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Abstract: While dietary supplements can have beneficial effects on the health of the intestine, these
effects can come with unresolved issues in terms of therapeutic efficacy and mechanisms of action. In
this study, the model probiotic Lacticaseibacillus rhamnosus GG ATCC 53103 and the anciently used
dietary supplement Limnospira indica strain PCC 8005 were compared for their effects on murine
intestinal ecology. Healthy male mice received either saline or suspensions of living cells of L. indica
PCC 8005 or L. rhamnosus GG daily along a two-week intervention period, followed by a two-week
washout period. Both bacteria-based solutions appeared able to transiently shift the microbial
community, which were characterized by a higher relative abundance of members of the butyrate
producing Lachnospiraceae and Porphyromonadaceae families.
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1. Introduction

The gastrointestinal tract harbors trillions of microbes and can collectively be consid-
ered as a complex yet functional organ mediating the health status of the host. Herein, the
gut microbial community is evaluated in terms of its distribution, diversity and functional-
ity. The composition of gut microbiota is frequently challenged by factors including diet,
environment and host genetics. As a consequence, the term dysbiosis was introduced to
define the qualitative and quantitative compositional alteration in intestinal microbiota,
which favors emergence and outbreak of pathogens and has a cascading impact on the
immune system [1]. Therefore, a dysbiotic community might be associated with the patho-
genesis of many diseases, of which cancer and inflammatory bowel disease are well-known
examples [2,3].

To sustain or restore the intestinal ecology, different microbial therapies have been in-
vestigated, including the dietary supplementation of (living) microbial products, transplan-
tation of fecal microbiota or bacterial consortium, as well as bacteriocins and bacteriophages-
based treatments. While transplantation of fecal microbiota or bacterial consortium, as
well as bacteriocins and bacteriophages-based treatments, opt for a therapeutic approach,
dietary supplements have shown to be more effective in preventing intestinal diseases [4].
Microbial dietary supplements have been reported to prevent and/or ameliorate intestinal
diseases by influencing the growth of beneficial/pathogenic microorganisms, as well as
immunomodulatory and/or barrier protective effects [4]. Nevertheless, (pre)clinical stud-
ies have shown inter-individual variability in microbial therapy responsiveness. These
inconsistent results are likely explained by the lack of an evidence-based consensus in
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terms of dosing, formulation and route of administration, as well as the large knowledge
gap concerning their mechanism of action and the functional relationship between mi-
crobial therapies, the commensal microbiota, the host and the claimed health effects. As
such, no health claims for probiotics have yet been approved by the European Food Safety
Authority. Although incredibly challenging, a reliable translation of mechanistic insights
into measurable clinical effects will help us to deliver the appropriate dietary supplement
needed to increase (pre)clinical successes [5].

One of the best-documented probiotic strains Lacticaseibacillus rhamnosus GG (before
the recent taxonomic reclassification of the Lactobacillus genus complex known as Lactobacil-
lus rhamnosus GG [6]), used as living lyophilized microbial product, was reported to exert
intestinal radioprotection [7–9], and to attenuate diarrhea [10,11], colon cancer [12,13] and
inflammatory bowel disease [14,15]. Still, important aspects concerning its efficacy and
mechanism(s) of action remain to be defined.

Apart from traditional dietary supplements, we introduce anciently used cyanobacte-
ria Limnospira indica PCC 8005 (also known as Arthrospira sp. or its generic product name
Spirulina), since research has shown the beneficial effects of dried biomass and/or isolated
bioactive compounds on the intestine’s antioxidant status, immune system and/or bacterial
communities [16–21]. Typically, Limnospira spp. are used as dried and inactivated whole
biomass products or extracts thereof. However, different processing and preservation
steps were reported to impact the nutritional and antioxidant values of resulting Spirulina
products [22]. To the best of our knowledge, the impact of unprocessed Limnospira spp. on
the gut bacterial ecosystem has not yet been investigated using extensive 16S microbial
profiling. Thus, we set out a comparative study, in which healthy mice were administered
fresh, in-house prepared biomass of either L. indica PCC 8005 or L. rhamnosus GG ATCC
53103, or saline on a daily basis along a two-week intervention period, followed by a
two-week washout period.

2. Materials and Methods
2.1. Mice

All animal experiments were approved by SCK CEN’s animal welfare committee
and carried out in compliance with the Ethical Committee Animal Studies of Medanex
Clinic (EC MxCl 2018-093), the Belgian laboratory animal legislation and the European
Communities Council Directive of 22 September 2010 (2010/63/EU).

Five week-old, male C57Bl/6JRj mice were purchased from Janvier (Bio Services,
Uden, The Netherlands). Upon arrival, they were housed individually in ventilated cages
under standard laboratory conditions (12 h light/dark cycle) with ad libitum access to
regular chow and water, and mice were acclimatized for two weeks.

Confounding factors including sex, age and housing conditions were minimized across
experimental cohorts [23]. Potentially other confounding factors including caretaker(s),
order of handling and differences in weight were assessed and excluded for their impact
on the microbiome. Finally, to minimize differences between created groups, mice were
randomly assigned to a pre-specified number of groups using the minDiff package in
RStudio (v.3.5.0, RStudio, Boston, MA, USA).

2.2. Bacterial Strains and Growth Conditions

In this study, L. indica PCC 8005 substrain P1 possessing helically coiled trichomes
was taken from the continuous SCK CEN culture collection, of which the mother strain was
originally obtained from the Pasteur Culture collection of Cyanobacteria (PCC) (Institut
Pasteur, Paris, France). L. indica PCC 8005 cultures were grown axenically in Zarrouk
medium at pH ~9.8 on a Heidolph Unimax 2010 rotary orbital shaker (Analis SA, Suarlée,
Belgium) at 120 rpm and a constant temperature of 30 ◦C in a Binder KBW400 growth
chamber (Analis SA, Suarlée, Belgium) [24]. Cells were illuminated with a continuous
photon flux density of 45 µmol photonsm−2 s−1 produced by Osram Daylight tubes (Osram,
Zellik, Belgium).
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In parallel, L. rhamnosus GG ATCC 53103, a strain originally isolated from human
fecal samples [25,26], was obtained from Professor Sarah Lebeer (University of Antwerp,
Antwerp, Belgium). This strain was grown statically in the dark at 37 ◦C in de Man, Rogosa
and Sharpe (MRS) medium (BD, Olen, Belgium) [27].

To monitor cell growth, the optical density (OD) of L. indica PCC 8005 and L. rhamnosus
GG cultures was measured at 750 nm and 600 nm, respectively, using a Thermo Spectronic
Unicam Aquamate Helios Spectrophotometer (Thermofisher Scientific, Merelbeke, Belgium).

To prepare fresh bacterial biomass for supplementation, L. indica PCC 8005 cultures
were grown to reach OD750 nm~1. Likewise, L. rhamnosus GG cultures were grown to reach
OD600 nm~0.25. Briefly, bacterial cultures were centrifuged at 7500× g for 10 min at 4 ◦C.
The pellet was washed three times using sterile saline solution and eventually dissolved in
saline to reach the desired amount of bacteria per 200 µL for murine gavage.

2.3. Supplementation Protocol

After two weeks of acclimatization, mice were randomly distributed into three different
supplementation groups (n = 10 per group); mice daily receiving (1) saline (200 µL/mouse) to
rule out effects induced by repeated oral gavage; (2) L. rhamnosus GG (7 × 108 cells/mouse)
and (3) L. indica PCC 8005 (3 × 107 cells/mouse of 20 g) solutions (Figure 1). Suspensions
were administered daily by oral gavage in a maximum volume of 10 µL per grams body
weight, in accordance with ethical recommendations. The supplementation dose used for
L. rhamnosus GG was associated with probiotic effects [28–30]. The amount of L. indica
PCC 8005 administered to mice corresponds to a dosing regimen of 800 mg/kg, previously
reported to have antioxidative effects in vivo [31–35]. After the two-week intervention
period, a two-week washout period was incorporated to assess the stability of microbial
changes introduced by both interventions (Figure 1). Over the entire experimental setup,
overall health was monitored, and body weight was recorded every other day.
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Figure 1. Experimental setup of healthy mice supplementation. Created with BioRender.com.

2.4. Fecal DNA Extraction and 16S rRNA Gene Sequencing

To assess the impact of unprocessed L. indica PCC 8005 and L. rhamnosus GG on the
gut bacterial ecosystem, fecal samples were longitudinally collected every other day. Total
fecal DNA was extracted and high throughput amplicon sequencing was performed as
previously described [36].
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2.5. Sequencing Data Processing and Analyses

16S rRNA gene sequencing data were processed and analyzed as previously de-
scribed [36].

2.6. Statistical Analysis

Data were processed, analyzed and visualized using RStudio software packages
ggplot2 and ggsci. Outliers defined by the Tukey’s fences criteria were excluded from
further statistical analyses. Statistical significance (p < 0.05) was determined using linear
(mixed) models using the lme4 package in R studio, unless otherwise mentioned.

3. Results
3.1. L. indica PCC 8005 and L. rhamnosus GG Supplementation Does Not Affect Body Weight

First, daily monitoring of the mice’s body weight showed that they initially had a
comparable body weight (Figure 2, Table 1). During the entire supplementation course, L.
rhamnosus GG administered mice gained more body weight in comparison to mice given
saline or L. indica PCC 8005. However, this gain did not impact absolute body weights
observed at the end of supplementation. Then, during and after washout, no differences
among different supplementation groups were observed in terms of gained body weight or
absolute body weights (Figure 2, Table 1).
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Figure 2. L. indica PCC 8005 and L. rhamnosus GG supplementation do not affect absolute body
weights of mice. The window of supplementation is highlighted. Data (in grams) are presented
as mean ± standard deviation, n = 10 per group. Time independent differences were assessed by
linear modelling.
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Table 1. L. indica PCC 8005 and L. rhamnosus GG supplementation do not affect absolute body weights
of mice. Data (in grams) are presented as means ± standard deviation, n = 10 per group.

Saline Group L. indica PCC 8005 Group L. rhamnosus GG Group

Weight at start 22.54 ± 0.62 22.94 ± 0.56 22.75 ± 0.92

Weight gain during
supplementation 0.86 ± 0.43 0.81 ± 0.40 1.15 ± 0.39 a,b

Weight after supplementation 23.40 ± 0.84 23.75 ± 0.81 23.89 ± 0.99

Weight gain during washout 0.66 ± 0.31 0.99 ± 0.32 0.73 ± 0.35

Weight after washout 24.35 ± 0.90 24.91 ± 0.92 24.78 ± 1.00

Weight gain overall 1.48 ± 0.35 1.80 ± 0.36 1.88 ± 0.24 a

a p < 0.05 versus saline; b p < 0.05 versus L. indica PCC 8005 by linear modelling.

3.2. The Intestinal Microbial Community Temporarily Changes following L. indica PCC 8005 and
L. rhamnosus GG Supplementation

Next, to assess the impact of fresh L. indica PCC 8005 and L. rhamnosus GG on the gut
bacterial ecosystem, fecal samples were longitudinally collected for 16S microbial profiling.
First, in this sequencing data set, rarefication was performed to a depth of ≥10,229 reads
in accordance with the smallest sample depth (Figure 3A) [37]. The average of estimated
coverages was 99.62 ± 0.12% for all samples, suggesting that the 16S rRNA results from
each library represented an adequate level of sequencing to identify most diversity in the
samples (Figure 3B) [37,38]. Following rarefaction, the obtained reads corresponded to a
total of 1740 OTUs (242 ± 21 OTUs on average per sample).
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was mainly due to an increase in evenness rather than richness (Shannon even and Chao 
richness indices; Figure 5 and Figure 6, respectively). Fecal samples taken over time dur-
ing saline intervention were considered to account for the natural variation in the gut eco-
system and thus set the baseline for the expected bacterial profiles in our mouse popula-
tion. Hence, comparisons of the saline group with the bacterial intervention groups were 
performed for each time point to reveal possible shifts in microbiota composition induced 
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(A) Rarefaction curve displaying gene richness as a function of the number of reads for each sample
separately. (B) Good’s estimator of coverage as a measure of sample completeness. Data are presented
in boxplots and outliers are depicted by dots, n = 10 per group.

To assess structural alterations in the microbial communities introduced by the differ-
ent supplementation strategies, microbial alpha diversity (i.e., diversity within a sample,
taking into account richness and/or evenness) and beta diversity indices (i.e., diversity
between samples, with and without considering abundances) were calculated. Firstly, over
the entire 4-week experimental course, a gradual increase in alpha diversity was noted in
all mice, irrespective of the administered agent (Shannon index; Figure 4). This was mainly
due to an increase in evenness rather than richness (Shannon even and Chao richness
indices; Figure 5 and Figure 6, respectively). Fecal samples taken over time during saline
intervention were considered to account for the natural variation in the gut ecosystem and
thus set the baseline for the expected bacterial profiles in our mouse population. Hence,
comparisons of the saline group with the bacterial intervention groups were performed for
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each time point to reveal possible shifts in microbiota composition induced by the tested di-
etary supplements. Overall, no significant changes in alpha diversity indices were observed
(Figures 4–6). However, following the 2-week washout (at t4), a significantly increased
evenness was noted in L. rhamnosus GG administered mice (Shannon even; Figure 5), as
compared to L. indica PCC 8005 administered mice.
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The microbial community was further compared by a distance matrix based on
weighted (considering relative microbial abundance) and unweighted (considering micro-
bial membership) UniFrac beta diversity indices with 1000 permutations (Supplementary
Figure S1 and Figure S2, respectively). First, paired analysis showed that most temporal
differences could be explained by the natural variation in the gut ecosystem, as indicated
by UniFrac distance analyses (Supplementary Figures S1 and S2). However, to exclude
the dominant effects of natural variation, analyses were performed in a time-independent
manner, focusing on the microbiota at a certain time point and investigating the effect of
dedicated supplements relative to saline treated mice. When comparing microbial profiles
among the different supplementation groups before the start of supplementation (t0), base-
line variations could be excluded (Figures 7A and 8A). Further analysis using weighted
UniFrac distances could not depict statistical differences at any of the investigated time
points (Figure 7). However, unweighted UniFrac analyses revealed a significant shift in
beta diversity appearing at t2, when comparing both supplemented microbial communities
to each other (L. indica PCC 8005 vs. L. rhamnosus GG p = 0.033 by AMOVA) (Figure 8C). Of
interest, when comparing each supplemented microbial community to the saline treated
microbiome, a trend towards a shift in beta diversity was observed for L. indica PCC 8005
supplemented mice (L. indica PCC 8005 vs. saline p = 0.059 by AMOVA), while this could
not be observed for L. rhamnosus GG supplementation (L. rhamnosus GG vs. saline p = 0.198
by AMOVA) (Figure 8C). Hereafter, during and after washout, differences were no longer
observed among the different groups (Figure 8D,E). These results thus show a temporal
change in microbial communities, rather than changes in its relative abundances. These
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temporal changes appeared to be induced to a larger extent by L. indica PCC 8005 when
compared to L. rhamnosus GG supplementation.
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using weighted UniFrac distances could not depict statistical differences at any of the in-
vestigated time points (Figure 7). However, unweighted UniFrac analyses revealed a sig-
nificant shift in beta diversity appearing at t2, when comparing both supplemented micro-
bial communities to each other (L. indica PCC 8005 vs. L. rhamnosus GG p = 0.033 by 
AMOVA) (Figure 8C). Of interest, when comparing each supplemented microbial com-
munity to the saline treated microbiome, a trend towards a shift in beta diversity was 
observed for L. indica PCC 8005 supplemented mice (L. indica PCC 8005 vs. saline p = 0.059 
by AMOVA), while this could not be observed for L. rhamnosus GG supplementation (L. 
rhamnosus GG vs. saline p = 0.198 by AMOVA) (Figure 8C). Hereafter, during and after 
washout, differences were no longer observed among the different groups (Figure 8D,E). 
These results thus show a temporal change in microbial communities, rather than changes 
in its relative abundances. These temporal changes appeared to be induced to a larger 
extent by L. indica PCC 8005 when compared to L. rhamnosus GG supplementation. 

Figure 6. Changes in alpha diversity index Chao, considering solely richness, of saline, L. indica PCC
8005 and L. rhamnosus GG supplemented mice over the entire experimental course. Data are presented
in boxplots and outliers are depicted by dots, n = 10 per group. Time independent and–dependent
differences were assessed by linear and linear mixed effects modelling, respectively.
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3.3. L. indica PCC 8005 and L. rhamnosus GG Supplementation Affect Members Belonging to the
Lachnospiraceae and Porphyromonadaceae Families

Next, we compared the microbial composition at various taxonomic levels between
mice among the different sampling points representing baseline (t0), during (t1) and after
(t2) supplementation, as well as during (t3) and after (t4) washout periods (Supplementary
Figures S3–S7). In particular, to identify specific OTUs associated with the observed sig-
nificant differences in alpha and beta diversity at t4 and t2, respectively, the composition
of fecal microbiota was further investigated using ANCOM, which allows for pair-wise
comparisons over time (Tables 2 and 3) [36,39]. Only 6 and 9 OTUs, mainly belong-
ing to the Lachnospiraceae and Porphyromonadaceae families, appeared to be significantly
affected by both supplementation strategies L. indica PCC 8005 and L. rhamnosus GG, re-
spectively (Tables 2 and 3). These were predominantly present in relative abundances < 1%
(Figures 9 and 10). Oligotyping demonstrated that each of these OTUs constitutes a single
taxonomic unit.

Table 2. List of taxa with significant changes in relative abundance associated with the temporal
change in microbiota following L. indica PCC 8005 supplementation (at t2 and t4, in respect to t0).

Taxonomic Classification (Following
Ribosomal Database Project)

ANCOM Biomarkers’ Effect Size
and W-Statistic Highest NCBI Blast Hit (% Identity)

Erysipelotrichaceae_OTU208 1.12–W = 0.9 (t4) NA

Lachnospiraceae_OTU281 1.02–W = 0.9 (t4) Kineothrix alysoides (~97% identity)

Lachnospiraceae_OTU528 1.35–W = 0.9 (t2) NA

Lachnospiraceae_OTU23 −1.26–W = 0.9 (t2) NA

Turicibacter_OTU33 −1.54–W = 0.9 (t2 and t4) Turicibacter sanguinis (~97% identity)

Porphyromonadaceae_OTU446 −1.14–W = 0.9 (t2) NA

Table 3. List of taxa with significant changes in relative abundance associated with the temporal
change in microbiota following L. rhamnosus GG supplementation (at t2 and t4, in respect to t0).

Taxonomic Classification (Following
Ribosomal Database Project)

ANCOM Biomarkers’ Effect Size and
W-Statistic Highest NCBI Blast Hit (% Identity)

Lachnospiraceae_OTU152 1.06–W = 0.9 (t4) NA

Porphyromonadaceae_OTU347 1.14–W = 0.9 (t4) NA

Porphyromonadaceae_OTU446 1.04–W = 0.9 (t2 and t4) NA

Porphyromonadaceae_OTU588 1.26–W = 0.9 (t4) NA

Porphyromonadaceae_OTU963 1.09–W = 0.9 (t2) NA

Porphyromonadaceae_OTU1645 1.05–W = 0.9 (t4) NA

Anaerofustis_OTU284 −1.06–W = 0.9 (t2) Anaerofustis stercorihominis (~98% identity)

Lachnospiraceae_OTU375 −1.33–W = 0.9 (t4) NA

Bacteroidales_OTU1374 −1.07–W = 0.8 (t4) NA
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reviewed earlier [4]. Here, we present the first comparative study in which healthy mice
were administered fresh, in-house prepared biomass of either Limnospira indica PCC 8005
or Lacticaseibacillus rhamnosus GG ATCC 53103 to investigate the impact on the gut bacterial
ecosystem of healthy mice.

Animal wellbeing is generally considered to be minimally hampered by repeated oral
gavage when carried out by an experienced scientist [40]. Moreover, mice subjected to this
procedure did not experience significant changes in absolute body weight in respect to
saline administered mice, consistent with previous studies giving Limnospira sp. [41] or
Lacticaseibacillus sp. [42,43] to healthy rodents.

Although little impact was shown on general animal wellbeing over the experimental
course, we reported a dominant effect of time on the composition of gut microbiota, which
may be evoked by physiological stress responses to daily handlings, as was discussed
earlier [44,45].

Although richness is proposed to be a major marker for gut health because high
bacterial richness and diversity often reflect ecosystem stability and resilience [46], we
could not report an equivalent change in alpha diversity metrics during or after two-week
supplementation. This might be explained by the initial health condition of the mice that
were supplemented, as was also described in studies using higher doses of Limnospira
sp. [19] or equivalent doses of Lacticaseibacillus sp. [47]. Yet, supporting our hypothesis of a
supplementation-induced shift in microbial beta diversity, a temporal shift in unweighted
UniFrac beta diversity was observed, implying a change in microbial membership rather
than relative abundances of particular taxa. For this, supporting evidence was found in a
two-week intervention study applying high doses (1.5 g/kg and 3.0 g/kg) of Limnospira
sp. [19]. In this perspective, relevant OTUs significantly affected by either of the applied
supplementation regimens, yet present in relative abundances below 1%, pointed towards
Lachnospiraceae and Porphyromonadaceae members, two families with potentially health-
promoting properties based on their butyrate producing capacities [48–54]. In particular,
within the group of Lachnospiraceae, L. indica PCC 8005 supplementation was associated
with an increased relative abundance of Kineothrix alysoides, a recently identified saccha-
rolytic butyrate producer belonging to the Clostridium XIVa cluster and found in healthy
human subjects [55,56]. This observation might be explained by metabolic cross-feeding,
a well-described feature for lactate-producing lactobacilli steering butyrate conversion
by lactate-utilizing, butyrate-producing colon bacteria [57]. In view of Limnospira spp.
supplementation, it is thought to deliver a range of prebiotics including carbohydrates,
polyphenols, and polyunsaturated fatty acids, which may stimulate the growth of benefi-
cial bacteria, exerting secondary health benefits [19]. To assess the consequences hereof,
future research including randomized controlled trials, metabolic modelling (e.g., us-
ing CarveMe [58]) and the use of gut-on-a-chip models for co-cultivation with selected
bacteria [59] would need to investigate fecal metabolites to validate the mechanisms of
cross-feeding between these taxa, as well as the potential health-promoting attributes of
these butyrate producers.

Intriguingly, neither L. indica PCC 8005 nor L. rhamnosus GG-related sequences could be
recovered from our sequencing dataset. For Limnospira spp., no research could yet confirm
its survival following exposure to chemical and mechanical stresses to be conquered along
the intestinal transit. In contrast, L. rhamnosus GG was described to be very resistant to
gastric acidity and the action of gastric juice by Lebeer et al. [60]. Yet, they showed a
short transition time of 6–48 h following single oral administration, which likely explains
their absence or non-detectability in our study, where fecal samples were collected 24 h
post-administration. To confirm this rapid clearance or show intestinal adherence, fecal
samples collected at earlier time points following oral gavage should be analyzed.

Of interest, no particular effects persisted after supplementation was stopped, high-
lighting the transient character of dietary supplements introduced in the gastrointestinal
tract, which is commonly observed [61]. Nevertheless, multiple studies could still show
significant health benefits, even after a single administration, suggesting that the coloniza-
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tion of probiotic strains is not necessary to exert health benefits [60,62]. Still, a durable
impact on the gut microbiome and health outcomes following dietary supplement intake
is preferred. Unfortunately, one of the greatest challenges in this research area concerns
the high variability in individual response, which contributes to conflicting outcomes. Im-
provements herein may be reached upon stratification of study participants into responders
and non-responders based on their baseline microbial profile. This way, personalized
therapeutic strategies can be explored during long-term intervention studies including
long-term post-intervention follow-ups, which offer more insights.

In conclusion, our comparative study described a transient effect of both Limnospira
indica PCC 8005 and Lacticaseibacillus rhamnosus GG ATCC 53103 on the gut microbial beta
diversity, characterized by members of the butyrate producing Lachnospiraceae and Porphy-
romonadaceae families, respectively. Consequently, these selected strains are of great interest
for future investigations as a dietary supplement, or as ingredients in the development of
food products.
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