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Abstract

The present paper investigates the existence of periodic oscillations for a delayed Parkinson’s disease
mathematical model. We extend the result in the literature from stability to oscillation. Two sufficient
conditions to guarantee the oscillation of the solutions are provided. Some parameter that affects the
oscillation is sensitive from our simulation.
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1 Introduction

Many researchers have studied various Parkinson’s disease models [1-20]. One can also see the review articles
[21-23]. For example, Asai et al. introduced the following model based on the central pattern generator theory:
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v1(t) = c(vi(t) = 30i(t) —wi(t) + 21 (1)) + 6(v2(t) — v (1)),

wi(t) = ¢ (ui(t) — brwi(t) + a) + eva (), (1)
v (t) = c(v2(t) — 503 (t) — wa(t) + 22(t)) + 6(vi(t) — v2(2)),

wé(t) = %('U2(t) — b2102( ) )—|—€U1 (t),

where v1 and v2 are outputs to the network system which could be compared to the rotational velocities. All
model constants are positive real numbers [1]. Wang et al. have considered the following mathematical model:

755" (t) = Fs(—WasG(t — Tas) + WesE(t — Tes)) — S(t),

oG’ (t) (WSGS(t — Tsc) St?") G(t), (2)
TE'(t) = Fg(—Weel(t — Toc) + WepE(t — Teg)) + C — E(t),

1I'(t) = FF(WecE(t — Toc) — Wi E(t —Trr)) — 1(t),

where S(¢t), G(t), E(t) and I(t) represent the subthalamic nucleus, the globus pallidus, the firing rate of cortical
excitatory pyramidal neurons, the firing rate of inhibitory nuclei, respectively. T'(¢t) and W (¢) represent the delay

and connection weight in different projections. Fy(z) = o BM‘)J ==, (U = S,G, E,I) are activation
e
U

functions. The Hopf bifurcation critical condition of the system (2) was given in [3]. Recently, Tuwairqi and
Badrah provided the following model [5]:

N'(t) =0 — BN({#)aS(t) —a1N(t) — a2 N(t) — u1 N(t),

I'(t) = BN(t)aS(t) — diI(t) — a1 I(t) — a2I(t),

aS'(t) = ediI(t) — a1aS(t) — azaS(t) — eredi I(t — 7)e~ (@1 Fa2)T (3)
M'(t) = arI(t) + a1aS(t) —ezar[I(t — 7) + aS(t — 7)]e #27 — u2 M (1),

T'(t) = a1 I(t) + (a1 + a2)aS(t) — es[arl(t — 7) + (a1 + a2)aS(t — 7)]e #37 — uzT(t),

where N (t),I(t), and aS(t) represent the density of healthy neurons, the density of infected neurons, and the
density of extracellular a-syn in the brain respectively, M (t) represents the density of activated microglia, and
T'(t) density of activated T cell; a;, &5, i, 0 and B are parameters which belong to (0, 1]. The local stability of
the free and endemic equilibrium points was established depending on the basic reproduction number. However,
tremor is the most recognizable symptom of Parkinson’s disease. Therefore, the existence of periodic solutions
of the system (3) is a significant research topic. Considering the effect of time delay, in this paper, we study the
existence of periodic solutions for a modified model (3) as follows:

N'(t) =0 — BN({#)aS(t) —a11N(t) — a12N(t — 7) —a1sI(t — 7) — 1 N (),
( ) = BN(t)O(S(t) — d1I(t) — a21[(t — T) — a22](t) — CL23S(t — T),
a8’ (t) = edi I(t) — az1aS(t) — asaaS(t) — eredi I(t — 1)~ (a33tas)T (4)
M'(t) = anI(t) + as2aS(t) — e2aas[I(t — 7) + aS(t — 7)]e 27 — pa M (t),
T’(t) = a51[(t) + (CL52 + a53)OéS(t) - 53[a511(t — T) + (6152 + asg)aS(t — T)]eiusT — /1,3T(7§)7

aij, €i, fbi, o and [ are positive parameters. The existence of periodic solution of the system (4) has been studied.

2 Preliminaries

Since N(t),I(t),S(t), M(t), and T(t) represent various densities of neurons. Therefore, we assume that N(0) >
0,1(0) >0,5(0) > 0,M(0) > 0 and T'(0) > 0. We first have the following lemma 1.

Lemma 1 Assume that N(0) > 0,1(0) > 0,5(0) > 0, M(0) > 0, and T(0) > 0, then all solutions of system (4)
are bounded.

Proof Since the initial condition N(0) > 0,7(0) > 0,5(0) > 0, M(0) > 0, and T(0) > 0, From system (4), by
the variation of the constants method, one can easy to see that N(¢) > 0,I(t) > 0,S5(t) > 0,M(¢) > 0, and
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T(t) > 0 for arbitrary ¢t > 0. Thus, from the first equation of system (4) we have

N/(t) S a—a12N(t) —CL12N(t—T) —/.LlN(t). (5)
Therefore, N(t) < —7—+—. Note that I(¢) is always less the healthy neurons N(¢). So we have I(t) <
m. Then we have
aS'(t) < __edic as1aS(t) — az2aS(t) (6)
T antaiz+ o - '
So, S(t) < edio Also we get

— a(ar1taiz+p1)(esitazz)

M () < as10(as1 + asz) + aszedio
~ (a11 + a1z + p1)(as1 + as2)

— p2M(t). (7)

agio(azitaza)tagsedio
Thus, M(t) < e TaTs e (ans T as,y - Lherefore, we have

as1(as1 + as2)o + (as2 + as3)edro
(a11 + a12 + p1)(as1 + as2)

T'(t) < — psT(t). (8)

From (8) we have T'(t) < a5Lga(zlljizzllit?f’@iﬁiid;U This indicates that all solutions of system (4) are bounded.

Similar to the result of [5], there exists an endemic equilibrium point (N*, I*.8*, M*, T*)T of the system (4).
Then make the change of variables N(t) — N(t) — N*,I(t) — I(t) —I",S(t) — S(t) — S*",M(t) — M(t) —
M*,T(t) = T(t) — T", we get the following system:

N/(t) = —bllN(t) — blgs(t) — CllN(t — ’7') — Clzl(t — T) — BN(t)O[S(t),

I/(t) = bglN(t) — bgg[(t) =+ bzgS(t) — CQQI(t — T) — CQgS(t — T) + ﬁN(t)aS(t),

Sl(t) = b32](t) — bggs(t) — ng](t — T), (9)
M'(t) = bazI(t) + bagS(t) — baaM(t) — caol(t — 7) — cazS(t — 7),

T’(t) = b52](t) + b535(t) — 655T(t) — C52](t — T) — C5gs(t — ’7')7

where bi1 = a11 + p1 + BaS*, b1z = BN, c11 = ai12,c12 = a13,b21 = BS™ @, baz = di + a22,b23 = BaN™,co2 =

d die—(a3ztazg)T
a21,Ce3 = @23,bza = 51, b3z = a31 + a3z, c32 = HELE———— byy = aa1,baz = a0, bag = 2, ca2 =
g2aaze 27 cy3 = esausae M2 bsa = as1,bs3 = (as2 + ass)a,bss = us,cs2 = esasie” "7 cs3 = esas2 +
asz)e "3 a.
The system (9) can be expressed as follows:
!
Z2'(t) = Bz(t) + Cz(t — ) + f(2(¢)) (10)

where z(t) = [N(t), I(t), S(t), M(t), T(t)]T, 2(t —7) = [N(t —7),I(t —7),S(t — 1), M(t — 1), T(t — 7)]*, B and
C both are 5 by 5 matrices, f(z(t)) is a five by one vector:

—b11 0 —byi3 0

b1 —bao  ba3 0

B = (bij)sxs = 0 bsa  —bss3 0
0 by by —b

0 bsz  bs3 0 —bss
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—C11 —Ci12 0 0 0
0 —Co2 —C23 0 O
C = (cij)2nx2on = 0 —C39 0 0o o0 [,
0 —Cyq2 —C43 0 0
0 —Cs2 —Cs3 0 0

f(z(t)) = [-BN(t)aS(t), BN (t)aS(t),0,0,0]". The linearized system of (9) is

Z'(t) = Bz(t) + Cz(t — 7) (11)
Lemma 2 If matrix S(= B + C) is a nonsingular matrix for selected parameters, then there exists a unique
equilibrium point (N*, I*.8*, M*, T*)T of the system (3).

Proof Obviously, the trivial solution of the system (10) or ((11)) corresponds to the endemic equilibrium point
(N*, I*.5*, M*, T*)T of the system (4). If z* is an equilibrium point of the system (11), then we have

(B+C)z"=82"=0 (12)

According to the basic linear algebraic knowledge, system (12) has a unique trivial solution since S = B + C'is
a nonsingular matrix.

3 The Existence of Periodic Solutions

Theorem 1 Assume that zero is the unique equilibrium point of system (11) for selecting parameter values.
Let f1, B2, - -, 85 are characteristic values of matrix B, and 1, 72,73, 0,0 are characteristic values of matrix C.
If there exists one characteristic value, say (1, such that Re(81) > 0, and Re(S1) > max{|y1], |72l |vs]}, then
the unique trivial solution of system (11) is unstable, implying that there exists a periodic oscillatory solution
in the system (4).

Proof According to the basic differential equation theory, if there exists one characteristic value, say 1, such
that Re(81) > 0, and Re(B1) > max{|y1], |v2],|7s|}, then the trivial solution z(¢) of the system (11) is unstable
[24]. Indeed, the characteristic equation associated with the system (11) is the following:

5

[T =8 —vie™) =0 (13)

i=1
Therefore, there is a characteristic equation from the system (13) as follows:
A—Br—me =0 (14)
or
A=pB1=0 (15)

If Re(B1) > 0, and Re(B1) > max{|y1],|7y2|, ||}, this means that the equation (14) (or (15)) has a positive real
part characteristic value. Thus, the trivial solution of the system (11) is unstable. Meanwhile, the nonlinear
term f(z) of the system (10) is a higher order infinitesimal as N(t) — 0 and S(¢) — 0. This means that the
equilibrium point (N*,I*.S*, M*,T*)T of the system (4) is unstable. The instability of the unique positive
equilibrium point together with the boundedness of the solutions will force system(4) to generate a limit cycle,
namely, there exists a periodic solution of system (4) [25, 26]. The proof is completed.

For simplify, setting p = max{—bi1 + b21, —b22 + b32 + baz + bs2, —b1z + b2z — bzz + baz + bsz, —baa, —bss},q¢ =
max{—ci1, —C12 — €22 — €32 — €42 — C52, —C23 — C43 — 53 . Then we have
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Theorem 2 Assume that the conditions of Lemma 1 and Lemma 2 hold. If the following inequality is satisfied

p+qg>0 (16)
Then the system (4) has a periodic oscillatory solution.

Proof To prove the instability of the trivial solution of system (11), let w(t) = N(¢)+ I(¢t)+S(t) + M(t) +T(t).
Since N(0) > 0,1(0) > 0,S5(0) > 0,M(0) > 0 and T'(0) > 0 Therefore, w(t) > 0 and

w'(t) < pw(t) + qu(t —7) (17)

Specifically, consider the equation

v'(t) = po(t) + qu(t — 7) (18)

Obviously, w(t) < v(t). If the trivial solution of equation (18) is unstable, then the trivial solution of (17) is still
unstable. The characteristic equation associated with equation (18) is given by

A=p+qe ™" (19)

We claim that there exists a positive root of (19) under the condition (16). Let g(A\) = A — p — ge~*". Thus,
g() is a continuous function of \. When A = 0, we have g(0) = —p—¢ = —(p+¢q) < 0. On the other hand, there
exists a suitibly large A, say Ao > 0 such that g(Ao) = o —p— qe 0T > 0 since e 27 — 0 as A\g — +oco. Based
on the Intermediate Value Theorem, there exists a A« € (0, \o) such that g(A.) = A\ —p — ge~**7 = 0. In other
words, A« is a positive characteristic root of equation (19). So the trivial solution of equation (18) is unstable,
implying that the unique endemic equilibrium point (N*, I*.8*, M*, T*)T of the system (4) is unstable. Similar
to Theorem 1, there exists a periodic solution of the system (4). The proof is completed.

4 Simulation Results

This simulation is based on the system (4). We first select the following parameters: time delay 7 = 3.8,0 =
4.26,,6 = 0.015,(1 = O.l,au = 0.085,&12 = 0.025,@13 = 0.59,CL21 = 0.015,&22 = 0.0185,&23 = 0.095,(131 =
0.015,@32 = 0.04576133 = 0.085,a34 = 0.18,0,41 = 1.57a42 = 0.0125,0,51 = 0.025,(152 = 0.018,(153 = 0.024,6 =
0.25,d1 = 0.18,e1 = 0.015,e2 = 0.025,e3 = 0.075, 41 = 0.62,u2 = 0.85,u3 = 0.75, Then we get b1 =
0.7267,b13 = 0.00137611 = 0.025,612 = 0.59,b21 = 0.0216,1722 = 0.1985,b23 = 0.00157622 = 0.015,023 =
0.015,b32 = 0.45,b33 = 0.06,032 = 0.4116,642 = 1.5,()43 = 0,125,644 = 0.85,042 = 0.0029,643 = 0,0003,[)52 =
0.025, bss = 0.0042, bss = 0.75, cs2 = 0.0231, cs3 = 0.0025. The endemic equilibrium point (N*, *.S*, M*,T*)T =
(1.0712,4.3014, 17.4125, 6.4316, 10.1085) 7.

Then the characteristic values of matrix B are 0.7500, —0.8500, —0.7200, —0.0520, —0.1980. The characteristic
values of matrix C' are —0.0868, —0.0718, —0.0250,0,0. Noting that a characteristic value (0.7500) of matrix
B is a positive real number and 0.7500 > 0.0868. The conditions of Theorem 1 are satisfied. There exists
an oscillatory solution for the system (4) (see Fig.1). When we change 7 = 3.75,0 = 3.76,a13 = 0.68, and
7 = 3.35,0 = 3.76,a13 = 0.68, respectively, the other parameters are the same as Fig.1, we see that the
oscillatory behavior of the solutions is still maintained (see Fig.2 and Fig.3).

Then we select another set of parameters: time delay 7 = 3.8,0 = 10.76, 5 = 0.012,« = 0.1, a11 = 0.025,a12 =
0.015,&13 = 0.487 a1 = 0.015,&22 = 0.025,0,23 = 0.28,(131 = 0.0357a32 = 0.045,(133 = 0.065,(134 = 0.12,(141 =
0.25,&42 = 0.16,0,51 = 0.277 as2 — 0‘18,a53 = 0.24,€ = 0.15,d1 = 0.18, €1 = 0.15,&‘2 = 0‘12,63 = 0.28,”1 =
0.82,#2 = O75,/L5 = 095, Then we get b11 = 08625,1)13 = 0.0061,611 = 0.015,612 = 0.48,b21 = 00174,1)22 =
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Fig. 1. Oscillation of the solutions, delay: 3.8, a13=0.59.
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(8) Solid line: N(t), dashed line: 1(1).
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(b) Solid line: S(t), dashed line: M(t), dotted line: T(t).

Fig.2 Oscillation of the solutions, delay 3.75, a,,=0.68.
10 T T

’ 0 50 100 150
(8) Solid line: N(t), dashed line: I(t).

0 50 100 150
(b) Solid line: S(t), dashed line: M(t), dotted line: T(t).

0.205,1)23 = 0.00557622 = 0.015,623 = 0.28,1732 = 0.27, b33 = 0.08,632 = 0.382,b42 = 0.25,1)43 = 0.016,1744 =
0.75, ca2 = 0.0017, ca3 = 0.0002, bs2 = 0.028,b53 = 0.0435, bs5 = 0.95, cs2 = 0.0045, cs3 = 0.0015. The endemic
equilibrium point (N*, I*.8* M*, T*)T = (4.5312,9.9283, 14.6886, 32.5975,61.9764)T. We see that p = 0.595,
q = —0.015, so p+ g > 0, the conditions of Theorem 2 are satisfied. There exists an oscillatory solution for the
system (4) (see Fig.4). When we change 7 = 3.80,a13 = 0.54, and 7 = 3.82, a13 = 0.52, respectively, the other
parameters are the same as Fig.4, we see that the oscillatory behavior of the solutions is still kept (see Fig.5 and
Fig.6).
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Fig.3 Oscillation of the solutions, delay: 3.35, a13:0.66.
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Fig.4 Oscillation of the solutions, delay: 3.80, a,,=0.48.
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(b) Solid line: S(t), dashed line: M(t), dotted line: T(t).
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Fig.5 Oscillation of the solutions, delay: 3.80, a,,=0.54.
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(b) Solid line: S(t), dashed line: M(t), dotted line: T(t).
Fig.6 Oscillation of the solutions, delay: 3.82, a,,=0.52.
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0 50 100 150
(b) Solid line: S(t), dashed line: M(t), dotted line: T(t).

5 Conclusion

This paper discusses the oscillatory behavior of the solutions for a modified delayed Parkinson’s disease mathematical
model. Based on the method of mathematical analysis, we provided some sufficient conditions to guarantee the
oscillation of the solutions. Some simulations are provided to indicate the effectiveness of the criteria. In our
simulation, we found that some parameters are sensitive to affect the periodic oscillation. For example, the
parameter a3 affects the oscillatory behavior too much (see figures). There is a research topic for future study

of key parameters in a mathematical model.
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