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ABSTRACT 
 

The kidney is sensitive to heavy metals because of its intensive metabolic activity and multiple 
functions namely those of excretion and pollutants concentration. The study aimed to evaluate the 
gender-specific variation in lead-induced nephrotoxicity in Wistar rats. 10 male and 10 female 
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Wistar rats (180-220g) were each divided into 2 groups (n=5 each): Control (M), Lead alone (M), 
Control (F), Lead alone (F). Male and female rats of the experimental groups were administered a 
daily dose of 100 mg/kg/bw of lead acetate dispersed in distilled water for 21 days. All rats were 
anesthetized and sacrificed 24 hours after the last administration. Blood samples were collected 
via cardiac puncture for biochemical analysis, kidney tissues were harvested, homogenized, and 
analyzed for antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and 
lipid peroxidation (measured by malondialdehyde levels). Results indicated a significantly (p<0.01) 
lower weight gain in the lead-only female (F) group compared to the lead-only male (M) group. 
Lead acetate exposure caused oxidative damage, evidenced by significantly reduced antioxidant 
enzyme levels and increased lipid peroxidation in both male and female groups, with the effects 
being more pronounced in females (p<0.05). Serum creatinine and Urea levels in the lead alone 
(M) and lead alone (F) group were increased when compared to their respective control groups 
(p<0.05) however serum creatinine was significantly (p<0.001) higher in lead alone (F) than lead 
alone (M). The electrolyte function increased significantly in this study (p<0.05) when compared 
with their control groups. Sodium ion in lead alone (F) increased significantly (p<0.01) when 
compared to lead alone (M). The study concludes that lead exposure induced nephrotoxicity in 
both male and female rats, but more significantly pronounced in females than the males. This 
increased severity may have been mediated by the higher lead-induced oxidative stress observed 
in the female rats compared to males. 
 

 
Keywords: Kidney; lead acetate; oxidative stress; antioxidant enzymes; lipid peroxidation. 
 

1. INTRODUCTION 
 

“Lead is a common environmental toxicant which 
results in several adverse effects caused by its 
primary impacts on the hematological, renal and 
central neurological system” [1]. “Sources of 
heavy metals exposure including lead in 
particular are in mining, agriculture, coal 
production and burning” [2]. “One of the 
inappropriate characteristics of heavy metals is 
their easy access into the food as well as 
accumulation in the body of the organism” [3]. 
“Bioavailability of lead is either through inhalation 
of air or dust, food and water contaminated with 
this element” [4]. 
  
“Lead damages cellular material and alters 
cellular genetics and produces oxidative 
damage” [5]. “It causes increased production of 
free radicals and decreased availability of 
antioxidant reserves to respond to the resultant 
damage” [6]. “It also interrupts enzyme activation 
and competitively inhibits trace mineral 
absorption. Lead binds to sulfhydryl proteins 
(interrupting structural protein synthesis), alters 
calcium homeostasis and lowers the levels of 
available sulfhydryl antioxidant reserves in the 
body” [7]. 
 

“Lead excretion from the body is mostly carried 
out by the kidneys, and lead levels in renal tissue 
have been found to be higher than in the liver 
and brain of lead- intoxicated animals” [8]. “Lead 
exposure is particularly damaging to the kidneys, 
as they are one of the primary sites for lead 

accumulation and processing. Toxic effects on 
kidneys are represented through the structure 
damage of kidneys and changes in the excretory 
function” [9]. However, information available on 
changes in kidney function in lead toxicity in 
animals is meager. Impaired Kidney functions 
have been reported as one of the most silent 
feature of lead toxicity [10]. Lead nephrotoxicity 
is characterized by proximal tubular nephropathy, 
glomerular sclerosis and interstitial fibrosis [11]. 
 

Decreased glomerular filtration rate, low and 
high-molecular weight proteinuria, reduced 
transport of organic anions and glucose, and 
enzymuria are among the functional deficiencies 
in humans linked to high lead exposure.  Kim et 
al., [12]. A few studies have revealed 
histopathological features of renal injury in 
humans, including intranuclear inclusion bodies 
and cellular necrosis in the proximal tubule and 
interstitial fibrosis [13]. Therefore, the purpose of 
the present study is to investigate the effect of 
biochemical alterations of the kidneys following 
experimental lead poisoning of Wistar rats by 
chronic exposure to lead acetate as one of the 
initial events responsible for impairment of renal 
function. 
 

It is generally known that there are gender-
specific variations in how the body reacts to toxic 
assaults, including a variety of pharmaceuticals 
and environmental contaminants [14]. Factors 
such as hormonal fluctuations, metabolic 
differences, and genetic predispositions 
contribute to variability in susceptibility and 
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response between males and females [15]. 
Regarding lead poisoning, previous study 
indicates that there are gender differences in 
lead absorption, distribution, metabolism, and 
excretion, as well as in the molecular 
mechanisms that contribute to lead toxicity [16]. 
 
Furthermore, Research indicates that variations 
in gender might impact the toxicokinetics             
and toxicodynamics of exposure to lead [17]. For 
example, some studies have reported that 
compared to male rats, female rats had higher 
levels of lead buildup in their liver and kidneys, 
possibly as a result of variations in hormone-
mediated changes in lead metabolism and 
excretion. [18]. Therefore, there is substantial 
health risk associated with lead poisoning, 
especially to the kidney, where there may be 
gender-specific differences in susceptibility. 
While general lead toxicity is well-studied, there 
is still a significant gap in knowledge regarding 
the gender-specific impacts of lead poisoning on 
kidney function in Wistar rats. 
 
This study aimed to assess and compare the 
impact of lead poisoning on the kidney of male 
and female Wistar rats, emphasizing the 
identification of gender-specific variations in 
biochemical markers and oxidative stress 
responses. Comprehending the gender-specific 
vulnerability to lead-induced organ damage is 
crucial because of the significant consequences 
for public health. Cuomo et al., [19].  It is 
substantiated that males and females do react to 
lead exposure differently, as has been 
demonstrated. These findings can help develop 
targeted treatments and preventative strategies 
to reduce lead poisoning in groups that are at its 
detrimental effects [20]. And understanding the 
processes underlying gender-specific reactions 
can greatly advance the creation of medical 
interventions that are more effective [21]. 
 

2. MATERIALS AND METHODS 
 

2.1 Chemical and Compounds 
 

Lead acetate (CH3CO2)2 Pb.3H2O were acquired 
from Kermel, China. Normal saline, distilled 
water was purchased from Department of Pure 
and Applied Chemistry, LAUTECH, Oyo, Nigeria, 
Buffered formalin was purchased from 
Department of Anatomy, FBMS, LAUTECH, Oyo, 
Nigeria and Phosphate buffer saline was 
purchased from Department of Science 
Laboratory Technology, LAUTECH, Oyo, 
Nigeria). 

2.2 Maintenance of Animals 
 
Male and female Wistar rats weighing 
approximately 180–220 g were procured.                  
The animals were acclimatized for 14 days                
and unrestricted access to clean water and 
animal feed prior to this experiment. The                
animals procured were kept in a typical 
laboratory environment and a 12/12 h light/               
dark schedule was maintained. The                      
Animal Research Ethical Committee of the 
Faculty of Basic Medical sciences at Ladoke 
Akintola University of Technology, Oyo,                  
Nigeria developed guidelines for all animal 
studies, and these regulations were adhered to 
throughout the research process (ERC               
Approval number: 
ERCFBMSLAUTECH:055/08/2024). 

 
2.3 Experimental Protocol 
 
10 male and 10 female adult Wistar rats                  
were used randomly in Group-I (water and                
food pellet alone); Control (M). Group-II                  
(Lead acetate (100 mg/kg/BW) given orally and 
daily); Lead alone (M). Group-III (Water and                
food pellet alone); Control (F). Group IV                 
(Lead acetate (100 mg/kg/BW) given orally                
and daily); Lead alone (F). Each group                
consists of five rats and oral administration took 
place by oral beaded canula. The experimental 
duration was 21 days. Dose was selected based 
on the previously standardized doses for               
lead. 

 
2.4 Collection and Processing of Samples 
 
Twenty-four (24) hours after the last oral 
administration of lead acetate, the animals               
were each per time placed inside a dessicator 
containing a chloroform soaked cotton wool for 
anaesthesia. Blood samples were obtained by 
cardiac puncture and left for 30 minutes to 
coagulate then centrifuged at 2500 revolutions 
per minutes for 10 minutes. Serum samples         
were separated and stored at -80℃ till when 
analysis was conducted on them. After                     
blood collection, kidney organs were harvested 
for biochemical studies. Kidneys were                  
carefully removed, washed in ice-cold                 
(20 mM Tris-HCl, 0.14 M NaCl buffer, pH 7.4) 
and homogenized immediately. The 
homogenates were centrifuged at 2500 
revolutions per minutes for 10 minutes. The 
supernatants were used for the various 
biochemical determinations. 
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2.5 Biochemical Tests 
 

2.5.1 Evaluation of kidney function 
parameters 

 

Blood urea nitrogen, creatinine and electrolyte 
were assessed in serum using a commercially 
available kit (Roche Diagnostics GmbH, 
Mannheim, Germany) and analyzed by auto 
analyzer (Roche Diagnostics Cobas Integra 800). 
 

2.5.2 Oxidative stress markers/enzymatic 
antioxidant status 

 

For enzymatic antioxidant status, kidney 
homogenates were used for the determination of 
malondialdehyde (MDA), superoxide dismutase 
activity (SOD), catalase (CAT) activity, and 
glutathione peroxidase (GPx) activity. 
  

2.6 Analysis of Statistics 
 

The study’s numerical data were expressed as 
mean ± standard error of mean (Mean ± SEM). A 
one-way Analysis of variance (ANOVA) with 
Graph Pad Prism version 7.0 (Graph Pad 
statistical software, Inc., USA) was used to 
compare within groups and Tukey’s Post-hoc test 
was used for multiple comparison. p<0.05 was 
considered statistically significant. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Result 
 

Results showed that lead acetate has effect on 
animal weight gain in both male and female 
Wistar rat when compared to their control groups 
(p<0.05) (Table 1). The weight gain in lead alone 
(F) group declined significantly when compared 
to the lead alone (M) group (p<0.01). This study 
indicated a lead-induced oxidative damage, 
demonstrated by the significantly decreased 
antioxidant enzymes, significantly increased lipid 
peroxidation in both male and female animal but 
the significance is more prone in female induced 
group. In the lead alone (F) group, there is no 
significance in catalase (CAT) when compared to 
the lead alone (M) group (p<0.05). However, the 
SOD and GPx activities were significantly 
decreased, while the MDA levels increased 
significantly (p<0.05) when compared to the lead 
alone (M) group (Fig. 1A-D). The findings further 
revealed that lead exposure induced 
nephrotoxicity with a significant increase in 
kidney function parameters. Serum creatinine 
and Urea level in the lead alone (M) and lead 
alone (F) group were increased when compared 

to the control groups (P<0.05). However, the 
serum creatinine level showed a statistical 
significant increase (P<0.01) in lead alone (F) 
when compared with lead alone (M). 
Furthermore, the electrolytes (K+, Na+, Cl- and 
Hco3

-) levels in the lead alone (M) and lead alone 
(F) group were increased when compared to the 
control groups (P<0.05). The sodium ion level 
was however significantly (p<0.01) increased in 
the Lead (F) group when compared to Lead (M) 
group (Table 2). 
 

3.2 Discussion 
 
Humans are exposed to heavy metals through 
the environment and some of them can lead to 
physiological, biochemical and histological 
disorders. These metals are found in numerous 
places, including contaminated air, water, soil 
and food. Therefore, the evaluation of toxic 
potentials of metals is important for the risk 
assessment of human beings ordinarily exposed 
to these substances. Previous studies indicated 
that the degree of toxic manifestation of different 
metals depends on dose, duration, route of 
administration and other physiological factors, 
especially nutrition. The kidney's high metabolic 
activity and several roles, including those of 
excretion and pollution concentration, make it 
vulnerable to the effects of poison [22]. Previous 
studies sought to demonstrate that exposure to 
hydrocarbons, pesticides, and various heavy 
metals might cause tubular dysfunction or tubulo-
interstitial nephritis, which can result from a renal 
insufficiency [23]. Hence, interstitial tubular 
nephrosis, a major cause of chronic renal 
insufficiency, may be caused by lead poisoning. 
Numerous researchers have considered various 
biomarkers such as urinary hippuric acid, the rate 
of metabolic clearance of the creatinine [24]. 
 
Kidneys are particularly susceptible to the effect 
of toxic agents that can cause renal damage and 
even renal failure [25]. Several studies shows 
strong association between lead exposure and 
renal effects [26]. However, continued or 
repetitive exposures can cause a toxic stress on 
the kidney that, if unrelieved, may develop into 
chronic and often irreversible lead nephropathy 
(that is interstitial nephritis), confirming the view 
of a deleterious role for lead [27]. Developmental 
studies without concomitant under nutrition are 
still lacking in the literature [28]. The aim of this 
study was to present the effect of chronic lead 
intoxication on the body weight, oxidative stress 
and biochemical parameters of male and female 
Wistar rats. 
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Table 1. Effect of lead acetate administration on the kidney weight and weight gain in male and 
female Wistar rats 

 

  Weight (g)                    Control (M)          Lead alone (M)        Control (F)         Lead alone (F) 

Kidney weight              0.54 ± 0.02         0.64 ± 0.04            0.54 ± 0.02        0.60 ± 0.03     
 Mean body weight gain difference (+) (Experimental change compared with mean control values 
 Body (weight gain)      11.60 ± 0.68          6.40 ± 0.51           13.80 ± 1.02        3.60 ± 0.60@     

Data were represented as mean ± SEM., n=5. (P<0.05) was considered as statistically significant. @ represent a 
statistical significance in lead alone (F) groups when compared to lead alone (M) group. 

Table 1 has a statistically significant decrease (P< 0.01) 

 

 
 
Fig. 1A-D. Effects of lead acetate on Renal Antioxidant System in male and female Wistar rats 

in both control and experimental groups 
Data were represented as mean ± SEM., n=5. (P<0.05) was considered as statistically significant. @ represent a 

statistical significance in lead alone (F) groups when compared to lead alone (M) group. 
Graph B&D has a statistically significant decrease (P< 0.001) 

Graph C has a statistically significant increase (P< 0.01) 

 
In Table 1, the study showed that adult male 
Wistar rats treated with lead acetate for 21 days 
cause decrease in body weights gain of lead 
alone (F) group when compared to lead alone 
(M). The effects of the lead acetate on body 
weight gain (100mg/kg BW) of the male and 
female Wistar revealed that the body weight of 
the lead alone groups was significantly different 
from that of the control groups after 21 days of 
exposure. The weight growth of both the male 

and female rats in this study grew initially with 
exposure time, but the rate of rise progressively 
dropped, and at the end of the study, the               
weight gain marginally decreased. A decrease in 
the rate of body weight gain was also observed 
in the study of Jadhav et al. [29], where                         
it was explained as a progressively severe 
systematic toxemia and an aversion to drinking 
water containing a heavy metal mixture              
[30,29].  
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Table 2. Effects of lead acetate on kidney function parameters level in male and female Wistar 
rats in both control and experimental groups 

 

  Functions            Control (M)        lead alone (M)       Control (F)        Lead alone (F) 

SC (mg/dL)          0.66 ± 0.03           0.92 ± 0.03           0.93 ± 0.012       1.23 ± 0.07@ 

Urea (mmol/L)     6.64 ± 0.08          8.86 ± 0.05            6.01 ± 0.06          8.45 ± 0.22 

HCO3 (mml/L)    16.83 ± 0.66          27.94 ± 1.01          17.63 ± 0.65        25.82 ± 1.42  

 K+ (mml/L)           1.80 ± 0.04          4.51 ± 0.33             2.54 ± 0.14          4.34 ± 0.07 

 Na+ (mml/L)         65.96 ± 6.08        84.58 ± 10.77        80.85 ± 3.16        101.12 ± 0.93@ 

 Cl- (mml/L)         70.57 ± 3.64        78.38 ± 4.72           62.69 ± 2.24         80.91 ± 0.68 

Data were represented as mean ± SEM., n=5. (P<0.05) was considered as statistically significant. @ represent a 
statistical significance in lead alone (F) groups when compared to lead alone (M) group. 

Na+ has a statistically significant increase (P< 0.01) 
SC has a statistically significant increase (P< 0.001) 

 
This study further demonstrated the difference in 
the effect of lead induction on the organ weight of 
both male and female Wistar rats when 
compared to their respective control group (Table 
1). The degree of these impacts differs based on 
the gender, with females showing more 
noticeable modifications than males. The rate at 
which lead is absorbed and retained may be 
affected by high levels of estrogen, and 
metabolic parameters such a greater fat-to-body 
mass ratio may also be responsible for these 
alterations [31]. Furthermore, higher testosterone 
levels in male rats may have some protective 
benefits against lead damage. Behairy et al., 
[32]. Research indicates that females are more 
prone to lead-induced bone demineralization and 
oxidative stress due to lower antioxidant 
defenses [33].  

 
Oxidative stress is believed to play a role                   
in lead-induced toxicity and is proposed as a 
primary mechanism behind lead toxicity [34]. 
One of the critical impacts of lead poisoning is 
the induction of oxidative stress through free 
radical production and a decrease in antioxidant 
defenses [35]. Free radicals are generated                
from both endogenous sources (such as 
mitochondria, the cytP450 pathway, and 
peroxisomes) and exogenous sources (like 
xenobiotics and chemical reactions), as 
explained by Valko et al. [36] and Patrick [37]. 
Lead exposure disrupts cellular balance by 
inducing oxidative stress in the body. This can 
result in damage to the cells and changes in their 
weight (Kidney) [38]. Increased levels of reactive 
oxygen species may contribute to inflammatory 
kidney [39]. Studies have shown that exposure to                          
lead can cause kidney tissues to undergo 
apoptosis and cell death, which can alter organ 
weight and cause structural abnormalities 
[40,41]. 

Renal antioxidants investigated in (Fig. 1A-D) of 
this study includes superoxide dismutase (SOD), 
catalase (CAT) and glutathione peroxidase 
(GPx). The study observed decrease SOD, GPx 
and catalase activities in the male and female 
lead alone groups. This finding is signaling to an 
indication of oxidative stress caused as a result 
of increase depletion of these antioxidants by 
free radicals generated during the period of lead 
acetate induction. The observed statistically 
significant decrease in renal CAT, SOD and GPx 
levels in both male and female lead groups when 
compared to their control groups indicates a 
response to elevated oxidative stress. It is further 
observed that there is statistically significant 
decrease in lead alone (F) when compared to 
lead alone (M). The significant reduction in 
females can be linked to natural baseline 
differences in antioxidant enzyme levels, with 
females typically having lower antioxidant activity 
than males which renders them more vulnerable 
to oxidative damage under stress conditions [42]. 
 

Lower SOD and GPx activity in the female lead 
alone group suggest a reaction towards 
excessive superoxide radicals generated leading 
to elevated lipid peroxidation and lower activity of 
antioxidant enzymes such as SOD. Ramesh and 
Knuckle [43] found that female rats exhibited a 
more substantial reduction in SOD activity upon 
exposure to oxidative stressors compared to 
male rats, aligning with these findings. Previous 
research also shows that estrogen, which has 
antioxidant properties, may enhance GPx 
expression under normal conditions but becomes 
overwhelmed during oxidative stress, leading to 
a substantial reduction in GPx activity [44]. 
 

Malondialdehyde is a byproduct of lipid 
peroxidation, resulting from oxidative stress that 
damages cell membranes [45]. High levels of 
MDA in the blood or tissues can indicate 
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increased oxidative stress and potential damage 
to cells, often associated with various diseases 
and conditions [46]. In Fig. 1D of this study, 
induction of lead acetate for 21 days resulted in 
significant increases (p<0.001) in MDA of Lead 
(M) group when compared with Lead (F) group. 
This clearly indicates an induction of oxidative 
stress during the period of lead exposure. 
Increased lipid peroxidation is likely caused by 
the generation of superoxide, peroxyl, and 
hydroxyl radicals, as indicated by elevated MDA 
levels [47]. Following lead poisoning, the 
generation of peroxyl radicals promotes lipid 
peroxidation by cyclization processes producing 
endoperoxides [48]. 
 
However, the larger rise in MDA levels in females 
than in males implies that, given identical 
circumstances, females may be more oxidatively 
damaged. The observed disparity in MDA levels 
between genders may be influenced by hormonal 
differences. As stated earlier, previous studies 
have demonstrated that estrogen can modulate 
the expression of antioxidant enzymes, thereby 
enhancing the cellular defense against oxidative 
stress [49].  
 
The kidney is sensitive to the action of poison 
because of its intensive metabolic activity and 
multiple functions namely those of excretion and 
of pollutants concentration [50]. Previous 
research attempted to show that intoxication by 
several heavy metals, hydrocarbons, pesticides, 
induces a tubular disfunctioning or a tubulo-
interstitial nephropathy which can be due to a 
renal deficiency [23]. Hence, lead poisoning may 
be a common cause of chronic renal deficiency 
by interstitial tubular nephrosis. Authors have 
shown that lead toxicity acts upon various 
systems, mainly the nervous system [51]. 
Epidemiological studies suggest that chronic 
exposure to this metal increases the 
accumulation of lead in the blood and contributes 
to the increase of the chronic renal absence [52]. 
 

According to Innih and Ubhenin, [53] an increase 
in the serum creatinine rate indicates a decrease 
in the glomerulary filtration probably due to a 
decrease in functional nephrons number since 
the blood creatinine rate rises only if 50% of 
nephrons are destroyed. Serum creatinine and 
Urea can to some extent reflect renal function 
[54]. In Table 2, creatinine levels reflect the 
degree of damage to the glomerular filtration 
function more accurately than urea, because 
urea can be affected by many factors besides 
renal function, such as a high protein diet, 

gastrointestinal bleeding, dehydration and 
hypermetabolism, whereas creatinine levels 
mainly depend on glomerular filtration [55,56].  In 
this study the results showed that exposure to 
lead led to significant increases in both male and 
female rats, whereas serum creatinine increased 
significantly only in the female rats exposed to 
lead acetate. Similar results were also found in 
studies of Moneim et al. [57]. Together, these 
results indicate that exposure to heavy metals 
affect renal function to some extent in terms of 
the increase in serum creatinine and urea              
[58].  

 
Furthermore, the study showed that 
administration of lead acetate cause increase 
(P<0.05) in the electrolyte functions (K+, Na+ , Cl- 
and HCO3

-
 ) of the kidney when compared with 

their respective groups (Table 2). The result 
shows a statistically significance increased 
(P<0.001) in sodium ion (Na+) in lead alone (F) 
when compared to lead alone male. This 
increase indicate the high level of susceptibility of 
lead exposure in female rat. The significance 
increase seen in the electrolyte function in the 
lead exposed group of Wistar rat could be the 
trace of nephrotoxic effect of lead acetate which 
implies the impairment of the glomerular function 
and tubular damage of the kidney [59]. This 
aligned with the findings Innih and Ubhenin, [53]. 
The degeneration and destruction observed in 
the renal tissue can be linked to the generation of 
reactive oxygen species initiated as result of lead 
exposure [60-63]. 

 
4. CONCLUSION 
 
Lead acetate administration in both male and 
female Wistar rats led to a reduction in body 
weight gain, reduced antioxidant levels and 
increased creatinine, urea and electrolytes in 
their serum. This is indicating the nephrotoxic 
effect of lead. These observations were however 
more pronounced in female than male indicating 
that females are more susceptible to lead 
toxicity. The susceptible of female rats to this 
lead toxicity may be attributed to certain specific 
female hormones.    
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