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Abstract 
Analysis of a four-dimensional displacement vector on the fabric of 
space-time in the special or general case into two Four-dimensional vectors, 
according to specific conditions leads to the splitting of the total fabric of 
space-time into a positive subspace-time that represents the space of causality 
and a negative subspace-time which represents a space without causality, 
thus, in the special case, we have new transformations for the coordinates of 
space and time modified from Lorentz transformations specific to each sub-
space, where the contraction of length disappears and the speed of light is no 
longer a universal constant. In the general case, we have new types of matric 
tensor, one for positive subspace-time and the other for negative sub-
space-time. We also find that the speed of the photon decreases in positive 
subspace-time until it reaches zero and increases in negative subspace-time 
until it reaches the speed of light when the photon reaches the Schwarzschild 
radius. 
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1. Introduction 

Lorentz transformations are defined as a set of equations that describe the 
transformations of space and time coordinates from one inertial reference frame 
to another while assuming the speed of light to be constant for both observers in 
the reference frames. It was suggested by the scientist Hendrik Lorentz in 1904 
[1] [2]. But in 1908, Hermann Minkowski provided a geometric interpretation of 
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the Lorentz transformations; he considered it to be a process of rotation in a 
four-dimensional space known as Minkowski space-time [3]. Lorentz transfor-
mations are the mathematical and physical basis for the theory of special relativ-
ity; it also paved the way to general relativity. These transformations have also 
revealed to us the properties of space and time, such as length contraction, time 
dilation, and the relativity of simultaneity, time as a fourth dimension, the speed 
of light is the maximum causal speed between two events in space-time. Lorentz 
transformations preserve the symmetry of the laws of physics in both reference 
frames [4]. But are there other properties or a more complex structure of 
space-time that Lorentz’s transformations did not reach? Are there other types 
of symmetry that Lorentz’s transformations violated? Is Minkowski space the 
only four-dimensional space that expresses causality? Is the speed factor the only 
factor to describe causality in a four-dimensional space? 

The new model is based on the analysis approach for a four-dimensional vec-
tor on the fabric of space-time, although this approach is followed in special re-
lativity, where the four-dimensional vector can be analyzed into vectors with 
fewer dimensions or into their components and represented in subspaces with 
dimensions less than Minkowski space [5] [6]. But this type of analysis of the 
vector is in both reference frames or with respect to both observers, as the vec-
tors resulting from the analysis or components of the vector are subject to Lo-
rentz transformations as well and lead to the same results for these transforma-
tions. The purpose of this type of analysis is to understand the four-dimensional 
vectors better, the study of physical phenomena on the fabric of space-time, such 
as the movement of a particle in spatial space or the study of the movement of a 
particle in the dimension of time [7] [8]. But the analysis of the four-dimensional 
vector on the fabric of space-time according to the new model has different con-
ditions in the analysis process, which are explained in the following points. 
• The analysis of a four-dimensional vector on the fabric of space-time is done 

into two four-dimensional vectors through the analysis of the components of the 
vector, and not the analysis of the four-dimensional vector into vectors of lower 
dimensions or into the components of the original vector, and its representation 
is in four-dimensional subspaces. 

The analysis of the four-dimensional vector is with respect to one of the ob-
servers or with respect to one of the reference frames and not in both together. 
Therefore, the transformation of each new four-dimensional vector from the 
reference frame (the frame that contains the analysis) to another reference frame 
(the frame without analysis) is not subject to Lorentz transformations, because 
the new vectors have different properties from the original vectors. 

Analysis of the four-dimensional vector according to the previous condition 
gives us the possibility to impose specific properties or values for one of the new 
vectors or an arbitrary transformation that is modified from the Lorentz trans-
formations. As for the second vector resulting from the analysis process, its 
transformations are related to the transformation of the first vector that we im-
posed and the Lorentz transformation of the original vector. The new model is 
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called the inverse relativity model because some of its results in subspaces are 
opposite to the results of special and general relativity in total space-time. 

2. Methods 
2.1. Lorentz Transformations and Breaking the Symmetry of the  

Structure of Spatial Space 

We assume the existence of two inertial reference frames S and S' Cartesian coor-
dinate system, each reference frame has an observer at the origin point O and O'. 
We also assume that the frame S' is moving at a uniform velocity VS with respect to 
the frame S in the positive direction of the x-axis [9], as is shown in Figure 1. 
 

 
Figure 1. Shows the transformation of a 3D displacement vector from 
one reference frame to another with vector analysis in the reference 
frame S’ into two vectors. 

 
 ` ` ` ` `S x y z t S x y z t→ →   

While crossing the reference frame S' and at the moment when the frames S 
and S' coincide (that is, when O' coincides with O), where 0 0̀ 0x x= =  and the 
observers’ clocks were also, 0 0̀ 0t t= = . An event began to occur in this frame, 
which is the emission of a photon from a light source located at the origin 
O',after a period of time Δt, the photon arrived at the point P in space, and the 
frame of reference S' arrived at the point M on the x-axis. Where each observer 
here observes the displacement vector of the photon with respect to his own ref-
erence frame, the observer O' observes the displacement vector with respect to 
the reference frame S' from the origin point O' to the point P, which is the 
three-dimensional position vector O'P



 or `α


 (See Figure 1), but by adding 
the time dimension, we get a new four-dimensional vector [10] [11], which is 

( )` ,̀ `A ctµ α


, where 1,2,3,4µ =  and its components are ( )1̀ `A x= , ( )`2 `A y= , 

( )3̀ `A z= , ( )`4 `A ct= , c is the speed of light in a vacuum, `t -the time taken by 
a photon along the vector, while the square magnitude of the vector according to 
Einstein’s notation 2 ` ``s A Aµ

µ=  and this is equal to 
 2 2 2 2 2` ` ` ` 0x y z c t+ + − =    (1.1) 

As for the observer O, he observes the displacement vector with respect to the 
reference frame S from the origin point O (where at the moment of emission, O' 
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coincided with O) to the point P in space, which is the three-dimensional posi-
tion vector OP



 or α


, by adding the time dimension here also, we obtain the 
four-dimensional vector ( ),A ctν α  where 1,2,3,4ν = , and its components are 

( )1A x=  ( )2A y= , ( )3A z= ( )4A ct= , t, the time taken by a photon along the 
vector. The square magnitude of the vector is 2s A Aν

ν=  and is equal to 

 2 2 2 2 2 0x y z c t+ + − =    (2.1) 

We note from Equations (1.1) and (2.1) that the speed of light is constant and 
does not change for the observers or for the two frames, which fulfills the second 
postulate of special relativity [12], therefore, the transformation between the 
previous two vectors is through Lorentz transformations. We also note that the 
two four-dimensional vectors `,A Aν µ  are equal to the square of the magnitude, 
and therefore they are represented in a four-dimensional space known as Min-
kowski space-time, in which the square magnitude of the vector is a constant 
quantity between the reference frames, therefore, the transformation between 
the two vectors is through orthogonal transformation [13], so the Lorentz trans-
formation is represented as a rotation of coordinates in a four-dimensional space 
through the Lorentz rotation matrix µ

νΛ  [14]. 

 `A Aµ µ ν
ν= Λ    (3.1) 

where 

 
2

2

0 0
0 1 0 0   1, ,
0 0 1 0

10 0

s

s

V
c V

c

µ
ν

γ βγ

β γ

βγ γ

− 
 
 Λ = = =
 
  −− 

   (4.1) 

From the equality of vectors `,A Aν µ  in the square magnitude, we obtain a 
transformation of the spatial and time periods that describe an event on Min-
kowski space-time. 

 2 2 2 2 2 2 2 2 2 2` ` ` `x y z c t x y z c t∆ + ∆ + ∆ − ∆ = ∆ + ∆ + ∆ − ∆   (5.1) 

From the inverse Lorentz transformation we also get, `y y∆ = ∆ , `z z∆ = ∆  

 2 2 2 2 2 2` `x c t x c t∆ − ∆ = ∆ − ∆    (6.1) 

 2 2 2 2`c t c t∆ > ∆    (7.1) 

 `x x∆ > ∆    (8.1) 

We conclude from this that although the spatial periods on the `, `yy zz  axes 
are constant, the difference in the time period on the time dimension from one 
frame of reference to another leads to a difference in the spatial period on the 

`xx  axis, even assuming ` 0t∆ = , we find `x x∆ ≠ ∆  due to length contraction, 
but in Galilean transformation, for example, we find `t t∆ = ∆ , so when ` 0t∆ =  
we find that `x x∆ = ∆  according to the classical equation ` `sx x V t∆ = ∆ + ∆  That 
is, all the spatial and time periods of the event are constant under the transfor-
mation, even if the location of the event itself varies from one frame of reference 
to another. This means that the structure of the spatial space is symmetrical for 
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both observers in the classical Galilean transformations, something that the Lo-
rentz transformations violate in order to make the speed of light constant in 
both reference frames, as shown in Equation No. (5.1) [15]. 

2.2. Analysis of the Four-Dimensional Vector and Space-Time  
Splitting in the Special Case 

To achieve symmetry in the structure of spatial space (i.e. all spatial periods are con-
stant) when transferring from one inertial reference frame to another while main-
taining the second postulate of special relativity. We analyze a four-dimensional 
vector to be the vector νA  in the reference frame S into two 4D vectors. So we 
can impose symmetry properties on one of them in spatial space, and this is 
done by analyzing the three-dimensional vector 



α  in spatial space into two 3D 
vectors, which will result in analyzing the velocity on this vector as well. Thus, 
we analyze the time component ct, and thus we obtain a complete analysis of the 
four-dimensional vector, representing the new four-dimensional vectors in new 
spaces split from the Minkowski space. To distinguish each new space from the 
other and its transformations, we call the first the positive subspace-time and the 
second the negative subspace-time, this designation also has a connotation with 
the concept of causality. We will explain this in each naming item. 

2.3. Modified Lorentz Transformations for Positive  
Subspace-Time 

The first displacement vector resulting from the analysis is the three-dimensional 
position vector OR



, to distinguish this component from the resultant vector, it is 
written in the form  α



  (See Figure 1). By adding the time dimension, we obtain 
the four-dimensional vector ( ) ,A Vtα



 





  where 1,2,3,4=  and its components 

( )1A x=  , ( )2A y=  , ( )3A z=  , ( )4A Vt= 

 , where V  is the velocity of the pho-
ton on the vector α



  and t , the time taken by a photon along the vector, and the 
square magnitude of the vector is 2s A A=  


 , and it is equal. 

 2 2 2 2 2 0x y z V t+ + − =



      (9.1) 

We find from Equations (1.1) and (9.1) that the four-dimensional vectors `,A A µ


  
are equal in the square of magnitude, and therefore they can be represented in a new 
four-dimensional space called positive space-time. It is subspace because it is de-
rived from the total space-time, Minkowski space-time. 

 2 2 2 2 2 2 2 2 2 2` ` ` `x y z V t x y z c t+ + − = + + −



      (10.1) 

In order for the vector α


  to fulfill the symmetry condition, we impose the 
following properties on it: it is equal in magnitude and parallel in direction to 
the vector `α



 in spatial space, meaning that the vector α


  is identical to `α


. 
Therefore, the vector α



  is called the identical vector. As a result of the proper-
ties that we imposed for this vector, the components of both vectors `α



 and 
α


  are equal in spatial space with the transformation from one frame of refer-
ence to another. 
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 `x x=    (11.1) 

 `y y=    (12.1) 

 `z z=    (13.1) 

As for the time transformation equation, we find in the inverse Lorentz trans-
formations two forms [16] of the transformation equation. 

 2

`` or `sV xt t t t
c

γ γ = + = 
 

  (14.1) 

The first formula represents the time transformation for a particle moving 
along the `x -axis, and the second formula we obtain when ` 0x = , it represents 
the time transformation for a particle moving along the `, `y z  axes. This means 
that the time transformation equation for a moving particle varies from one spa-
tial dimension to another in special relativity. Because the spatial coordinate 
transformation equations that we imposed above have the same mathematical 
formula, therefore the time transformation equation t  must also have the 
same mathematical formula with respect to the dimensions of spatial space. In 
other words, the mathematical formula of the time transformation equation 
must not change from one spatial dimension to another, as in Lorentz transfor-
mations. So we assume the following transformation for it. 
 `t tγ=    (15.1) 

By substituting from the set of Equations (11.1)-(13.1), in (10.1), we obtain 
the transformation of the time dimension. We conclude from this that the sta-
bility of the spatial components under transformation necessarily leads to the 
stability of the component of time. 

`Vt ct=   (16.1) 

The set of Equations (11.1)-(13.1), (15.1) are called inverse modified Lorentz 
transformations for positive subspace-time. Since all components in positive 
subspace-time are constant, therefore we can express the transformation from 
the vector `A µ  to the vector A   in positive subspace-time through a neutral 
matrix, which is the unit matrix, that is, 4 4Iµ ×=Λ   

 `A A µ
µ= Λ

     (17.1) 

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

µ

 
 
 Λ =
 
 
 



    (18.1) 

As for the modified Lorentz transformations for the same event in positive 
subspace-time, it is done by analyzing the three-dimensional vector `α



 and the 
four-dimensional vector `A µ  with respect to the reference frame S' into two 
vectors in order to obtain the three-dimensional identical vector `α



  and the 
four-dimensional `A δ

  with respect to the reference frame S'. By following the 
same previous steps, the transformation from the vector Aν  to the vector `A δ

  
is done through the neutral transformation matrix 4 4Iδ

ν ×=Λ , and thus the 
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transformations are written in the following two forms: 

 ` `x x x x= ∆ = ∆     (19.1) 

 ` `y y y y= ∆ = ∆     (20.1) 

 ` `z z z z= ∆ = ∆     (21.1) 

 ` `t t t tγ γ= ∆ = ∆     (22.1) 

The modified and inverse modified Lorentz transformations are characterized 
by the symmetry of the structure of four-dimensional space (positive sub-
space-time) and three-dimensional space (positive spatial subspace) for both 
observers, we find that all spatial and time periods remain constant under trans-
formation.It represents the transformation of a four-dimensional vector from 
one inertial reference frame to another while preserving the geometric properties 
of the vector such as length and direction in spatial space. What concerns us 
here is the symmetry of the structure of spatial space, as the symmetry of the 
structure of spatial space with the modified transformations leads to the symme-
try of the laws of physics as well with these transformations, that is, we must use 
the same mathematical formulas for the laws of physics with the modified Lo-
rentz transformation as well. This is a commitment to the principle of special 
relativity, but in positive subspace-time. 

Substituting from (15.1) into (16.1) 

 1V cγ −=    (23.1) 

This means that the observer O observes the speed of light decreasing along 
the vector α



  or in positive subspace-time with increasing Vs, even though 
both vectors `α



 and α


  have the same length (event path), or in a spatial 
space with symmetrical structure, But time dilation causes the speed of light to 
slow down along the path of the event. In other words, if the speed of light in 
Minkowski space-time is constant for all observers in exchange for the contrac-
tion of length and the dilation of time, then we find here in positive sub-
space-time that the structure of spatial space is symmetrical for all observers in 
exchange for the dilation of time and the reduction of the speed of light. That is, 
the speed of light is not a universal constant in positive subspace-time, which is 
an opposite result of special relativity. 

To understand positive subspace-time more deeply and the importance of the 
symmetry of the structure of spatial space here, we assume the occurrence of an 
event other than the emission of a photon in the reference frame S', such as an 
elastic collision between a photon and an electron at the microscopic level, or 
between two particles of similar mass and speed at the macroscopic level. We 
represent this event through two vectors whose intersection point represents the 
collision point, as shown in Figure 2. This event expresses physical causation, 
where each particle causes a change in the direction of the other particle and also 
changes the physical quantities of the other body in the event that the particles 
before the collision were unequal in mass and speed. As a result of the symmetry 
of the structure of spatial space for all observers in positive space-time, this 
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physical causality is also symmetry, In other words, any causality that occurs 
between two vectors in the observer’s spatial space O' also occurs between their 
identical vectors in the positive spatial subspace of the observer O. Therefore, the 
physical quantities on this subspace-time are positively affected by the causality 
of the event or the behavior of the physical phenomenon, so we call it positive 
space-time. 

 

 
Figure 2. The right side shows a collision between two particles in the 3D space of 
observer O', and the left side shows the same collision in the positive 3D subspace of 
observer O.  

 
Through this example, we can provide a mathematical, geometric, physical 

definition of positive space-time. Mathematically, it is a four-dimensional sub-
space consisting of three spatial dimensions and a fourth time dimension splin-
tered from the total space-time. This space results from positive modified Lo-
rentz transformations or positive modified inverse Lorentz transformations. 
Geometrically, it is the space of oblique vectors, or intersecting paths. Physically 
it is the space of causality in which the laws of physics appear in fixed or sym-
metrical mathematical formulas for all observers. 

2.4. Modified Lorentz Transformations for Negative  
Subspace-Time 

The second displacement vector resulting from the analysis process is the 
three-dimensional position vector OM



, To distinguish this component also from 
the resultant vector, it is written in the formula α



 (See Figure 1), By adding 
the time dimension, we obtain the four-dimensional vector ( ),A Vtσ α







 , where 
1,2,3,4σ = , and its components ( )1 xA =



 , ( )2 yA =


 , ( )3 zA =


 , ( )4 VA t=
 



, 
where V



 is the velocity of the photon on the vector α


 and t


, the time taken 
by a photon along the vector. The square magnitude of the vector is 2 As Aσ

σ=






, 
and it is equal 

 2 2 2 2 2  0x y z V t+ + − =




     (24.1) 

From Equations (1.1) and (24.1), we find that the four-dimensional vectors 
`,A Aσ µ

 are also equal to the square of magnitude, and therefore they can be 
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represented in another new four-dimensional space called negative subspace-time, 
which is also a subspace from Minkowski’s total space-time. 

 2 2 2 2 2 2 2 2 2 2` ` ` `x y z V x y z c tt+ + − = + + −




      (25.1) 

In order to obtain negative subspace-time coordinate transformations, we 
must obtain the transformation matrix from the vector `A µ  to the vector Aσ . 
From the drawing we conclude that the vector α



 is the product of subtracting 
the vector α



  from the vector α


 in three-dimensional space, and by genera-
lizing this relationship in four-dimensional space, we can write the vector Aσ  
as the product of subtracting the vector A   from the vector Aν  

 A A Aσ ν= −




    (26.1) 

We can replace the vector A   in terms of vector `A µ  from Equation (17.1). 
However, replacing vector Aν  in terms of vector `A µ  is through the matrix 

ν
µΛ , which is the inverse of the matrix 

1µ
ν

−
 Λ   shown in Equation (4.1) 

 ` `A A Aσ ν µ µ
µ µ= Λ − Λ





    (27.1) 

 `A Aσ ν µ
µ µ = Λ − Λ 





    (28.1) 

Where the result of subtracting the two matrices represents a new matrix σ
µΛ


, 
which is the required transformation matrix. 

 `A Aσ σ µ
µ= Λ

 

  (29.1) 

By substituting from (4.1), (18.1), into (30.1) 

 

0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0

0 0 0 0 0 1

ν
µ µ

γ βγ

βγ γ

   
   
   Λ − Λ = −
   
   
   



    (30.1) 

 

1 0 0
0 0 0 0
0 0 0 0

0 0 1

σ
µ

γ βγ

βγ γ

− 
 
 Λ =
 
 

− 



  (31.1) 

By substituting from (31.1), into (29.1) 

 

1 1̀

`22

3̀3

`44

1 0 0
0 0 0 0

     
0 0 0 0

0 0 1

A A
AA
AA
AA

γ βγ

βγ γ

   − 
    
    = ⋅    
    

−       









   (32.1) 

Multiplying the vector `A µ  by the matrix σ
µΛ


, we obtain the equations for 
the transformation of the components of the vector Aσ  
 ( )1 1̀ `41A A Aγ βγ= − +



  (33.1) 

 2 0A =


   (34.1) 

 3 0A =


   (35.1) 

 ( )4 1̀ `41A A Aβγ γ= + −


  (36.1) 
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By substituting the value of each component of the vector into the coordinate 
form in Equation (33.1) 

 ( )1 ` `x ctx γ βγ= − +    (37.1) 

The previous equation can be reduced to the following formula 

 ( )( )1  ` 1 `sx x V tγ γ −= − +   (38.1) 

By substituting the value of each component of the vector into the coordinate 
form in Equations (34.1), (35.1) 

 0y =    (39.1) 

 0z =    (40.1) 

By substituting the value of each component of the vector into the coordinate 
form in Equation (36.1) 

 ( )` 1 `xVt ctβγ γ= + −




   (41.1) 

 `
` `sV x

ct ct
c

Vt γ γ= + −




  (42.1) 

Assuming that the photon is moving at full speed along the `xx -axis, in this 
case we can write the velocity on the vector α



 in terms of the velocity on each 
of the vectors ,α α

 

  as an analysis of parallel velocity vectors. 

 ( ) ` ` `sV xc V ctt ct
c

γ γ− = + −


    (43.1) 

 
`  ` `sV xc ct ct V

c
t tγ γ= + − +
 

   (44.1) 

But V Vtt =


 

  because the times are in the same frame of reference and for the 
same event by substituting from Equation (16.1) and rearranging the equation 

 2

`` sV xt t
c

γ  = + 
 



   (45.1) 

The set of Equations (38.1)-(40.1), (45.1) represent the inverse modified Lo-
rentz transformations for negative subspace-time. They also represent the trans-
formation of a four-dimensional vector from one inertial reference frame to 
another with a change in direction in the spatial space to make it parallel to the 
direction of motion of the reference frame, so the vector α



 is called a parallel 
vector, as shown in the Figure 1. As for the modified Lorentz transformations 
for negative subspace-time, they represent the transformation from the vector Aν  
to the vector `A γ  through the transformation matrix γ

νΛ


, where the vector `α


 
or `A γ  is the second component is the result of analyzing the vector `α



 or `A µ  
into the two vectors in the reference frame S' as we mentioned above. By follow-
ing the same previous steps, we obtain the modified Lorentz transformations for 
negative subspace-time with the following two formulas 
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 ( )( ) ( )( )1 1` 1 ` 1s sx Vx xt x V tγ γ γ γ− −= − − ∆ = ∆ − − ∆     (46.1) 

 ` 0 ` 0y y= ∆ =     (47.1) 

 ` 0 ` 0z z= ∆ =     (48.1) 

 2 2

 
` `s sV x

t
V x

t t
c c

tγ γ
∆   = − ∆ = ∆ −   

   

 

  (49.1) 

To obtain the velocity of the photon on the vector α


 or in the spatial space 
of negative subspace-time, we use Equations (38.1), (45.1) of the inverse mod-
ified Lorentz transformations, but in the differential form. 

 ( )( )1d d ` 1 d `sx tx Vγ γ −= − +    (50.1) 

 2

d `d d ` sV xt
c

t γ  = + 
 



  (51.1) 

By dividing the distance equation by the time equation 

 
( )( )1

2

d ` 1 d `d
d `d d `

s

s

x V tx
t V xt

c

γ γ

γ

−− +
=

 + 
 





   (52.1) 

By dividing both the numerator and denominator in the equation by d `t  

 
( )` 1

`

2

1

1

x s
x

s x

V V

V V
c

V
γ −− +

=
+



  (53.1) 

If the velocity of the reference frame is much less than the speed of light sV c , 
in this case the value of the inverse of the Lorentz factor is very close to the correct 
one 1 1γ − ≈  and therefore its effect is very slight and can be neglected. We also 
find that the amount ` 2

 x sV V c  is very small and can also be neglected, by substi-
tuting for this in the previous equation, we get 

 ( )
`

` 1
2  0 1 0s x

x x s
V V V V
c

Vγ −≈ − ≈ =


   (54.1) 

But if the velocity of the reference frame is equal to the speed of light, and that is 
from a theoretical point of view only, in this case we find that. 1 0γ − = , by substi-
tuting this in the previous equation, we get 

 
` `

` `

2
 1

x x
x x x s

x x

V c V c c V
V c Vc

c c

V

c

V V+ +
= = = =

+ +

  

  (55.1) 

We conclude from Equations (54.1) and (55.1) that the speed xV


 is always 
equal to the speed of the reference frame sV  regardless of the value of `

xV , even 
assuming values for the speed such as ` 0xV =  by substituting in Equation (53.1) 
or `

xV c=  by substituting in Equation (55.1); we will get the same result. This 
means that the observer O observes the speed of the photon on the vector α



, or 
in negative spatial space, always equal to the speed of the reference frame. 

So, the inverse Lorentz transformations modified for negative subspace-time 
show us that all velocity vectors that occur in the spatial space of the observer O’ 
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are represented in the negative spatial space of the observer O by vectors that are 
uniform in the direction, which is the positive direction of the x-axis, and also 
uniform in the velocity magnitude, which is the velocity magnitude of the refer-
ence frame. That is, the velocity vectors in the spatial space of negative sub-
space-time are always parallel in direction and equal in magnitude to each other 
with respect to the observer O. Therefore, there are no points of intersection or 
connection between the vectors in this space, which means that there is no colli-
sion or physical causality in negative subspace-time. This means that the physi-
cal quantities in negative subspace-time are the quantities that are not affected 
by causality or affect the behavior of the physical phenomenon, that is, the nega-
tive effect. Therefore, we call it negative subspace-time. When representing the 
previous collision event in negative subspace-time, we find that the velocity vec-
tors xV



 for each particle have the same the direction and its magnitude along 
the velocity vector V , as shown in Figure 3. 

 

 
Figure 3. Shows a collision between two particles 
in the negative 3D subspace of the observer O. 

 
Here we can also provide a mathematical, geometric, physical definition of 

negative subspace-time. Mathematically, it is a four-dimensional subspace con-
sisting of three spatial dimensions and a fourth time dimension splintered from 
the total space-time. This space results from the negative modified Lorentz 
transformations or the negative modified inverse Lorentz transformations. Geo-
metrically, it is the space of parallel vectors in which the velocity vectors remain 
without changing their direction or magnitude. Physically, it is a non-causal 
space in which no (causal) collisions occur between particles. It is the space of 
physical quantities that do not affect causality or the form of the physical law. 

2.5. Splitting of the Fabric of Space-Time in the General Case 

If the previous reference frames S and S' were non-inertial, i.e. acceleration or 
rotation [9]. Therefore, the transformation from vector ` `k

kA e  in the reference 
frame S' to vector A eµ µ  in the reference frame S is through the tensor trans-
formation [17] [18] (the index here 0,1,2,3k µ= = ), where both vectors have 
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the same magnitude. If the vector ` `k
kA e  represents a vector on a flat total 

space-time fabric in terms of spherical coordinates, then its magnitude is equal 
to multiplying the vector by itself, which represents the line element of space-time 

2d `s , is equal to 

 2 ` ` `d ` d dk l
kls g A A=    (56.1) 

where ` `d dk lA A  is contravariant components of the vector, `
klg  the metric 

tensor of flat space-time in terms of spherical coordinates, and by using the ten-
sor transformation we get the same previous magnitude in terms of the contra-
variant components d dA Aµ ν  of the vector dA , which represents a vector on a 
total curved space-time fabric under the influence of mass, see Figure 4(a). 

 
` `

2 `d ` d d
k l

kl
A As g A A
A A

µ ν
µ ν

∂ ∂
=

∂ ∂
  (57.1) 

 
` `

2 `d ` d d
k l

kl
A As g A A
A A

µ ν
µ ν

 ∂ ∂
= ⋅ ∂ ∂ 

  (58.1) 

 
` `

`
k l

kl
A Ag g
A Aµν µ ν

 ∂ ∂
= ⋅ ∂ ∂ 

   (59.1) 

Thus, we obtain gµν  the metric tensor of the total space-time in the general 
case or in general relativity, which describes the curvature of the total space-time 
under the influence of mass [19]. To achieve symmetry of the structure of the 
spatial space with respect to all observers or reference frames in the general case, 
we perform the same previous analysis process for the vector dA  on the curved 
fabric of space-time into two vectors, and thus we also obtain a split in the total 
curved space-time fabric, or in the general case, into positive and negative sub-
space-time. 

2.6. The Metric Tensor of Positive Subspace-Time 

Before obtaining the metric tensor of positive subspace-time in the general case, 
we must first obtain the metric tensor in the special case because this is a 
four-dimensional space split from Minkowski space-time. Therefore, the line 
element on this space in the special case will be exactly the same as the line ele-
ment of Minkowski space-time, which is the line element of a flat or level space. 
So it is written in the following form [20] 

 2 2 2 2 2 2d d d d ds x y z V t= + + −  

       (60.1) 

In the tensor form, it is 

 2d d ds A Aτ
τη=  




    (61.1) 

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

τη

 
 
 =
 
 

− 

    (62.1) 

τη  represents the metric tensor of positive subspace-time in the special case, 
and it represents a flat space-time where we find ijτη δ=  ( ijδ  Delta Kroneck-
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er), therefore, it corresponds to the Minkowski space-time metric tensor, that is, 

τ µνη η= . We can rewrite the previous positive subspace-time metric in Carte-
sian coordinate ( ), , ,x y z Vt    in terms of spherical coordinates ( ), , ,Vt r θ ∅ 



 , 
with the change of the index of the time dimension component from ( )4  A Vt= 

  
to ( )0A Vt= 

 , so that this fits with the index used in general relativity equations. 
The positive subspace-time metric in the special case with spherical coordinates 
is written in the following formula 

 ( )2 2 2 2 2 2 2 2 2d d d d sin ds V t r r rθ θ= − + + + ∅  



      (63.1) 

Where the metric tensor matrix of positive subspace-time flat in terms of 
spherical coordinates, it is as follows 

 

( )
2

2 2

1 0 0 0
0 1 0 0

0,1,2,30 0 0

0 0 0 sin

g r

r

τ τ

θ

− 
 
 = = = 
 
  









     (64.1) 

As for the metric tensor of positive subspace-time in the general case, it ex-
presses the transformation from the vector `dA  on a flat total space-time fabric 
to the vector dA  as one of the vectors resulting from the analysis of the vector 
dA  on the total curved space-time fabric, through the tensor transformation 
and following the same previous steps from Equation (56.1) to Equation (59.1), 
we get. 

 
` `

`

 

k l

kl
A Ag g
A Aτ τ

 ∂ ∂
=  ∂ ∂ 



 

    (65.1) 

Because we also want in the general case, to maintain the symmetry of the 
structure of spatial space with respect to all observers or in both frames of refer-
ence, but the stability of the spatial components necessarily leads to the stability 
of the time component, we have previously explained this in the special case 
above.Therefore, we assume here also that all contravariant compounds of the 
vector `dA  are equal to the contravariant components of the vector dA , and 
therefore. 

 
` `

  1
k lA A

A Aτ

 ∂ ∂
= ∂ ∂  

    (66.1) 

 `
klg gτ =   (67.1) 

This means that the metric tensor of positive subspace-time in the general 
case is similar to the special case, and therefore Equation (64.1), represents the 
metric tensor of positive subspace-time in both the special and general case, 
meaning we can generalize Equation (63.1) and use it in the general case as well, 
Look at Figure 4(b). As a result of the equality of the time components between 
the two linear elements 2 2d ` ds s=  , we get the following equation. 

 2 2 2 2d dV t c τ− = −

    (68.1) 

 d dV t c τ=

    (69.1) 
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where dτ  is the change in proper time to a body moving along the total 
space-time fabric, dt  the change in coordinate time on the fabric of positive 
subspace-time observed by an observer far from the source of gravity, V  the 
velocity of the photon on the fabric of positive subspace-time, and because the 
time dt  and the time dt  are in the same reference frame S and for the same 
event. So we will assume here also that the time transformation is similar to the 
time transformation in general relativity [21], and it has the following transfor-
mation 

 

2

dd
21

t
MG
rc

τ
=

−





   (70.1) 

where M is the mass of the body causing gravity, G is Gravitational constant, r  
the distance of the body from a source of gravity, and by dividing Equation (69.1) 
by Equation (70.1) 

 2
21 MGV c
rc

= −



  (71.1) 

Equation (71.1) shows us that the observer who is far from the source of grav-
ity observes the velocity of a photon moving along the coordinate r  in the fa-
bric of positive subspace-time, decreasing with the decrease in the radius r  or 
when the photon approaches the source of gravity until it reaches zero, when the 
photon reaches the Schwarzschild radius. 

2.7. The Metric Tensor of Negative Subspace-Time 

As for obtaining the metric tensor for negative subspace-time in the special case, 
because it is also a four-dimensional space split from Minkowski space-time, 
therefore the metric of this space in the special case is also similar to the metric 
of Minkowski space-time or the line element of flat space, so it is written in the 
same previous formula in Equation (60.1) 

 2 2 2 2 2 2d d d d dx y z Vs t= + + −




      (72.1) 

In the tensor form, it is 

 2d d ds A Aσ ρ
σρη=
 

   (73.1) 

 

1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0

or
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1

σρη

   
   
   =
   
   

− −   

   (74.1) 

σρη  represents the metric tensor of negative subspace-time in the special case, 
and it expresses a flat space-time, where we also find ijσρη δ=  and it also cor-
responds with the metric tensor of Minkowski space-time, that is, σρ µνη η= . Be-
cause the direction of the vector in the spatial space of negative subspace-time 
is always parallel to the motion of the reference frame, therefore the first ma-
trix in Equation (74.1) represents the metric tensor of negative subspace-time 
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resulting from the motion of the reference frames relative to each other along 
three axes, but when the relative motion of the reference frames is on only one 
axis, for example the `xx  axis, as we assumed above, the metric tensor of 
negative subspace-time is expressed through the second matrix in the same 
equation. 

To obtain the metric tensor for negative subspace-time in the general case, we 
take the inverse of the metric tensor of the total space-time curved under the in-
fluence of mass shown in Equation (59.1). 

 `
` `

kl
k l

A Ag g
A A

µ ν
µν  ∂ ∂
=  ∂ ∂ 

   (75.1) 

By replacing the contravariant components of the differential vector dA  
with the contravariant components of the differential vectors d ,dA A



 , Accord-
ing to the following equations A A Aµ σ∂ = ∂ + ∂

 , A A Aν τ ρ∂ = ∂ + ∂



 in the pre-
vious equation 

 `
` `

kl
k l

A A A Ag g
A A

σ τ ρ
µν  ∂ + ∂ ∂ + ∂
=  ∂ ∂ 



 



   (76.1) 

 `
` ` ` ` kl
k k l l

A A A Ag g
A A A A

σ τ ρ
µν    ∂ ∂ ∂ ∂
= + +   ∂ ∂ ∂ ∂    



 





   (77.1) 

 `
` ` ` ` ` ` ` `         kl
k l k l k l k l

A A A A A A A Ag g
A A A A A A A A

τ ρ σ τ σ ρ
µν  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

   

    

   (78.1) 

Assuming here that the vectors d ,dA A


  are perpendicular, therefore the dot 
product of the following components equals zero. 

 ` ` ` `    0k l k l
A A A A
A A A A

ρ σ τ∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂



 



   (79.1) 

 ` `
` ` ` `   kl kl
k l k l

A A A Ag g g
A A A A

τ σ ρ
µν    ∂ ∂ ∂ ∂
= +   ∂ ∂ ∂ ∂   

 

 



   (80.1) 

Where the first amount on the right side of the equation represents the in-
verse of the metric tensor for positive subspace-time g τ



  in the general case we 
previously explained above, and the second amount in the equation represents 
the inverse of the metric tensor for negative subspace-time in the general case 
gσρ  with the index followed in general relativity 0,1,2,3σ ρ= = . By rear-
ranging the terms, we obtain the inverse of the metric tensor for negative sub-
space-time in terms of both the inverse of the metric tensor of total and positive 
space-time in the general case. 

 g g gσρ µν τ= −



   (81.1) 

Assuming here the curvature of space-time under the influence of a spheri-
cally symmetrical, non-rotating, uncharged mass, in this case we can substitute 
the metric tensor of the total space-time by the Schwarzschild matrix, [22] 
[23]. 
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( )

2

2

2 2

1 0 0 0

10 0 0 2
1

0 0 0
0 0 0 sin

s

s s

r
r

MGrg r
cr

r
r

µν

θ

  − −  
  

 
 = =  −   
 
 
  

   (82.1) 

From Equation (64.1) we obtain the inverse of the metric tensor for positive 
subspace-time in the general case, and from Equation (82.1) we also obtain the 
inverse of the metric tensor for total space-time in the general case, by substi-
tuting in Equation (81.1) 

( )

( )

2

2
2 2

2 2

1 0 0 0
1 0 0 01

0 1 0 0
0 1 0 0 10 0 0

1 10 0 0 0 0 0
sin

10 0 0
sin

s

s

r
r

r
g r r

r r

r

σρ

θ

θ

 −    −−   
    

       − = −    
   
   
   

    
 
  







  (83.1) 

 

1 1 0 0 0
1

0 1 1 0 0

0 0 0 0
0 0 0 0

s

s

r
r

rg
r

σρ

 − +   − 
  

 =   − −   
 
 
  

   (84.1) 

The previous equation represents the inverse metric tensor matrix for negative 
subspace-time in the general case, and from it, we obtain the matrix of the me-
tric tensor. 

 

1
0 0 0

1 1

10 0 0
1 1

0 0 0 0
0 0 0 0

s

s

s

r
r

r
r

g
r
r

σρ

  −    
  − −    

=  
   − − 

  
 
 
  

    (85.1) 

From the metric tensor matrix, we obtain the line element of negative sub-
space-time in the general case, it is a curved fabric. See Figure 4(c). 
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 2 2 2 2
1

1d d d
1 1 1 1

s

s s
V

r
rs r

r
t

r
r r

    −        = +
      − − − −            

 





   (86.1) 

Because 2 2d d `s s=  we can assume here that the spatial coordinates of any 
event on the total space-time fabric with respect to the reference frame S’ are 
equal to the spatial coordinates of the same event on the negative subspace-time 
fabric with respect to the reference frame S, that is 

 ( )
1

`2 `2 `2 2 ` `2 2d d sin d d 1 1srr r r
r

θ θ
−

  + + ∅ = − −  
  

    (87.1) 

In case, if the event occurs on coordinate `r  only, that is, d ` d ` 0θ = ∅ = , 
and therefore 

 2 `2
2

2d d 1 1
 

MGr r
r c

  = − −    

    (88.1) 

As a result of the previous assumption, we also find that the time coordinate 
of any event on the total space-time fabric with respect to the reference frame S’ 
is necessarily equal to the time coordinate of the same event on the negative 
subspace-time fabric with respect to the reference frame S, that is. 

 2 `2 2 2
1

d d
1 1

s

s
V t

r
rc t

r
r

  −    − =
  − −    





   (89.1) 

Assuming here that the transformation of time into negative subspace-time is 
according to the following equation 

 `2 2
2

2d d 1 MGt
r

t
c

 = − 
 



   (90.1) 

By substituting from (90.1), into (89.1) 

 
2

2

1 1s
c

r
r

V
− =

 − − 
 



   (91.1) 

 2 2 1 1s

r
V rc   = − − −  

  



   (92.1) 

By substituting for the value of the Schwarzschild radius 

  2
s

MG rV c
r

Vr= = =
 

   (93.1) 

We conclude from the last equation that the observer, who is far from the 
source of gravity, observes the velocity of a photon moving on the coordinate 
r  in the fabric of negative subspace-time, which is always equal to the escape 
velocity from gravity of the body. It increases as the radius r  decreases, or 
when the photon approaches the source of gravity, as the velocity of the photon 

https://doi.org/10.4236/jamp.2024.127148


M. Girgis 
 

 

DOI: 10.4236/jamp.2024.127148 2485 Journal of Applied Mathematics and Physics 
 

reaches the speed of light when the photon reaches the Schwarzschild radius, 
which is an opposite result of the movement of the photon on the total curved 
fabric of space-time in general relativity. We also conclude that the velocity of 
the particle in negative subspace-time does not depend on the mass of the 
moving particle, but rather on the mass M that causes the curvature. This 
means that all particles will have the same magnitude of velocity at the same 
position on the r  coordinate. As for the direction, it changes from one posi-
tion to another on the r  coordinate, because the particle moves on a curve, but 
the curves remain not intersecting. Therefore, negative subspace-time in the 
general case has the same geometric properties as negative subspace-time in the 
special case. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. (a) Shows the total space-time curve 
under the influence of a mass; (b) The positive 
sub-space-time; (c) The negative sub-space-time 
split from the total space-time. 
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3. Results 

Analyzing a four-dimensional displacement vector on the fabric of space-time in 
the special or general case into two four-dimensional displacement vectors leads to 
the splitting of the fabric of space-time into four-dimensional subspaces. Where 
the first vector is known as the identical vector because it fulfills the condition of 
symmetry and is represented in a four-dimensional space known as positive sub-
space-time and is characterized by the following properties: Symmetry of the 
structure of spatial space and symmetry of the laws of physics, as expressed in 
the space of causality. The second vector, known as the parallel vector, is 
represented in a four-dimensional space also known as negative subspace-time, 
and is characterized by the following properties: the space devoid of any causali-
ty, or the space of physical quantities that do not affect the behavior of the phys-
ical phenomenon. Thus, in the special case, we have new transformations for the 
coordinates of space and time called modified Lorentz transformations for 
positive and negative subspace-time shown in the first set ((19.1)-(22.1)), and 
the second set ((46.1)-(49.1)), It is characterized by the symmetries mentioned 
above, so length contraction disappears while time dilation remains and the 
speed of light is no longer a universal constant. In the general case, we have 
new types of metric tensor, one for positive subspace-time and the other for 
negative subspace-time (see Equations (64.1) and (71.1)), where we find that 
the velocity of the photon decreases in positive subspace-time until it reaches 
zero and increases in negative subspace-time until it reaches the speed of light 
when the photon reaches the Schwarzschild radius (see Equations (85.1) and 
(93.1)). 

4. Discussions 

Lorentz transformations or special relativity express an observational process 
that appears on devices, and therefore results such as the stability of the speed of 
light for every observer, length contraction, and time dilation can be tested ex-
perimentally. As for the observation process used in the modified Lorentz trans-
formations, it is achieved through a process of mathematical analysis only; it is 
an imaginary observation process that is not achieved experimentally, but ra-
ther purely theoretically. But this does not put the new model in conflict with 
experiments, because the values that appear in imaginary observations are not 
total values, but rather partial values because they are in subspaces. By sum-
ming the values of positive and negative subspace-time, we obtain the values of 
the total space-time and also the same results of the Lorentz transformations, 
and the same in the general case. The purpose of the inverse relativity model is 
not to propose an alternative model to special and general relativity, but rather 
to reveal the complex structure of space-time, including four-dimensional sub-
spaces as well, and the properties of those spaces that are linked to the concept of 
causality, symmetry, and values of the speed of light, (see the comparison Table 
1). 
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Table 1. Comparison between lorentz transformations in special relativity and modified lorentz transformations in inverse rela-
tivity. 

Transformations of space 
and time coordinates 

Special Relativity Inverse Relativity 

Equations 

Lorentz transformations of space and time coordinates 

( )` sx x V tγ= −  

`y y=  
`z z=  

2` sV x
t t

c
γ  = − 
 

 

Where 

2

2

1

1 sV
c

γ =

−

 

Positive modified Lorentz transformations 
`x x=  
`y y=  
`z z=  

`t tγ=  
Negative modified Lorentz transformations 

( )( )1` 1 sx V tx γ γ −= − −  

` 0y =  
` 0z =  

2` sV x
t t

c
γ  = − 
 



 

 
Minkowski space-time in describing causality depends on the speed factor 

only, as we find that the speed of light is the maximum causal speed that exists 
between two events in the universe [24]. But the inverse relativity model follows 
a different approach in describing causality that relies on a geometric factor, 
which is the direction of the velocity vectors, where we find that the direction 
and magnitude of velocity vectors are what express the presence or absence of 
causality in every subspace-time, and the purpose of this description of causality 
in subspaces is to understand the properties of every subspace-time. 

Velocity transformations in the theory of special relativity were intended to 
obtain the law of addition of parallel velocities, while preserving the second 
postulate of special relativity, in order to provide a logical explanation for the 
problem of the constant speed of light in the experiment of Michelson and Mor-
ley [25]. As for the velocity transformations in the inverse relativity model, their 
purpose is to analyze parallel velocities, while also maintaining the second post-
ulate of special relativity (see the comparison Table 2), to reveal the existence of 
subspaces in total space-time. 

 
Table 2. Comparison between velocity transformations in special relativity and inverse 
relativity. 

Transformations  
of Velocity 

Special Relativity Inverse Relativity 

Purpose of  
transformations 

Equations 

Addition of parallel Velocities 
`

`

2

 

1

x s
x

s x

V V
V

V V
c

+

+
=  

Analysis of parallel velocities 

( )` 1

`

2

1

1

x s
x s

s x

V V
V V

V V
c

γ −− +
= =

+



 

` 1
x xV V γ −=  

 
The inverse relativity model is more of a mathematical model than a physical 
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one because it relies primarily on mathematical analysis. The model also does 
not represent an independent physical theory with its results, as in special and 
general relativity. However, the new model can provide some new results within 
the total fabric of space-time (Like the existence of other sub-spacetimes) with-
out the need for additional hidden dimensions as in some other theories, as well 
as new concepts of causality. Through the new view of the structure of total 
space-time, the new model paves the way for solving some of the problems in 
which special and general relativity failed, such as problems of relativistic ther-
modynamics [26], quantum gravity, and others. Where we can address these 
problems through the geometric properties of sub-spacetimes, we will explain 
this in the following papers. 
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