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Abstract: The enhancement of images captured under low-light conditions plays a vitally impor-
tant role in the area of image processing and can significantly affect the performance of following
operations. In recent years, deep learning techniques have been leveraged in the area of low-light
image enhancement tasks, and deep-learning-based low-light image enhancement methods have
been the mainstream for low-light image enhancement tasks. However, due to the inability of existing
methods to effectively maintain the color distribution of the original input image and to effectively
handle feature descriptions at different scales, the final enhanced image exhibits color distortion
and local blurring phenomena. So, in this paper, a novel dual color-and-texture-enhancement-based
low-light image enhancement method is proposed, which can effectively enhance low-light images.
Firstly, a novel color enhancement block is leveraged to help maintain color distribution during the
enhancement process, which can further eliminate the color distortion effect; after that, an attention-
based multiscale texture enhancement block is proposed to help the network focus on multiscale
local regions and extract more reliable texture representations automatically, and a fusion strategy
is leveraged to fuse the multiscale feature representations automatically and finally generate the
enhanced reflection component. The experimental results on public datasets and real-world low-light
images established the effectiveness of the proposed method on low-light image enhancement tasks.

Keywords: low-light image enhancement; deep learning; color enhancement block; texture
enhancement block; multiscale feature fusion

1. Introduction

Images contain sufficient real-world information, and image processing techniques
allow automatic information extraction from images, further enabling different applications
of the aforementioned information. However, under certain extreme conditions, it may not
be possible to acquire images under sufficient light conditions. There may be a lot of causes
for insufficient light conditions, such as low-light environments, limited performance of
photography equipment, and improper usage of the equipment. Low-light conditions may
lead to multiple degradations, such as poor visibility, low contrast, and accidental noise,
which means that compared with images captured under sufficient imaging conditions, it
is a challenge to extract information from low-light images. So, based on the discussions
above, low-light image enhancement (LLIE) has become an important branch in the image
processing area.

In recent years, researchers have paid great attention to the LLIE task, and multiple
methods have been proposed to improve the subjective and objective quality of low-
light images [1]. Previous methods [2–5] mainly focus on the spatial low-light image
enhancement tasks, such methods directly operating on the pixels of input images, making
the enhancement process simple and efficient, and the speed can also be very fast. However,
although such methods can improve the brightness of input images to a certain extent
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and enhance the details, the overall characteristics of the image are ignored, so the final
enhanced image has a poor sense of hierarchy. The histogram equalization-based methods
are simple and have a good enhancement performance on most low-light images, but they
cannot conform to the law of object imaging models, and the enhanced image may contain
problems, such as dark brightness, detail loss, and color distortion, which cannot achieve
satisfactory visual effects.

Another category is based on the Retinex theory. The Retinex theory was first proposed
by Land in 1977 [6] and was a human visual characteristics-based image enhancement
method. The Retinex theory assumes that the color of an object depends on the object’s
ability to reflect light, rather than the absolute value of the texture of reflected light, and the
color is not affected by lighting inhomogeneity. So, the Retinex theory needs to decompose
the observed image into a reflection component and an illumination component, and only
the reflection component is used to achieve enhancement on observed images. The Retinex-
theory-based methods can realize brightness unity, detail enhancement, and color fidelity,
which has been favored by scholars around the world and has been widely used in the field
of image enhancement.

In recent years, deep learning [7] has been established to be a very powerful tool
for feature extraction, and it has been widely used in multiple research areas, such as
image classification [8–11], object detection [12–16], image segmentation [17–20], etc. By
optimizing the feature extractor and classifier in an end-to-end fashion, deep learning
models can automatically extract high-level feature representations and achieve the global
optimum during the training process. Deep learning has also been applied to the area of
image enhancement, especially for low-light image enhancement tasks. Researchers also
proposed RetinexNet [21], which combined Retinex theory with deep learning technology,
and further proposed multiple low-light image enhancement methods. The general process
of Retinex-theory-based methods is to extract the illumination component and reflection
component through a decomposition model first, and then enhancement is applied to
the reflection component, and the enhanced reflection component and illumination are
composed again to generate the final enhanced image.

However, although deep-learning-based image enhancement methods [22–28] have
achieved very outstanding performance, the low-light image enhancement task is still
considered a huge challenge, and most of the existing methods still suffer from the problem
of color distortion and local blurring. This is because most of the existing enhancement
methods have difficulty retaining color distribution, while also failing to extract multiscale
region texture representations during the enhancement process. So, in response to the
above questions, a novel low-light image enhancement method, which is called the dual
color-and-texture-enhancement-based LLIE (DCTE-LLIE) method is proposed in this paper.
The contribution of the proposed DCTE-LLIE method can be summarized as follows:

1. A novel method called the DCTE-LLIE method is proposed in this paper. The
proposed DCTE-LLIE method can extract more realistic color and texture feature
representations of low-light images during the enhancement process, which can help
eliminate the color distortion and local blurring effect on the final enhanced image
more effectively.

2. A novel color enhancement block (CEB) is proposed to extract more realistic color
representations by maintaining the color distribution of the low-light images during
the enhancement process, help extract more reasonable color representations, and
finally, eliminate the color distortion of the final enhanced image.

3. A multiscale attention-based texture enhancement block (ATEB) is proposed to help
the network focus on the local regions and extract more effective and reliable texture
feature representations during the training process; also, a multiscale feature fusion
strategy is proposed to fuse multiscale features automatically and finally generate
more reliable texture representations.

The rest of the paper is organized as follows: The related work of low-light image
enhancement is introduced in Section 2, and the detailed description of the proposed
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DCTE-LLIE method is described in Section 3. The experimental results on public datasets
and real-world images are shown in Section 4. The paper is concluded in Section 5.

2. Related Work

The low-light image enhancement methods can be divided into three categories:
(a) generic enhancement methods; (b) Retinex-theory-based enhancement methods; and
(c) deep-learning-based enhancement methods.

The generic enhancement methods: Histogram equalization (HE) [29] and its vari-
ations are first applied to the enhancement process to make sure the histogram of the
output image can meet the constraints. The HE-based methods can be categorized into
global histogram-equalization-based methods [29] and local histogram-equalization-based
methods [30–32]. The global HE-based method aims to adjust the overall gray level of
the low-light image, but the performance will be worse if the input image is darker, as
the object information of the image cannot be highlighted and the details cannot be well
preserved. The local HE-based method is to split the input image into multiple subblocks,
equalize the histograms for each subblock separately, and finally superimpose the sub-
blocks to achieve the enhanced image. As each subblock is a neighborhood of a certain
pixel, the high-frequency gray level can be improved, and the low-frequency gray level is
suppressed. The dehazing-based method [33] takes advantage of the inverse connection
between low-light images and images under hazy environments. However, the above
methods may lead to amplified intensive noise during the enhancement process.

Another category is the Retinex-theory-based method. Retinex theory can decompose
the input image into an illumination component and reflection component, and the en-
hancement process can be applied to the illumination component and reflection component,
respectively. Finally, the enhanced illumination component and reflection component
are composed again to obtain the final enhanced image. Multiple methods have been
proposed for the decomposition process [34–36]. The single-scale Retinex [34] method first
leverages the Gaussian filter to smooth the illumination component and further enhance
the low-light image. The multiscale Retinex method [35] extends the above methods by
multiscale Gaussian filters. The LIME [37] method takes advantage of structure priors to
estimate the illumination components and finally uses the reflection component as the
enhanced result. Also, multiple methods [38,39] are proposed to enhance low-light images
by simultaneously achieving image enhancement and noise removal.

Although existing methods have shown outstanding performance on the low-light
image enhancement task and are established to obtain pleasant results, the performance of
the above methods may be limited due to the models’ capacity. However, in recent years,
with the rapid development of deep neural networks, convolution neural networks (CNNs)
have been widely used in the compute vision area. Also, as CNNs have power in the low-
level computer vision area [22–28], CNN-based LLIE methods have drawn great attention.
Wang et al. [22] proposed novel lightening back-projection blocks to learn the residual
for normal-light estimations. Wang et al. [24] proposed a novel stream regularization
model LLFlow to achieve outstanding performance on multiple tasks. Guo et al. [27]
transfer an input image into luminance–chrominance color space and eliminate noise in
the brightened luminance. Many existing methods also take advantage of the Retinex
theory to help improve the performance of LLIE methods. Zhao et al. [23] proposed a novel
generative strategy for Retinex decomposition, further estimated the latent components,
and performed low-light image enhancement. Hai et al. [25] took advantage of frequency
information to preserve image details and achieved more robust results. Yang et al. [26]
proposed an enhanced method that takes advantage of ViT to acquire high-level global
fine-tuned features and achieved further improvement on enhancement. Cai et al. [28]
proposed an illumination-guided transformer that utilizes illumination representations to
direct the modeling of nonlocal interactions of regions with different light conditions.
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3. DCTE-LLIE Method

Although researchers have proposed multiple low-light image enhancement methods,
and the enhancement performance is established, existing methods still suffer from color
distortion and local blurring effects. So, considering the above problems, a novel method
called the DCTE-LLIE method is proposed in this paper to deal with low-light image
enhancement tasks. The proposed method contains three main blocks: (a) the decomposion
subnetwork; (b) the color enhancement block (CEB), and (c) the attention-based texture
enhancement block (ATEB). The whole structure of the proposed DCTE-LLIE method is
shown in Figure 1. As the DCTE-LLIE method is designed based on the Retinex theory, the
input image is first decomposed into the reflection component and illumination component,
and the enhancement method is then applied to the reflection and illumination components,
respectively. The illumination component is enhanced by a denoising operation that is
the same as RetinexNet, while the proposed CEB and ATEB are applied to the reflection
component. Finally, the enhanced illumination component and reflection component are
composed to obtain the final enhanced image.

Figure 1. The structure of the proposed reflection enhancement branch of the DCTE-LLIE method.

3.1. Decomposition Subnetwork

As the DCTE-LLIE method is designed based on the Retinex theory, the input image
should be first decomposed into a reflection component and an illumination component.
In this paper, a decomposition subnetwork is used to achieve image decomposition. Based
on the Retinex theory, the image I can be decomposed as

I(x, y) = R(x, y)× L(x, y) (1)

where L(x, y) is the reflection component, R(x, y) is the illumination component, × rep-
resents the multiplication operation. According to the Retinex theory, the reflection com-
ponent is a constant part that is determined by the nature of the object itself, while the
illumination component is affected by the external light. So, the enhancement process
can be achieved on the reflection component by removing the influence of lighting while
correcting the illumination component.

The proposed decomposition network is constructed by 5 convolution layers followed
by ReLU, and a two-channel output that corresponds to the reflection and illumination
component is generated. The output goes through a sigmoid function to generate the
final output which has the same size as the input. For each input image pair (including
the low-light image and corresponding normal-light image), the low-light image is de-
composed into reflection component Rlow and illumination component Llow, while the
normal-light image is decomposed into reflection component Rnormal and illumination
component Lnormal . A constrained loss function is leveraged to optimize the parameter of
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the proposed decomposition subnetwork, and the final loss function is composed of recon-
struction loss Lrecon, reflection component consistency loss Lir, and illumination smoothing
loss Lis. The decomposition loss LD can be formed as

LD = Lrecon + λirLir + λisLis (2)

where the Lrecon loss is defined as

Lrecon = ∑
i=low,normal

∑
j=low,normal

λij||Ri ∗ I j − Sj||1 (3)

where ∗ represents the inner product operation. Lrecon is designed to enable the reflection
and illumination components to reconstruct the origin input as much as possible. The
reflection component consistency loss Lir is defined as

Lir = ||Rlow − Rnormal ||1 (4)

where ||||1 means the L1 loss. Lir aims to make sure the reflection components of low-light
image Rlow and normal-light image Rnormal should be as similar as possible. The smoothing
loss Lis aims to represent that an ideal illumination component should be as smooth as
possible. The illumination smooth loss Lis is then defined as

Lis = ∑
i=low,normal

|| ▽ Ii ◦ exp(−λg ▽ Ri)|| (5)

where ▽Ii means calculating the gradient of Ii, and ▽Ri represents the gradient of Ri. The
proposed smooth loss assigns weights to the gradient map of the lighting components by
finding a gradient for the reflection components so that the areas that are smoother on the
reflection components should also be as smooth as possible on the lighting components.

3.2. Color Enhancement Block

Retinex-theory-based LLIE methods can decompose an image into a reflection compo-
nent and illumination component, and then apply enhancement on the reflection compo-
nent. However, the final enhanced image may still suffer from the color distortion effect
because existing Retinex-theory-based methods cannot maintain the color distributions
during the enhancement process, which means they cannot extract realistic color repre-
sentations and finally lead to color distortion on the final enhanced image. So, in order
to extract more realistic color representations, a novel color enhancement block (CEB) is
proposed in this paper. The structure of the proposed CEB is shown in Figure 2.

Figure 2. The structure of proposed color enhancement block.
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In order to extract more realistic color representations, a novel CEB is proposed in
this paper to help the network extract more realistic color representations by maintaining
color distribution during the enhancement process. As shown in Figure 2, the reflection
component Rlow is first transformed into the LAB color space. LAB space is designed based
on the human perception of color, so compared with other color spaces such as RGB and
CMYK, LAB is more in line with human vision and easier to adjust. L channel can be
used to adjust image brightness, and the AB channel can be used to adjust image color
representation.

So, in this paper, the AB channel is considered as the input of the color enhancement
block (CEB). The AB channel first goes through the attention map generator and generates
a two-channel attention map M̂ corresponding to the AB channel. The generated attention
map M̂ is concated with the AB channel, and the concated feature further goes through the
attention point generator to generate an attention point map P̂. The generated attention
map M̂ and attention point map P̂ are used to help the proposed network maintain the
color distribution of the input image and extract more realistic color representations. The
generated attention map M̂ and attention point map P̂ were supervised by the color
distribution map M and P, which were generated from the reflection component Rnormal
of the normal-light image, as the images captured under normal-light conditions contain
more realistic and precious color information. For a given image, the color distribution map
M was calculated by counting the color appearance for each pixel. The color distribution
map M is calculated as

M = Rnormal [AB]⊙ F (6)

where ⊙ means Hadamard product operation, Rnormal [AB] represents the AB channel of
Rnormal , so i ∈ 1, 2 as the Rnormal [AB] has only two channels, and F is the color frequency
map. Each component F(x, y) equals the number of occurrences of the color of the input
image. So, F can be used to represent the color distribution of the input image. After
that, in order to eliminate the effect of noise and background, a threshold is used to
eliminate the dominant color distribution and useless noise frequency to finally focus on
the foreground colors, as the color background of an input image should be very similar,
which is represented as very high values in F. After M is calculated, multiple foreground
points are randomly selected from M to generate attention point map P. In this part, M
is used to supervise the attention map M̂, and P is used to supervise the attention point
map P̂. The first part can help the network extract local color representations, while the
second part guides the network in extracting pixel-level color representations. It is easy to
understand that map M has much more complicated and duplicated colors than P, so the
supervision of P can cover most of the color distribution while using the least constraints.

It is worth noticing that the generated color attention map M̂ and attention point map
P̂ are supervised by the color distribution map generated by the illumination component
Rnormal from the normal-light image. This is because the reflection component of the
normal-light image contains more realistic color information, so the proposed CEB can help
the network extract more realistic color representations.

3.3. Attention-Based Texture Enhancement Block

To further eliminate the local blurring effect in the enhanced image, a novel attention-
based texture enhancement block (ATEB) is also proposed to help the network focus on
the local regions and further extract more reliable local region representations. As existing
methods cannot extract multiscale region representations and further lead to a local blur
effect, it is essential to extract more effective multiscale local representations. Attention
mechanisms [40] are established to show excellent ability to help networks focus on the
region of interest and extract more reliable feature representations. So, in this paper, an
attention mechanism is also applied to the texture enhancement block, and an attention-
based multiscale texture enhancement block (ATEB) is proposed.
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The structure of the proposed ATEB is shown in Figure 3. The input image is first de-
composed into the illumination component and reflection component by the decomposition
subnetwork, and the enhancement process is then applied to the reflection component. The
proposed ATEB contains three parts: (a) the multiscale attention block, which used to help
network focus on the multiscale region of interest of input image by extracting multiscale
attention maps; (b) a U-shaped enhancement block, where a U-shape network structure is
constructed to extract multiscale feature presentations; and (c) a multiscale feature fusion
strategy, where the multiscale attention map and multiscale feature representations are
fused to generate feature representations with sufficient local region texture information.

Figure 3. The structure of the proposed attention-based texture enhancement block.

The reflection component Rlow and Rnormal contains sufficient but various texture
information, so Rlow and Rnormal are first mixed to form a mixed reflection representation
Rmix. The mixed feature representation Rmix = (Rlow + Rnormal)/2. After that, Rmix is
sent into the multiscale attention block to generate multiscale spatial attention maps. The
proposed multiple-scale attention block is constructed by multiple 3 × 3 convolution layers
and one 1 × 1 convolution layer. Firstly, two 3 × 3 convolution layers are applied on the
mixed reflection feature to extract multiscale regions of interest and remove background
information. After that, a 1 × 1 convolution layer is used to reduce the channel number and
computation cost. Finally, two 3 × 3 convolution layers are leveraged to extract the final
multiscale attention maps. The generated multiscale attention maps further correspond to
the multiscale feature representations generated from the U-shape network.

As shown in Figure 3, the reflection component Rlow and illumination component Ilow
from the low-light image are concated to from a concated feature representation as the
input of the U-shape feature enhancement block. In this paper, a U-shape enhancement
network is leveraged to extract multiscale local region feature representations and achieve
enhancement on the reflection component. The left part of the U-shape network can capture
feature representations from low level to high level, while the right part can recover the
details of each layer and continuously pass high-level semantic information to the bottom.
So, the proposed U-shape enhancement network can effectively extract multiscale feature
representations.

After the multiscale feature is extracted from the U-shape enhancement network, the
multiscale attention maps are applied to the multiscale feature representations to generate
the final feature representation which contains sufficient local region texture information.
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In order to fuse multiscale feature representations effectively, a novel fusion strategy is also
proposed, where multiple deconvolution layers are used to transform feature maps with
different sizes into the same size and finally fuse multiscale feature maps into an enhanced
reflection component. The final reflection component is then combined with the enhanced
illumination component to generate the final enhanced image.

3.4. Training Strategy

The proposed method cannot optimize the model in an end-to-end fashion, espe-
cially the decomposition subnetwork and color enhancement block. This is because the
decomposition subnetwork will seriously affect the performance of the following operation.
For the color enhancement block, two color distribution maps M and P are leveraged to
supervise the realistic color representation extraction process. So, in this paper, a three-step
training strategy is proposed to achieve parameter optimization for the proposed DCTE-
LLIE method. The training process for the proposed method can be divided into three
steps: (a) decomposition subnetwork optimization to optimize the Retinex decomposition
subnetwork by minimizing the loss function LD; (b) color enhancement block optimization,
where the color distribution map and color point map is generated to guide network main-
taining color distribution and help extract more realistic color representations, and this
step is achieved by minimizing the color maintaining loss function LC ; and (c) the whole
network optimization, where the whole network is optimized in an end-to-end fashion,
while the parameter of the decomposition subnetwork and the CEB are also fine-tuned
during this step.

The second step was to optimize the color attention generator, where the color attention
map M̂ was supervised by the color distribution map M through the following function:

LM = ||M̂ − M||1 (7)

The color point attention map P̂ was supervised by the color points map P by the
following function:

LP = ||P̂ − P||1 (8)

the final color maintaining loss function LC for color enhancement block optimization
is defined as

LC = LM + αLP (9)

where α is the balance parameter to balance the color attention map loss LM and color point
attention map loss LP.

After that, the whole DCTE-LLIE method can be optimized in an end-to-end fashion,
while the model trained in the first two steps can also be fine-tuned during the training
process. The final loss function is formed as

LF = ∑
i=low

∑
j=low

||R̂i ⊙ Îj − Sj||2 (10)

where R̂i is the enhanced reflection component, while Îj is the enhanced illumination
component, ◦ represent for the Hardmard. The final loss function LF aims to minimize
the difference between the enhanced image which is composed of the enhanced reflection
component and illumination component and the ground truth image.

4. Experiment
4.1. Experiment Details

To establish the effectiveness of the proposed method, the proposed method is applied
to three public datasets: the LOL, SID, and MIT-Adobe FiveK datasets, and the proposed
DCTE-LLIE method is also applied to the low-light images captured in real-world scenarios.
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The LOL dataset is the first dataset that captures low-light images and corresponding
normal-light images in a real-world environment. Also, the LOL dataset consists of two
categories, 500 real-world image pairs and 1000 composite image pairs. The real-world
images are captured under real-world environments, while the composite images are
generated from the normal-light image from the RAISE dataset. In this paper, only real-
world images are used in this experiment, in which 485 image pairs are used for training
and 15 image pairs are used for testing.

The SID dataset includes 5094 raw images captured under low-light conditions, and
each low-light image has a corresponding normal-light high-quality image. Also, the SID
dataset contains indoor and outdoor images, and the outdoor images are usually captured
under moonlight or street lighting conditions. Images in the SID dataset are captured by
two different cameras: Sony α7S and Fujifilm X-T2, so the SID contains two subsets: IDSony
and SIDFuji.

The MIT-Adobe FiveK dataset was proposed in 2011, including 5000 raw images
captured by DSLR camera. Each image was postadjust by 5 experienced photographers
using Adobe Lightroom for color tone. As this dataset contains pairwise data of the original
image and 5 postimages, and there are multiple photos from the same photographer, so it
can be used for a later style of learning.

4.2. Evaluation Index

In order to evaluate the effectiveness of the proposed method, multiple evaluation
indexes are used. In this paper, PSNR, SSIM [41], and LPIPS [42] are used.

Peak signal-to-noise ratio (PSNR) indicates the ratio between the maximum power
a signal can reach and the noise power that can affect it. The calculation method can be
formed as follows:

PSNR(I, R) = 10log10

[
(2L − 1)2

MSE(I, R)

]
(11)

where MSE is the mean squared error. The MSE can be calculated as

MSE(I, R) =
1

mn

m

∑
i=1

n

∑
j=1

||I(i, j)− R(i, j)||2 (12)

where I means the images captured under normal-light conditions, R means the enhanced
image, and L means the largest gray level, and its value is 2n − 1. n is the number of pixel
bits. When the PSNR is bigger, the enhancement affection is better.

Structural similarity (SSIM) can be used to evaluate the similarity between two images
and the value range from −1 to 1, and a large value indicates that the enhanced image
is more structurally similar to the image captured under normal-light conditions. It is
measured from three aspects: brightness, contrast, and structure. The SSIM between image
I and image R can be calculated as

SSIM(I, R) =
(2µIµR + c1)(2δIR + C2)

(µI2 + µR2 + C1)(δI
2 + δR

2 + C2)
(13)

where µI means the luminance, and it can be calculated as the mean of all pixel values. The
formula can be represented as

µI =
1
N

N

∑
i=1

Ii (14)

Learning perceptual image patch similarity (LPIPS) is also used as an evaluation index,
which uses deep features to measure the perceptual similarity of images. This indicator is
learned through deep learning methods. Compared with PSNR and SSIM, LPIPS can more
truly reflect the human eye’s perception of image quality.
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4.3. Comparison with State-of-the-Art Methods

The public LOL dataset is used to evaluate the effectiveness of the proposed DCTE-
LLIE method, and multiple deep-learning-based methods are also compared with the
proposed method. The comparison results are shown in Table 1. It is easy to understand
that compared with generic methods, deep-learning-based methods can achieve more
outstanding performance, which establishes the feature extraction ability that deep learning
technology showed in the low-light image enhancement task. So, in this paper, only
deep-learning-based enhancement methods are used for comparison with the proposed
DCTE-LLIE method.

Table 1. The performance comparison between multiple low-light image enhancement methods and
the proposed method on the LOL dataset.

Method PSNR SSIM LPIPS

LLNet [43] 15.96 0.611 0.529
LightenNet [44] 15.35 0.604 0.541
RetinexNet [21] 16.77 0.635 0.436
MBLLEN [45] 17.91 0.729 0.356
KinD [46] 20.87 0.804 0.207
KinD++ [47] 21.30 0.822 0.175
TBEFN [48] 19.35 0.671 0.237
DSLR [49] 19.05 0.723 0.244
ElightenGAN [50] 17.48 0.683 0.314
DRBN [51] 19.86 0.748 0.261
ExCNet [52] 18.78 0.716 0.282
Zero-DCE [53] 18.86 0.734 0.311
RRDNet [54] 21.39 0.791 0.157
LLFlow [24] 24.13 0.872 0.117
DCTE-LLIE 24.21 0.826 0.131

As shown in Table 1, one can easily find that the proposed method can achieve
outstanding performance on the low-light image enhancement task. This is mainly because
the proposed DCTE-LLIE method can extract more realistic color representations and
more reliable region representations during the enhancement process. The proposed color
enhancement block can help the proposed network maintain color distribution during
the enhancement process, while the multiscale attention-based texture enhancement block
can help extract more reliable multiscale local texture representations. So the proposed
DCTE-LLIE method can achieve better performance on three evaluation indexes than most
of the deep-learning-based methods.

4.4. The Effectiveness of Color Enhancement Block

As shown in Table 2, it is easy to find that the performance of the DCTE-LLIE method
without a color enhancement block is worse than that of the method with a color en-
hancement block. This comparison can establish the effectiveness of the proposed color
enhancement block on the performance of a low-light image enhancement block. This
is because the proposed color enhancement block leveraged a steady color maintenance
strategy to extract a more reliable color representation. By calculating the color distribution
map and color point map, the color distribution of the input image can be well preserved
and the extracted color representation can be more reliable. So, the proposed CEB can
make sure the color distribution can be well preserved in the final enhanced image, and the
enhancement performance can be effectively improved by the performance comparison.
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Table 2. The performance of ablation study on the DCTE-LLIE method.

Method PSNR SSIM LPIPS

DCTE-LLIE without CEB 23.05 0.814 0.174
DCTE-LLIE without ATEB 23.68 0.808 0.157
DCTE-LLIE without multiscale feature fusion strategy 23.14 0.796 0.163

DCTE-LLIE 24.21 0.826 0.131

4.5. The Effectiveness of Attention-Based Texture Enhancement Block

As shown in Table 2, the effectiveness of the proposed texture block is also established.
By comparing the proposed DCTE-LLIE method with DCTE-LLIE without ATEB, one can
easily find that the proposed ATEB block can significantly improve the final enhancement
performance. This is because the attention module can help the module focus on multiscale
local region texture details and further maintain local details during the enhancement
process. Also, by comparing the performance between the DCTE-LLIE method and the
DCTE-LLIE method without a multiscale feature fusion strategy, the effectiveness of the
proposed multiscale feature fusion strategy can be established. The proposed ATEB can
make the network focus on the region of interest from different perspectives, and the
U-shape feature extractor can extract multiscale feature representations, which makes the
final fused feature representation more reliable and can significantly improve the final
enhancement result.

4.6. Further Experimental Results on MIT-Adobe FiveK Dataset

To further evaluate the effectiveness and genetic ability of the proposed method,
the proposed DCTE-LLIE method is also applied to the MIT-Adobe FiveK dataset, and
its performance is also compared with multiple existing enhancement methods. The
experimental results are shown in Table 3. One can also find that the proposed DCTE-LLIE
method can still achieve satisfactory enhancement performance, and the performance of the
DCTE-LLIE method on PSNR and SSIM is only a little bit worse than that of LLFlow [24],
while it is better than other deep-learning-based enhancement methods. This means that
the proposed DCTE-LLIE method can still achieve outstanding performance on different
enhancement tasks, and the general ability of the proposed method can be promised.

Table 3. The performance comparison between multiple low-light image enhancement methods with
the proposed method on the MIT-Adobe FiveK dataset.

Method PSNR SSIM LPIPS

LLNet [43] 15.84 0.624 0.537
LightenNet [44] 15.57 0.618 0.528
RetinexNet [21] 16.83 0.674 0.462
MBLLEN [45] 18.15 0.740 0.374
KinD [46] 19.22 0.783 0.241
KinD++ [47] 20.41 0.801 0.188
TBEFN [48] 19.06 0.781 0.237
DSLR [49] 18.71 0. 739 0.244
ElightenGAN [50] 17.07 0.655 0.339
DRBN [51] 18.53 0.718 0.320
ExCNet [52] 18.04 0.724 0.401
Zero-DCE [53] 17.33 0.736 0.397
RRDNet [54] 20.14 0.785 0.196
LLFlow [24] 22.64 0.824 0.149
DCTE-LLIE 22.39 0.813 0.137

4.7. Further Experimental Results on the SID Dataset

The proposed DCTE-LLIE method is also applied to the SID dataset. The SID dataset
has two subsets, SIDSony and SIDFuji, corresponding to images captured under a Sony
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camera and a Fuji camera, respectively. The experiments on both subsets are shown in
Table 4.

Table 4. The performance comparison between multiple low-light image enhancement methods with
the proposed method on the SID dataset.

Dataset SIDSony SIDFuji

Method PSNR SSIM LPIPS PSNR SSIM LPIPS

LLNet [43] 15.21 0.602 0.527 15.49 0.611 0.547
LightenNet [44] 15.77 0.611 0.533 16.04 0.602 0.516
RetinexNet [21] 16.81 0.647 0.419 16.75 0.688 0.497
MBLLEN [45] 17.69 0.686 0.385 17.53 0.670 0.402
KinD [46] 20.03 0.788 0.181 20.36 0.796 0.193
KinD++ [47] 20.97 0.801 0.149 21.13 0.814 0.161
TBEFN [48] 19.78 0.783 0.274 19.62 19.83 0.261
DSLR [49] 19.41 0.774 0.258 19.73 19.54 0.245
ElightenGAN [50] 18.50 0.758 0.284 18.37 0.703 0.278
DRBN [51] 19.11 0.773 0.262 19.02 0.779 0.283
ExCNet [52] 18.47 0.713 0.302 18.61 0.714 0.297
Zero-DCE [53] 18.59 0.748 0.281 18.28 0.743 0.272
RRDNet [54] 21.33 0.792 0.154 20.69 0.782 0.188
LLFlow [24] 23.15 0.824 0.129 22.83 0.820 0.120
DCTE-LLIE 23.04 0.829 0.125 23.32 0.818 0.127

It is easy to find out that the proposed DCTE-LLIE method can still achieve outstanding
performance on the SID dataset, no matter whether on a Fuji camera or a Sony camera.
Compared with existing low-light enhancement methods, the proposed method can achieve
the best performance. This is because the proposed method can extract realistic color
representation and reliable local region texture representation, which can further improve
the final enhancement performance. At the same time, the experimental results can prove
that the proposed method can be applied to different equipment, which further confirms
the robustness of the proposed method.

4.8. Visualization Performance on Real-World Scenarios

Some visual comparisons between the proposed DCTE-LLIE method and other en-
hancement methods are also shown in this paper. Some real-world low-light images
captured from real-world scenarios at noon are used to evaluate the performance of the
proposed method. As shown in Figures 4–7, one can easily find that most of the existing
methods struggle with extracting realistic color and texture presentations. For example,
LIME overenhanced the moderately brightness area, which makes the final result particu-
larly unnatural and exhibits varying degrees of color distortion; RetinexNet can effectively
improve the brightness of input image, but there still exists color distortion and local
region blurring effect; and the EnlightenGAN method is based on the GAN model, and
this method can enhance the illumination better while producing less noise. However,
compared with the ground truth image, there are still weak light areas in the local area,
and the contrast is not high. Among all the enhanced images, the result of the proposed
DCTE-LLIE method is much closer to the ground truth image.
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Figure 4. Performance comparison A.

Figure 5. Performance comparison B.

Figure 6. Performance comparison C.
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Figure 7. Performance comparison D.

5. Conclusions

In this paper, a novel deep learning and Retinex-theory-based method is proposed to
deal with low-light image enhancement. Considering that existing enhancement methods
can lead to color distortion and blur effects during the enhancement process, the proposed
methods have the following improvements. Firstly, a color enhancement block is proposed
to help the network extract more realistic color representations. Secondly, a multiscale
attention mechanism is applied to the texture enhancement block to help the network focus
on the local region areas and further help extract multiscale feature representations, and the
extracted multiscale feature representations are finally fused to achieve a final enhanced
reflection component through multiscale feature fusion strategy. The experimental results
on public datasets also established the effectiveness of the proposed method on low-light
image enhancement tasks.
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