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Abstract: Toeplitz matrix–vector products are used in many digital signal processing applications.
Direct methods for calculating such products require N2 multiplications and N(N − 1) additions,
where N denotes the order of the Toeplitz matrix. In the case of large matrices, this operation becomes
especially time intensive. However, matrix–vector products with small-order Toeplitz matrices are of
particular interest because small matrices often serve as kernels in modern digital signal processing
algorithms. Perhaps reducing the number of arithmetic operations when calculating matrix–vector
products in the case of small Toeplitz matrices gives less effect than of large ones, but this problem
exists, and it needs to be solved. The traditional way to calculate such products is to use the fast
Fourier transform algorithm. However, in the case of small-order matrices, it is advisable to use direct
factorization of Toeplitz matrices, which leads to a reduction in arithmetic complexity. In this paper,
we propose a set of reduced-complexity algorithms for calculating matrix–vector products with
Toeplitz matrices of order N = 3, 4, 5, 6, 7, 8, 9. The main emphasis will be on reducing multiplicative
complexity since multiplication in most cases is more time-consuming than addition. This paper also
provides assessments of the implementation of the developed algorithms on FPGAs.

Keywords: Toeplitz matrix; matrix–vector product; multiplication complexity

1. Introduction

Structured matrices possess some inherent structure or pattern, which can be ex-
ploited to develop faster and more efficient algorithms for computing with them. Com-
puting with structured matrices typically involves developing specialized algorithms
that take advantage of the underlying structure of the matrix to reduce the computa-
tional complexity of matrix operations. Many fast algorithms have been developed
for computing with structured matrices [1–5]. These algorithms can significantly re-
duce the computation complexity when implementing operations with such matrices.
The Toeplitz matrix occupies a special place among structured matrices. This is due to the
widespread use of matrix–vector transforms associated with these matrices when solving
various applied problems. They appear in many areas, like in approximation theory [6],
compressive sensing [7], image processing [8–10], filtering and estimating [11,12], signal
processing [7,13–15], statistics [16,17], time series analysis [18], acoustic echo cancellation
and active noise control [19–21], cryptography [22–24], deep neural networks [25–31], and
many other areas [32–38]. As for the operations of matrix–vector multiplication with small-
order Toeplitz matrices, they are, among other things, used in organizing the structures
and computational processes of high-performance binary multipliers [22,39].

At present, a sufficient number of publications describe efficient methods for fast
calculation of Toeplitz matrix–vector products [40–42]. Known fast algorithms are based
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on embedding such a matrix in a 2N × 2N circulant matrix and calculating the matrix–
vector product with the resulting matrix. Therefore, Toeplitz matrix–vector multiplication
can be calculated as the product of a circulant matrix by a vector. This product can be
computed using fast Fourier transform (FFT) algorithms [43]. These algorithms lead to
data redundancy and require O(NlogN) operations [44]. However, this approach involves
rather complicated housekeeping and a relatively large number of multiplications and
additions. What is more, these operations are performed on complex numbers.

Alternative efficient algorithms for multiplying a Toeplitz/Hankel matrix by a vector
not based on FFT were discussed in [45,46]. Both of these methods, based on the Karatsuba
multiplication method [47], have a computational complexity of O(Nlog23) multiplications
and use only real arithmetic. One way or another, well-known publications mainly describe
general approaches to rationalizing the computations of Toeplitz matrix–vector products
and practically do not consider examples of constructing such algorithms for specific N.
At the same time, developing such algorithms for specific N is of independent interest since
such algorithms can be used as building blocks, contributing to unification in designing
more complex algorithms.

In this article, we propose and describe in detail new rationalized algorithms for
matrix–vector multiplication for Toeplitz matrices of orders N = 3, 4, 5, 6, 7, 8, 9, which
minimize the multiplication complexity compared to the conventional direct method, at the
cost of some increase in additions. We emphasize that the reduced-complexity algorithm
for the product of a matrix and a vector with a Toeplitz matrix for N = 2 is well-known in
the literature and therefore is not considered here.

The remainder of this paper is organized as follows. Section 2 explains the preliminary
information about Toeplitz matrices. Section 3 describes the proposed algorithms for orders
from N = 3 to N = 9. Section 4 evaluates our algorithms in terms of computational cost.
Section 5 concludes this paper.

2. Preliminary Remarks

The Toeplitz matrix is a structural one and has the same values on each diagonal:

TN =


tN−1 . . . t1 t0

tN · · · t2 t1
...

. . . . . .
...

t2N−2 · · · tN tN−1

. (1)

The Toeplitz matrix–vector product can be represented as follows:

YN×1 = TNXN×1, (2)

where XN×1 = [x0, x1, . . . , xN−1]
T , YN×1 = [y0, y1, . . . , yN−1]

T .
A direct application of the mathematical definition of matrix–vector multiplication (2),

based on the multiplication of a dense matrix by a vector, yields an algorithm that, for real
values, requires N2 multiplications and N(N − 1) additions. In the remainder of this article,
such an algorithm will be referred to as the direct method, and the designated number
of arithmetic operations will refer to the case where real values are used. In the general
case of complex value calculations, the corresponding quantities correspond to complex
multiplications and additions. The problem is to find a way to factorize the matrix that will
lead to a reduction in computation, which has been undertaken using the relationships
presented in the paper ([48]).
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3. Algorithms for Toeplitz Matrix–Vector Multiplication
3.1. Algorithm for N = 3

Let it be necessary to calculate the matrix–vector product of the following form:y0
y1
y2

 =

t2 t1 t0
t3 t2 t1
t4 t3 t2

x0
x1
x2

. (3)

The direct method of calculating the base matrix–vector product (3) requires 9 multi-
plications and 6 additions.

Proposition 1. To calculate the product (3), no more than 6 multiplications are required.

Proof. Let us introduce auxiliary matrices: the matrix P(3)
3×6 with the final summation

operations performed to obtain the Y3×1 signals and the matrix T(3)
6×3 with the initial

summation operations to prepare the corresponding signals to be multiplied by the diagonal
matrix D(3)

6 , in which the entries are the algebraic sums of entries of the Toeplitz matrix

T3. In this paper, in matrices containing summation, such as P(3)
3×6 and T(3)

6×3, all zeros are
omitted to improve readability.

P(3)
3×6 =

1 1 1
1 1 1

1 1 1

,

T(3)
6×3 =



1 1
1
1 1

1
1 1

1

,

and
D(3)

6 = diag
(

s(3)0 , s(3)1 , . . . , s(3)5

)
, (4)

s(3)0 = t2, s(3)1 = −t2 − t3 + t4,

s(3)2 = t3, s(3)3 = −t1 + t2 − t3,

s(3)4 = t1, s(3)5 = t0 − t1 − t2.

Taking into account the introduced matrix constructions, expression (2) can be written
in the following form:

Y3×1 = P(3)
3×6D(3)

6 T(3)
6×3X3×1, (5)

where
X3×1 = [x0, x1, x2]

T , Y3×1 = [y0, y1, y2]
T .

It is easy to see that the multiplicative complexity of calculating expression (5) is 6.
The correctness of expression (5) is confirmed by the truth of the expression

T3 = P(3)
3×6D(3)

6 T(3)
6×3,

where T3 is a 3×3 Toeplitz matrix (1). Expression (5) defines a reduced multiplicative complex-
ity algorithm for calculating the matrix–vector product with a third-order Toeplitz matrix.



Signals 2024, 5 420

Remark 1. The proposed algorithm (5) requires only 6 multiplications and 15 additions. In a
number of practical applications, the entries of the Toeplitz matrix, i.e., t0, t1, . . . , t4, are constant
numbers. Then, the entries of the matrix D(3)

6 (4) can be calculated in advance and stored in the
calculator’s memory. For this case, the number of additions in the algorithm is reduced to 9. Thus,
the proposed algorithm (5) applied to the calculation of the matrix–vector product (3) reduces 3
multiplication at the expense of 3 extra additions compared to the direct method.

Figure 1 shows the data flow diagram of the proposed algorithm (5). The initial and
final additions follow from the matrices P(3)

3×6 and T(3)
3×6. The coefficients si are derived from

the entries s(3)i of the matrix D(3)
6 . For simplicity, superscripts on variables are omitted

in all figures, as it is self-evident which variable is referenced in each case. This paper
presents data flow diagrams in a left-to-right orientation, where straightforward lines within
the illustrations represent data transfer operations. Circles in these diagrams represent
multiplication operations, with the respective numerical factors inscribed inside. Points
of convergence, marked with a bold dot, indicate summation. Additionally, dashed lines
indicate data transfer operations with a simultaneous sign change. To maintain visual
clarity, standard lines without arrows are employed.

Figure 1. Data flow diagram of the algorithm (5) for N = 3.

3.2. Algorithm for N = 4

Let it be necessary to calculate the matrix–vector product of the following form:
y0
y1
y2
y3

 =


t3 t2 t1 t0
t4 t3 t2 t1
t5 t4 t3 t2
t6 t5 t4 t3




x0
x1
x2
x3

. (6)

The direct method of calculating this product requires 16 multiplications and 12 additions.

Proposition 2. To calculate the product (6), no more than 9 multiplications are required.

Proof. Let us introduce some auxiliary matrices, pre- and postaddition matrices:

P(4)
4×6 =


1 1

1 1
1 1

1 1

,

P(4)
6×9 = I3 ⊗ P(4)

2×3, P(4)
2×3 =

[
1 1

1 1

]
,

T(4)
9×6 = I3 ⊗ T(4)

3×2, T(4)
3×2 =

1
1 1

1

,
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T(4)
6×4 =



1
1

1 1
1 1
1

1

,

and a diagonal matrix of multiplication factors D(4)
9 , in which the entries are the algebraic

sums of entries of the Toeplitz matrix T4:

D(4)
9 = diag

(
s(4)0 , s(4)1 , . . . s(4)8

)
, (7)

s(4)0 = w(4)
0 + w(4)

1 , s(4)1 = −w(4)
0 ,

s(4)2 = t0 − t2 + w(4)
0 , s(4)3 = t2 − t3, s(4)4 = t3,

s(4)5 = t4 − t3, s(4)6 = −t4 + t6 + w(4)
2 , s(4)7 = −w(4)

2 ,

s(4)8 = −w(4)
1 + w(4)

2 ,

where
w(4)

0 = −t1 + t3, w(4)
1 = t2 − t4, w(4)

2 = t3 − t5,

and the sign ⊗′′ denotes the Kronecker product [49].
Considering the matrices that have been introduced, expression (6) can be represented

as follows:
Y4×1 = P(4)

4×6P(4)
6×9D(4)

9 T(4)
9×6T(4)

6×4X4×1, (8)

where
X4×1 = [x0, x1, x2, x3]

T ,
Y4×1 = [y0, y1, y2, y3]

T .

It is easy to see that the multiplicative complexity of expression (8) is 9.
The correctness of expression (8) is confirmed by the truth of the following expression:

T4 = P(4)
4×6P(4)

6×9D(4)
9 T(4)

9×6T(4)
6×4,

where T4 is a 4 × 4 Toeplitz matrix (1). Expression (8) defines a reduced multiplicative
complexity algorithm for calculating the matrix–vector product with a fourth-order Toeplitz
matrix.

Remark 2. The proposed algorithm requires only 9 multiplications and 26 additions. This gives,
relative to the direct method, a reduction of 7 multiplications at the cost of an additional 14 additions.
Suppose the entries of the matrix D(4)

9 (7) are constant values that can be precomputed and stored in
the memory of a calculator. In that case, the implementation of the algorithm can be accomplished
with only 15 additions, significantly reducing the computational requirements. Finally, we obtain a
reduction in multiplications by 7 at the cost of 3 extra additions.

Figure 2 shows a data flow diagram of the proposed algorithm.
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Figure 2. Data flow diagram of the algorithm (8) for N = 4.

3.3. Algorithm for N = 5

Let it be necessary to calculate the matrix–vector product of the following form:
y0
y1
y2
y3
y4

 =


t4 t3 t2 t1 t0
t5 t4 t3 t2 t1
t6 t5 t4 t3 t2
t7 t6 t5 t4 t3
t8 t7 t6 t5 t4




x0
x1
x2
x3
x4

. (9)

The direct method of calculating this product requires 25 multiplications and 20 additions.

Proposition 3. To calculate the product (9), no more than 14 multiplications are required.

Proof. Let us introduce some auxiliary matrices, pre- and postaddition matrices:

P(5)
11×14 = I4 ⊕ I3 ⊗ P(4)

2×3 ⊕ 1,

T(5)
14×11 = I4 ⊕ I3 ⊗ T(4)

3×2 ⊕ 1,

T(5)
11×5 =



1
1 1
1 1
1 1

1 1
1 1

1
1

1
1

1 1



,

and a diagonal matrix of multiplication factors:

D(5)
14 = diag

(
s(5)0 , s(5)1 , . . . , s(5)13

)
, (10)

s(5)0 = −t4 − t7 + t8 + w(5)
3 , s(5)1 = t4, s(5)2 = t6,

s(5)3 = t7, s(5)4 = w(5)
0 , s(5)5 = t3, s(5)6 = w(5)

2 ,

s(5)7 = t6 − t5 − t4 + t3 − t7, s(5)8 = t5 − t3,

s(5)9 = t4 − w(5)
2 + w(5)

3 , s(5)10 = t2 − t5 + w(5)
1 ,

s(5)11 = t1 − t3, s(5)12 = t0 − t2 + w(5)
1 , s(5)13 = t5,
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where
w(5)

0 = −t3 + t4, w(5)
1 = −t1 − w(5)

0 , w(5)
2 = t2 − t3,

w(5)
3 = −t5 − t6,

and the sign ⊕′′ denotes the direct sum of matrices [50].
Considering the matrix constructions introduced earlier, expression (9) can be refor-

mulated as follows:

Y5×1 = P(5)
5×11P(5)

11×14D(5)
14 T(5)

14×11T(5)
11×5X5×1, (11)

where
X5×1 = [x0, x1, x2, x3, x4]

T ,
Y5×1 = [y0, y2, y3, y3, y4]

T .

It is easy to see that the multiplicative complexity of computing expression (11) is 14.
The correctness of expression (11) is confirmed by the truth of the following expression:

T5 = P(5)
5×11P(5)

11×14D(5)
14 T(5)

14×11T(5)
11×5,

where T5 is a 5 × 5 Toeplitz matrix. Expression (11) defines a reduced multiplicative
complexity algorithm for calculating the matrix–vector product with a fifth-order Toeplitz
matrix.

Remark 3. The proposed algorithm requires only 14 multiplications and 45 additions. This gives,
relative to the direct method, a reduction of 11 multiplications at the cost of an additional 25 additions.
When the entries of the matrix D(5)

14 (10) are constant numbers that can be precalculated and stored
in the calculator’s memory, the implementation of the algorithm (11) requires only 27 additions,
effectively reducing the computational complexity. Finally, we obtain a reduction in multiplications
by 11 at the cost of 7 extra additions.

Figure 3 shows a data flow diagram of the proposed algorithm.

Figure 3. Data flow diagram of the algorithm (11) for N = 5.

3.4. Algorithm for N = 6

Let it be necessary to calculate the matrix–vector product of the following form:

y0
y1
y2
y3
y4
y5

 =



t5 t4 t3 t2 t1 t0
t6 t5 t4 t3 t2 t1
t7 t6 t5 t4 t3 t2
t8 t7 t6 t5 t4 t3
t9 t8 t7 t6 t5 t4
t10 t9 t8 t7 t6 t5





x0
x1
x2
x3
x4
x5

. (12)
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The direct method of calculating this product requires 36 multiplications and 30 additions.

Proposition 4. To calculate the product (12), no more than 18 multiplications are required.

Proof. Let us introduce auxiliary matrices:

P(6)
6×9 =

[
03 I3 I3
I3 I3 03

]
, P(6)

9×18 = I3 ⊗ P(3)
3×6,

and
T(6)

18×9 = I3 ⊗ T(3)
6×3,

T(6)
9×6



1
1

1
1 1

1 1
1 1

1
1

1


,

D(6)
18 = diag

(
s(6)0 , s(6)1 , . . . , s(6)17

)
, (13)

s(6)0 = w(6)
0 , s(6)1 = t10 − w(6)

0 + w(6)
2 ,

s(6)2 = −t6 + t9, s(6)3 = t4 + w(6)
0 + w(6)

2 ,

s(6)4 = −t4 + t7, s(6)5 = −t8 + w(6)
3 − w(6)

4 , s(6)6 = t5,

s(6)7 = −w(6)
3 , s(6)8 = t6, s(6)9 = −t4 + t5 − t6,

s(6)10 = t4, s(6)11 = −w(6)
5 , s(6)12 = w(6)

6 ,

s(6)13 = −t2 − w(6)
4 + w(6)

3 , s(6)14 = t3 − t6,

s(6)15 = −t1 + t6 − w(6)
4 + w(6)

6 , s(6)16 = t1 − t4,

s(6)17 = t0 − t1 − t2 + w(6)
5 ,

where
w(6)

0 = −t5 + t8, w(6)
1 = t6 − t7,

w(6)
2 = −t9 + w(6)

1 , w(6)
3 = t5 + w(6)

1 , w(6)
4 = t3 − t4,

w(6)
5 = t5 + w(6)

4 , w(6)
6 = t2 − t5.

Taking into account the introduced matrix constructions, expression (12) can be written
in the following form:

Y6×1 = P(6)
6×9P(6)

9×18D(6)
18 T(6)

18×9T(6)
9×6X6×1, (14)

where
X6×1 = [x0, x1, x2, x3, x4, x5]

T ,
Y6×1 = [y0, y2, y3, y3, y4, y5]

T .

It is easy to see that the multiplicative complexity of calculating expression (14) is 18.
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The correctness of expression (14) can be checked by a simple substitution:

T6 = P(6)
6×9P(6)

9×18D(6)
18 T(6)

18×9T(6)
9×6,

where T6 is a 6 × 6 Toeplitz matrix. Expression (14) defines a reduced multiplicative
complexity algorithm for calculating the matrix–vector product with a sixth-order Toeplitz
matrix.

Remark 4. The proposed algorithm (14) requires only 18 multiplications and 75 additions. Suppose
the entries of the matrix D(6)

18 (13) are constant values that can be precomputed and stored in the
memory of a calculator. In that case, the implementation of the algorithm can be accomplished
with only 33 additions, significantly reducing the computational requirements. Thus, the proposed
algorithm (14) applied to the calculation of the matrix–vector product (12) reduces 18 multiplications
at the expense of 3 extra additions compared to the direct method.

Figure 4 shows a data flow diagram of the proposed algorithm.

Figure 4. Data flow diagram of the algorithm (14) for N = 6.

3.5. Algorithm for N = 7

Let it be necessary to calculate the matrix–vector product of the following form:

y0
y1
y2
y3
y4
y5
y6


=



t6 t5 t4 t3 t2 t1 t0
t7 t6 t5 t4 t3 t2 t1
t8 t7 t6 t5 t4 t3 t2
t9 t8 t7 t6 t5 t4 t3
t10 t9 t8 t7 t6 t5 t4
t11 t10 t9 t8 t7 t6 t5
t12 t11 t10 t9 t8 t7 t6





x0
x1
x2
x3
x4
x5
x6


. (15)

The direct method of calculating this product requires 49 multiplications and 42 additions.

Proposition 5. To calculate the product (15), no more than 25 multiplications are required.

Proof. Let us introduce auxiliary matrices:

P(7)
16×25 = I4 ⊕ P(3)

3×6 ⊕ I2 ⊕ P(3)
3×6 ⊕ 1 ⊕ P(3)

3×6,
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P(7)
7×16 =



1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1 1 1 1 1


,

T(7)
16×7 =



1
1 1
1 1
1 1

1 1
1 1

1 1
1 1
1 1

1
1

1
1 1

1
1

1



,

T(7)
25×16 = I4 ⊕ T(3)

6×3 ⊕ I2 ⊕ T(3)
6×3 ⊕ 1 ⊕ T(3)

6×3,

and
D(7)

25 = diag
(

s(7)0 , s(7)1 , . . . , s(7)24

)
, (16)

s(7)0 = −t6 − t10 + t12 + w(7)
0 , s(7)1 = t6, s(7)2 = t7,

s(7)3 = t11, s(7)4 = t5, s(7)5 = −w(7)
1 + t7,

s(7)6 = t6, s(7)7 = −t4 + t5 − t6, s(7)8 = t4,

s(7)9 = −t5 − w(7)
2 , s(7)10 = t10, s(7)11 = t9,

s(7)12 = −t5 + t8, s(7)13 = t10 + w(7)
0 + w(7)

1 ,

s(7)14 = −t6 + t9, s(7)15 = −t7 + t8 − t9 − t10 − s(7)7 ,

s(7)16 = −t4 + t7, s(7)17 = −t9 + w(7)
3 , s(7)18 = t8,

s(7)19 = t2 − t5, s(7)20 = −t2 + w(7)
3 , s(7)21 = t3 − t6,

s(7)22 = −t1 + t2 − t3 − t7 − s(7)7 , s(7)23 = t1 − t4,

s(7)24 = t0 − t1 − t2 − t6 − s(7)9 ,

where
w(7)

0 = −t7 − t8 − t9 − t11, w(7)
1 = t5 + t6,

w(7)
2 = −t3 + t4, w(7)

3 = −t8 − s(7)5 + w(7)
2 .

Taking into account the introduced matrix constructions, expression (3) can be written
in the following form:

Y7×1 = P(7)
7×16P(7)

16×25D(7)
25 T(7)

25×16T(7)
16×7X7×1 (17)
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where
X7×1 = [x0, x1, x2, x3, x4, x5, x6]

T ,
Y7×1 = [y0, y2, y3, y3, y4, y5, y6]

T .

It is easy to see that the multiplicative complexity of calculating expression (17) is 25.
The correctness of expression (17) can be checked by a simple substitution:

T7 = P(7)
7×16P(7)

16×25D(7)
25 T(7)

25×16T(7)
16×7,

where T7 is a 7 × 7 Toeplitz matrix. Expression (17) defines a reduced multiplicative
complexity algorithm for calculating the matrix–vector product with a seventh-order
Toeplitz matrix.

Remark 5. The proposed algorithm (17) requires only 25 multiplications and 87 additions. When
the entries of the matrix D(7)

25 (16) are constant numbers that can be precalculated and stored in the
calculator’s memory, the implementation of the algorithm (17) requires only 51 additions, effectively
reducing the computational complexity. Finally, we obtain a reduction in multiplications by 24 at
the cost of 9 extra additions.

Figure 5 shows a data flow diagram of the proposed algorithm.

Figure 5. Data flow diagram of the algorithm (17) for N = 7.
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3.6. Algorithm for N = 8

Let it be necessary to calculate the matrix–vector product of the following form:

y0
y1
y2
y3
y4
y5
y6
y7


=



t7 t6 t5 t4 t3 t2 t1 t0
t8 t7 t6 t5 t4 t3 t2 t1
t9 t8 t7 t6 t5 t4 t3 t2
t10 t9 t8 t7 t6 t5 t4 t3
t11 t10 t9 t8 t7 t6 t5 t4
t12 t11 t10 t9 t8 t7 t6 t5
t13 t12 t11 t10 t9 t8 t7 t6
t14 t13 t12 t11 t10 t9 t8 t7





x0
x1
x2
x3
x4
x5
x6
x7


. (18)

The direct method of calculating this product requires 64 multiplications and 56 additions.

Proposition 6. To calculate the product (18), no more than 27 multiplications are required.

Proof. Let us introduce auxiliary matrices:

P(8)
8×12 = P(4)

2×3 ⊗ I4, P(8)
12×18 = I3 ⊗ P(8)

4×6,

P(8)
4×6 = P(4)

2×3 ⊗ I2, P(8)
18×27 = I9 ⊗ P(4)

2×3,

and
T(8)

27×18 = I9 ⊗ T(4)
3×2, T(8)

18×12 = I3 ⊗ T(8)
6×4,

T(8)
6×4 = T(4)

3×2 ⊗ I2,

T(8)
12×8 =



1
1

1
1

1 1
1 1

1 1
1 1

1
1

1
1



,

D(8)
27 = diag

(
s(8)0 , s(8)1 , . . . , s(8)26

)
, (19)

s(8)0 = t0 + w(8)
0 − w(8)

1 , s(8)1 = t1 − t3 − s(8)10 ,

s(8)2 = t8 + w(8)
0 + w(8)

1 , s(8)3 = w(8)
1 − s(8)4 ,

s(8)4 = t3 − t7, s(8)5 = −s(8)4 + w(8)
2 ,

s(8)6 = −t2 + s(8)4 + w(8)
2 + w(8)

4 , s(8)7 = −s(8)4 − w(8)
3 ,

s(8)8 = −t10 − s(8)5 + w(8)
4 , s(8)9 = t4 − t5 − s(8)12 ,

s(8)10 = t5 − t7, s(8)11 = t6 − t8 − s(8)10 ,

s(8)12 = t6 − t7, s(8)13 = t7, s(8)14 = t8 − t7,

s(8)15 = −s(8)12 + w(8)
5 , s(8)16 = t9 − t7,
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s(8)17 = t7 − t8 + w(8)
6 , s(8)18 = −t4 + t6 − t10 + w(8)

5 + w(8)
7 ,

s(8)19 = t9 − w(8)
7 , s(8)20 = −s(8)11 + w(8)

6 + w(8)
8 ,

s(8)21 = t10 − t11 − s(8)12 , s(8)22 = t11 − t7,

s(8)23 = −s(8)14 − w(8)
8 , s(8)24 = t12 − t13 − s(8)21 − w(8)

5 ,

s(8)25 = −t11 + t13 − s(8)16 ,

s(8)26 = −t13 + t14 + s(8)14 − w(8)
6 + w(8)

8 ,

where
w(8)

0 = −t1 + t3 − t4 + s(8)10 , w(8)
1 = t2 − t6,

w(8)
2 = t4 − t8, w(8)

3 = −t5 + t9, w(8)
4 = t6 + w(8)

3 ,

w(8)
5 = t8 − t9, w(8)

6 = −t9 + t10, w(8)
7 = t11 + s(8)10 ,

w(8)
8 = t11 − t12.

Taking into account the introduced matrix constructions, expression (18) can be written
in the following form:

Y8×1 = P(8)
8×12P(8)

12×18P(8)
18×27D(8)

27 T(8)
27×18T(8)

18×12T(8)
12×8X8×1, (20)

where
X8×1 = [x0, x1, x2, x3, x4, x5, x6, x7]

T ,
Y8×1 = [y0, y2, y3, y3, y4, y5, y6, y7]

T .

It is easy to see that the multiplicative complexity of calculating expression (20) is 27.
The correctness of expression (20) can be checked by a simple substitution:

T8 = P(8)
8×12P(8)

12×18P(8)
18×27D(8)

27 T(8)
27×18T(8)

18×12T(8)
12×8,

where T8 is an 8 × 8 Toeplitz matrix. Expression (20) defines a reduced multiplicative com-
plexity algorithm for calculating the matrix–vector product with an eighth-order Toeplitz
matrix.

Remark 6. The proposed algorithm (20) requires only 27 multiplications and 114 additions.
Suppose the entries of the matrix D(8)

27 (19) are constant values that can be precomputed and stored
in the memory of a calculator. In that case, the implementation of the algorithm can be accomplished
with only 57 additions, significantly reducing the computational requirements. Finally, we obtain a
reduction in multiplications by 37 at the cost of one extra addition compared to the direct method.

Figure 6 shows a data flow diagram of the proposed algorithm.
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Figure 6. Data flow diagram of the algorithm (20) for N = 8.

3.7. Algorithm for N = 9

Let it be necessary to calculate the matrix–vector product of the following form:

y0
y1
y2
y3
y4
y5
y6
y7
y8


=



t8 t7 t6 t5 t4 t3 t2 t1 t0
t9 t8 t7 t6 t5 t4 t3 t2 t1
t10 t9 t8 t7 t6 t5 t4 t3 t2
t11 t10 t9 t8 t7 t6 t5 t4 t3
t12 t11 t10 t9 t8 t7 t6 t5 t4
t13 t12 t11 t10 t9 t8 t7 t6 t5
t14 t13 t12 t11 t10 t9 t8 t7 t6
t15 t14 t13 t12 t11 t10 t9 t8 t7
t16 t15 t14 t14 t12 t11 t11 t9 t8





x0
x1
x2
x3
x4
x5
x6
x7
x8


. (21)

The direct method of calculating this product requires 81 multiplications and 72 addi-
tions.

Proposition 7. To calculate the product (21), no more than 36 multiplications are required.
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Proof. Let us introduce auxiliary matrices:

T(9)
18×9 =



1 1
1 1

1 1
1 1

1 1
1 1

1
1

1
1

1
1

1 1
1 1

1 1
1

1
1



,

T(9)
36×18 = I6 ⊗ T(3)

6×3, T(3)
6×3 =



1 1
1
1 1

1
1 1

1

,

P(9)
18×36 = I6 ⊗ P(9)

3×6,

P(9)
3×6 =

1 1 1
1 1 1

1 1 1

,

P(9)
9×18 =



1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1


,

and
D(9)

36 = diag
(

s(9)0 , s(9)1 , . . . , s(9)35

)
, (22)

s(9)0 = t8, s(9)1 = −t8 − w(9)
0 , s(9)2 = t9,

s(9)3 = −t7 + t8 − t9, s(9)4 = t7, s(9)5 = −t8 + w(9)
1 ,

s(9)6 = t11, s(9)7 = −t11 − w(9)
2 , s(9)8 = t12,

s(9)9 = −t10 + t11 − t12, s(9)10 = t10,

s(9)11 = −t11 + w(9)
0 , s(9)12 = −t11 + t14 − t8,
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s(9)13 = −t15 + t16 − s(9)1 + w(9)
3 , s(9)14 = −t12 + t15 − t9,

s(9)15 = −t13 + t14 − t15 − s(9)3 − s(9)9 ,

s(9)16 = −t10 + t13 − t7, s(9)17 = −w(9)
0 − s(9)5 + w(9)

3 ,

s(9)18 = t8 − w(9)
4 , s(9)19 = −w(9)

0 + s(9)5 + w(9)
2 + w(9)

4 ,

s(9)20 = −t6 + t9 − t12, s(9)27 = t5 − t4 − t6,

s(9)21 = s(9)3 − s(9)9 − s(9)27 , s(9)22 = −t4 + t7 − t10,

s(9)23 = −w(9)
0 + s(9)5 + w(9)

4 − w(9)
5 , s(9)24 = t5,

s(9)25 = −t5 − t6 + t7, s(9)26 = t6, s(9)28 = t4,

s(9)29 = −t5 + w(9)
5 , s(9)30 = −t8 − w(9)

6 ,

s(9)31 = −s(9)1 + w(9)
1 − w(9)

5 + w(9)
6 , s(9)32 = t3 − t6 − t9,

s(9)33 = t2 − s(9)3 − s(9)27 + w(9)
7 , s(9)34 = t1 − t4 − t7,

s(9)35 = t0 + t4 − s(9)5 + w(9)
6 + w(9)

7 ,

where
w(9)

0 = t9 − t10, w(9)
1 = t6 − t7, w(9)

2 = t12 − t13,

w(9)
3 = −t14 − s(9)7 , w(9)

4 = t5 + t11, w(9)
5 = t3 − t4,

w(9)
6 = −t2 + t5, w(9)

7 = −t1 − t3.

Taking into account the introduced matrix constructions, expression (21) can be written
in the following form:

Y9×1 = P(9)
9×18P(9)

18×36D(9)
36 T(9)

36×18T(9)
18×9X9×1, (23)

where
X9×1 = [x0, x1, x2, x3, x4, x5, x6, x7, x8]

T ,
Y9×1 = [y0, y2, y3, y3, y4, y5, y6, y7, y8]

T .

It is easy to see that the multiplicative complexity of calculating expression (23) is 36.
The correctness of expression (23) can be checked by a simple substitution:

T9 = P(9)
9×18P(9)

18×36D(9)
36 T(9)

36×18T(9)
18×9,

where T9 is a Toeplitz matrix (1) of the 9th order. Expression (5) defines a reduced multi-
plicative complexity algorithm for calculating the matrix–vector product with a ninth-order
Toeplitz matrix.

Remark 7. The proposed algorithm (5) requires only 36 multiplications and 144 additions. In a
number of practical applications, the entries of the Toeplitz matrix are constant numbers. Then the
entries of the matrix D(9)

36 (22), i.e., t0, t1, . . . , t16, can be calculated in advance and stored in the
calculator’s memory. For this case, the number of additions in the algorithm is reduced to 81. Thus,
the proposed algorithm (23) applied to the calculation of the matrix–vector product (21) reduces
45 multiplications at the expense of 9 extra additions, compared to the direct method.

Figure 7 shows a data flow diagram of the proposed algorithm.
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Figure 7. Data flow diagram of the algorithm (23) for N = 9.

4. Computational Cost Analysis

Compared to the direct method, the proposed algorithms achieve a notable reduction
in the number of multiplications at the expense of an increase in elementary additions.
Table 1 summarizes this reduction. As multiplication operations typically require more
resources than additions, the proposed method offers resource savings in application-
specific integrated circuits (ASICs) and enables the use of more straightforward and cheaper
field-programmable gate arrays (FPGAs).

The number of additions is reduced when constant coefficient values are present in
the Toeplitz matrix. In such a situation, it becomes possible to precalculate the multipliers
appearing in matrices D(3)

6 (4), D(4)
9 (7), D(5)

14 (10), D(6)
18 (13), D(7)

25 (16), D(8)
27 (19), or D(9)

36 (22).
As a result, there is a notable reduction in the number of additions, as included in Table 2.
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Table 1. The comparison of the number of multiplications and additions in the direct method and the
proposed algorithm in the general case.

Order of Multiplications Additions Arithmetic Operations

Matrix Direct Prop. Reduct. Direct Prop. Incr. Direct Prop. Incr.

3 9 6 3 6 15 9 15 21 6

4 16 9 7 12 26 14 28 35 7

5 25 14 11 20 45 25 45 59 14

6 36 18 18 30 60 30 66 78 12

7 49 25 24 42 87 45 91 112 21

8 64 27 37 56 114 58 120 141 21

9 81 36 45 72 144 72 153 180 27

Table 2. The comparison of the number of multiplications and additions in the direct method and the
proposed algorithm, assuming a constant value of the elements of the Toeplitz matrix.

Order of Multiplications Additions Arithmetic Operations

Matrix Direct Prop. Reduct. Direct Prop. Incr. Direct Prop. Reduct.

3 9 6 3 6 9 3 15 15 0

4 16 9 7 12 15 3 28 24 4

5 25 14 11 20 27 7 45 41 4

6 36 18 18 30 33 3 66 51 15

7 49 25 24 42 51 9 91 76 15

8 64 27 37 56 57 1 120 84 36

9 81 36 45 72 81 9 153 117 36

The proposed algorithm was exemplified in FPGAs on Xilinx’s Spartan 3, the most
straightforward possible device of the Spartan series, containing the number of inputs and
outputs required by the algorithm. The 8-bit xi inputs, 16-bit yi outputs, and fixed 8-bit
coefficients in the Toeplitz matrix were assumed. Table 3 shows the number of slices and
Table 4 the four-input LUTs used in the Spartan 3 FPGA implementation. Both algorithms
took full advantage of the available multipliers MULT 18 × 18 on each FPGA chip, as shown
in Table 3. A significant reduction in the logic blocks used was achieved in the example
applications shown.

Table 3. The number of available multipliers and used slices in implementations of algorithms on
Spartan 3 FPGAs.

Order of Slices
Matrix Devices MULT 18 × 18 Direct Proposed Reduction

3 xc3s50-4pq208 4 136 76 44.1%
4 xc3s50-4pq208 4 292 210 28.1%
5 xc3s200-4pq208 12 384 249 35.2%
6 xc3s400-4fg456 16 542 332 38.7%
7 xc3s400-4fg456 16 934 634 32.1%
8 xc3s1000-4fg456 24 1011 553 45.3%
9 xc3s1000-4fg676 24 1519 890 41.4%
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Table 4. The number of 4-input LUTs used in implementations of algorithms on Spartan 3 FPGAs.

Order of 4 Input LUTs
Matrix Devices Direct Proposed Reduction

3 xc3s50-4pq208 256 140 45.3%
4 xc3s50-4pq208 549 382 30.4%
5 xc3s200-4pq208 729 467 35.9%
6 xc3s400-4fg456 1031 612 40.6%
7 xc3s400-4fg456 1757 1172 33.3%
8 xc3s1000-4fg456 1871 1042 44.3%
9 xc3s1000-4fg676 2882 1656 42.5%

5. Conclusions

In this paper, we proposed the algorithms for calculating matrix–vector products with
Toeplitz matrices with order N equal to 3, 4, 5, 6, 7, 8, and 9. The algorithms we proposed
aim to decrease the number of multiplications, albeit at the cost of additional additions
compared to the direct algorithm. This trade-off is advantageous due to the additions’
relatively lower resource requirements compared with multiplications.

Further reduction can be achieved when the entries in the Toeplitz matrix are constants.
In such instances, a preprocessing step allows certain additions to be performed outside
the algorithm. This approach effectively reduces the number of additions required during
the algorithm’s execution. Consequently, the overall count of arithmetic operations is lower
than the conventional direct method.

Author Contributions: Conceptualization, A.C.; methodology, A.C., J.P.P., and P.S.; formal analysis,
A.C., J.P.P., P.S. and M.M.; writing—original draft preparation, J.P.P.; writing—review and editing,
A.C. and J.P.P.; visualization, A.C., J.P.P., P.S. and M.M.; supervision, A.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Dataset available on request from the authors.

Acknowledgments: We would like to thank the esteemed reviewers for their efforts and assistance in
improving the quality of our manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

FFT fast Fourier transform

References
1. Eidelman, Y.; Gohberg, I.; Haimovici, I. Separable type representations of matrices and fast algorithms. In Operator Theory:

Advances and Applications; Birkhauser Springer: Basel, Switzerland, 2014; Volume 234.
2. Neuts, M.F. Structured Stochastic Matrices of M/G/1 Type and Their Applications; CRC Press: New York, NY, USA, 2021.
3. Olshevsky, V. Fast Algorithms for Structured Matrices: Theory and Applications: AMS-IMS-SIAM Joint Summer Research Conference

on Fast Algorithms in Mathematics, Computer Science, and Engineering, 5–9 August 2001, Mount Holyoke College, South Hadley,
Massachusetts; Contemporary Mathematics; American Mathematical Soc.: South Hadley, MA, USA, 2003; Volume 323.

4. Pan, V. Structured Matrices and Polynomials: Unified Superfast Algorithms; Springer Science & Business Media: Boston, MA,
USA, 2001.

5. Yagle, A.E. 22 fast algorithms for structured matrices in signal processing. In Handbook of Statist; Elsevier: Amsterdam,
The Netherlands, 1993; Volume 10, pp. 933–972. [CrossRef]

6. Strang, G. The discrete cosine transform, block Toeplitz matrices, and wavelets. In Advances in Computational Mathematics ; CRC
Press: Boca Raton, FL, USA, 1999; Volume 202, pp. 517–536.

7. Haupt, J.; Bajwa, W.U.; Raz, G.; Nowak, R. Toeplitz compressed sensing matrices with applicat ions to sparse channel estimation.
IEEE Trans. Inf. Theory 2010, 56, 5862–5875. [CrossRef]

8. Chen, Z.; Nagy, J.G.; Xi, Y.; Yu, B. Structured FISTA for image restoration. Numer. Linear Algebra Appl. 2020, 27, 2278. [CrossRef]

http://doi.org/10.1016/S0169-7161(05)80088-4
http://dx.doi.org/10.1109/TIT.2010.2070191
http://dx.doi.org/10.1002/nla.2278


Signals 2024, 5 436

9. Hu, Y.; Liu, X.; Jacob, M. A generalized structured low-rank matrix completion algorithm for mr image recovery. IEEE Trans. Med.
Imaging 2018, 38, 1841–1851. [CrossRef]

10. Zhang, X.; Zheng, Y.; Jiang, Z.; Byun, H. Numerical algorithms for corner-modified symmetric Toeplitz linear system with
applications to image encryption and decryption. J. Appl. Math. Comput. 2023, 69, 1967–1987. [CrossRef]

11. Moir, T. Toeplitz matrices for lti systems, an illustration of their application to wiener filters and estimators. Internat. J. Syst. Sci.
2018, 49, 800–817. [CrossRef]

12. Zhang, Y.; Zhang, Y.; Li, W.; Huang, Y.; Yang, J. Super-resolution surface mapping for scanning radar: Inverse filtering based on
the fast iterative adaptive approach. IEEE Trans. Geosci. Remote. Sens. 2017, 56, 127–144. [CrossRef]

13. Chan, R.H.-F.; Jin, X.-Q. An Introduction to Iterative Toeplitz Solvers; SIAM: Philadelphia, PA, USA , 2007.
14. Goian, A.; AlHajri, M.I.; Shubair, R.M.; Weruaga, L.; Kulaib, A.R.; AlMemari, R.; Darweesh, M. Fast detection of coherent

signals using pre-conditioned root-music based on Toeplitz matrix reconstruction. In Proceedings of the WiMob 2015: IEEE
11th International Conference on Wireless and Mobile Computing, Networking and Communications, Abu Dhabi, United Arab
Emirates, 19–21 October 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 168–174.

15. Laskar, M.R.; Mondal, S.; Dutta, A.K. A low complexity quantum simulation framework for Toeplitz-structured matrix and its
application in signal processing. IEEE Trans. Quantum Eng. 2023, 4, 1–23. [CrossRef]

16. Qiao, H.; Pal, P. Generalized nested sampling for compressing low rank Toeplitz matrices. IEEE Signal Process. Lett. 2015, 22,
1844–1848. [CrossRef]

17. Steimel, U. Fast computation of Toeplitz forms under narrowband conditions with applications to statistical signal processing.
Signal Process. 1979, 1, 141–158. [CrossRef]

18. Chen, B.; Liu, Y.; Zhang, C.; Wang, Z. Time series data for equipment reliability analysis with deep learning. IEEE Access 2020, 8,
105484–105493. [CrossRef]

19. Albu, F.; Fagan, A. The Gauss-Seidel pseudo affine projection algorithm and its application for echo cancellation. In Proceedings
of the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003;
IEEE: Piscataway, NJ, USA, 2003; pp. 1303–1306.

20. Lu, L.; Yin, K.L.; de Lamare, R.C.; Zheng, Z.; Yu, Y.; Yang, X.; Chen, B. A survey on active noise control in the past decade—Part I:
Linear systems. Signal Process. 2021, 183, 108039. [CrossRef]

21. Wu, L.; Qiu, X.; Guo, Y. A generalized leaky FxLMS algorithm for tuning the waterbed effect of feedback active noise control
systems. Mech. Syst. Signal Process. 2018, 106, 13–23. [CrossRef]

22. Pan, J.S.; Lee, C.Y.; Sghaier, A.; Zeghid, M.; Xie, J. Novel systolization of subquadratic space complexity multipliers based on
Toeplitz matrix–vector product approach. IEEE Trans. Very Large Scale Integr. (Vlsi) Syst. 2019, 27, 1614–1622. [CrossRef]
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