ∅IM̂3 will project a flat
absolute proper intrinsic metric 3-space ∅IE′3

ab

(as a flat hyper-surface) along the horizontal,
which will be made manifested outwardly in flat
absolute proper metric 3-space IE′3

ab overlying
∅IE′3

ab along the horizontal.

It is important to note that the flat absolute metric
space ÎE3 in Fig. 7 is not required to be curved

toward the absolute metric time coordinate ĉst̂
along the vertical to thereby project the flat
absolute proper metric 3-space IE′3

ab along the
horizontal, in what would have been absolute
Riemannian (and not absolute intrinsic Riemann)
geometry on curved absolute metric ‘3-space’.
Rather the flat IE′3

ab evolves as the outward
manifestation of the flat ∅IE′3

ab projected by the
curved ∅IM̂3 in the context of absolute intrinsic
Riemann geometry. The flat IE′3

ab that thus
evolves replaces the original flat absolute space
ÎE3 in Fig. 7 without any need for ÎE3 to be
curved. Absolute Riemann geometry involving
curved absolute metric ‘3-space’ IM̂3 (as outward
manifestation of the curved ∅IM̂3) with absolute
metric tensor ĝµν does not exist consequently.

The evolutions of the curved absolute intrinsic
metric IM̂3 with absolute intrinsic metric tensor
∅ĝµν , its projective flat absolute proper intrinsic
metric space ∅IE′3

ab and the flat absolute proper
metric space IE′3

ab as the outward manifestation
of ∅IE′3

ab, in the context of absolute intrinsic
Riemann geometry, as described above, will
occur along with the automatic appearance of
the flat relative (or physical) proper metric space
IE′3 (as the relative counterpart of IE′3

ab) and
the automatic appearance of the flat relative
proper intrinsic metric space ∅IE′3 (as the relative
counterpart of ∅IE′3

ab).

flat absolute intrinsic metric ‘3-space’

flat absolute metric ‘3-space’

‘observers’

x =cst

x = cs t

:

:

Fig. 7. Flat ‘3-dimensional’ absolute metric space - absolute metric time is underlay by flat
‘3-dimensional’ absolute intrinsic metric space - absolute intrinsic metric time.
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It is mandatory to allow the flat relative proper
metric 3-space IE′3 and its underlying flat
relative proper intrinsic metric 3-space ∅IE′3 to
appear automatically along with the projective flat
absolute proper intrinsic metric 3-space ∅IE′3

ab

and its outward manifestation IE′3
ab, as illustrated

in Figs. 6a and 6b, lest there will be no space
for the observers. The origin of IE′3 and its
underlying ∅IE′3 shall be explored with further
development of the absolute intrinsic Riemann
geometry elsewhere.

As follows from the preceding two paragraphs
and the discussions in paragraphs leading to
them, the geometry of Fig. 7 will evolve into
the geometry of Figs. 6a and 6b, with respect
to 3-observers in the relative proper metric
space IE′3, in the context of absolute intrinsic
Riemann geometry, in all finite neighborhood of a
long-range absolute metric force field/absolute
intrinsic metric force field. This will happen
with the location of the source of the long-range
absolute metric force-field at a point on the flat
absolute metric space ÎE3 in Fig. 7. Figure 7
shall be referred to as the reference geometry to
absolute intrinsic Riemann geometry of Figs. 6a
and 6b.

However the absolute intrinsic Riemann
geometry of Figs. 6a and 6b, with respect
to 3-observers in the relative proper metric
space IE′3 (with respect to whom the absolute
time ‘dimension’ ĉst̂ and absolute intrinsic time
‘dimension’ ∅ĉs∅t̂ do not evolve), is half of
the geometry that evolves from the reference
geometry of Fig. 7. There is a second half of
the geometry with respect to 1-observers in the
relative proper metric time dimension cst

′ (with
respect to whom the absolute metric space ÎE3

and absolute intrinsic metric space ∅ÎE3 in Fig. 7
do not evolve).

The full absolute intrinsic Riemannian metric
spacetime geometry that evolves upon the
reference geometry of Fig. 7, to be obtained by
combining the half geometry of Figs. 6a and 6b
with respect to 3-observers on the flat relative
proper metric space IE′3 and the half-geometry
with respect to 1-observers in the relative proper
metric time dimension cst

′, shall be presented
elsewhere.

5 CONCLUSION

This article exposes the existence of ‘three-
dimensional’ absolute intrinsic Riemannian
metric space in addition to the conventional three-
dimensional Riemannian metric space and the
development of absolute intrinsic Riemannian
geometry on absolute intrinsic Riemannian
metric space is commenced. The absolute
intrinsic Riemannian metric space geometry
contains the curved absolute intrinsic metric
space ∅IM̂3, its projective flat absolute proper
intrinsic metric space ∅IE′3

ab with its outward
manifestation IE′3

ab, in addition to the flat relative
(or physical) proper metric space IE′3 and its
underlying flat relative proper intrinsic metric
space ∅IE′3. The observers are located in
IE′3. The resulting absolute intrinsic Riemannian
metric space geometry that includes flat relative
proper metric space is a more all-encompassing
geometry than the conventional Riemannian
metric space geometry with only a curved
relative proper metric space IM′3. There is
also prospect for extension to a more all-
encompassing absolute intrinsic Riemannian
metric spacetime geometry that includes flat
relative proper metric spacetime in the new
scheme than the conventional Riemannian metric
spacetime geometry with only a curved relative
metric spacetime.
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