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Abstract: (1) Background: HPV infection can progress over the years to become cervical cancer. In
this study, genotype and a normalized viral load were evaluated as surrogate markers of progression
to cancer. (2) Methods: A total of 558 endocervical swabs were collected from 120 women (mean,
40.1 ± 11.8 years old). Seventy-eight of the women underwent clinical intervention (CI) to clear
the infection during the course of the study, while forty-two did not (NCI). Normalized viral load
(NVL) was calculated using a COBAS 4800 system. The INNOLIPA genotyping system was used
to classify HPV which was neither type 16 or 18. (3) Results: The mean age of CI women was
41.1 ± 11.4 (22–68) years old and that of the NCI group was 37.7 ± 12.13 (23–65) (p: 0.104). HPV16
was present in 11 (25%) NCI and 30 (35.2%) CI patients, HPVα9non16 in 20 (45%) NCI and 34 (40%)
CI, and HPVnonα9 in 13 (29.5%) NCI and 21 (24.7%) CI (p = 0.48). In NCI women there was an
average NVL decrease of 0.95 log after two years and a further decrease of 2.35 log at the end of the
third year. At the end of the study, 34 (80%) of the NCI patients were clear of HPV. However, NVL
of CI women remained at around 5 log until intervention (p < 0.001). (4) Conclusions: Viral load
decreased in NCI women at follow-up in the second year. In contrast, in CI women, their viral load
did not fall over the follow-up period. This work thus demonstrates that a reduction in normalized
viral load was associated with good evolution.
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1. Introduction

Numerous factors associated with the host, such as smoking, oral contraceptives and
coinfection with other microorganisms, as well as alterations of the vaginal microbiota,
among others, contribute to the development of cervical carcinoma [1–3]. However, in
all circumstances HPV must be present [4,5]. HPV infection takes around 10 years to
progress to cancer, passing through a series of lesions: LSIL (low-grade lesion, including
CIN I) and HSIL (high-grade lesion, including CIN II and CIN III). Current WHO clinical
guidelines recommend that women with LSIL should be monitored, while those with
HSIL are usually referred for therapy. However, between 40 and 68% of HSIL patients
may spontaneously regress, suggesting some women are over-treated [6,7]. To find a
marker that evaluates the infection in each step would thus be very useful, especially
when spontaneous regression is possible. It seems logical that certain viral factors are also
involved in carcinoma development, such as that high-risk genotypes such as HPV16 or
18 have been shown more implicated than low-risk ones, due to variant or more active
viral replication. The monitoring and evaluation of HPV replication has been highlighted
as a way of helping to understand and predict the progression of the infection [8,9], as
is also the case with other chronic viral infections, where change in viral load is a useful
marker to evaluate the evolution of the infection (for instance, HIV). The aim of this study
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was to establish the utility of normalized viral load as a viral marker which can be used
throughout HPV infection in order to predict the evolution of infected women.

2. Materials and Methods

Between 2014 and 2018, 558 endocervical swabs from a total of 120 women were
collected. The women were all seen annually for a cervical pathology consultation be-
cause of HPV infection, according to clinical protocols. The mean age of patients was
40.1 ± 11.8 (22–68) years old. At the beginning of the study, 63 women did not present
intraepithelial lesion (they developed throughout the study) and 57 had a lesion suggestive
of HPV infection.

The study was approved by the Principado de Asturias Ethics Committee, and all
methods were carried out in accordance with relevant guidelines and regulations. Informed
consent was obtained from all subjects included in the study.

Patients were grouped according to the evolution of their HPV infection: those whose
infection resolved without the need for clinical intervention (no clinical intervention, NCI)
but were followed up for at least 3 years; and those where viral lesions needed to be
eliminated by different procedures (clinical intervention, CI). In the second case, only viral
loads prior to surgery were considered in the analyses.

Samples were collected by endocervical brushing during the cervical pathology ap-
pointment, stored in 20 mL of STE buffer (10 mM Tris-HCl (pH: 8), 0.1 M NaCl, 1 mM
EDTA) and sent to the Virology laboratory. Once in the lab, samples were stored at room
temperature for no more than one week. An automatic COBAS 4800 system (ROCHE Diag-
nostics, Mannheim, Germany) was used to detect HPV according to the manufacturer’s
instructions. This system allows, in one step, the extraction of DNA from the sample and
the amplification of a fragment of the HPV L1 gene, as well as the detection of the human
Betaglobin gene in order to check the quality of the sample. In addition, it individually
distinguishes HPV16 and HPV18, as well as a pool of 12 other high-risk HPV genotypes
(31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and 68).

This system, besides providing a report of the positive/negative result, allows the am-
plification cycle (Ct) of HPV-positive cases to be obtained, as well as those of the Betaglobin
gene. The relationship between the two results can be used to estimate normalized viral
load, since the betaglobin Ct indicates the number of cells present in the sample while the
HPV Ct is an indication of the amount of virus present. Comparison of these data with
their respective standard curves enabled the number of viral copies per cell to be calculated
as it was described previously by Alvarez-Argüelles et al. [10]. Normalized viral load was
thus expressed as the number of copies of HPV per 1000 cells.

To identify which high-risk (HR) genotypes were detected by the COBAS 4800 system,
the INNOLIPA HPV genotyping extra II hybridization system (IINOGENETICS N.V.,
Ghent, Belgium) was performed according to the manufacturer’s instructions. In addition,
those HPV16 samples which were the T350G variant were identified using an in-house
PCR previously described [11].

For analysis purposes, the genotypes found were then grouped as HPV16, HPVα9non16
(HPV31, 33, 35, 51, 52 and 58) and HPVnonα9.

The statistical analysis, consisting of the parametric Student’s t-test and contingency
tables, were carried out using the R Studio software [12]. In order to know whether lower
viral load is a good marker to predict patient evolution, an ROC study was used. Results
with a p value < 0.05 were considered to be statistically significant.

3. Results

Of the 57 patients who presented a lesion at the beginning of the study, 41 underwent
surgery during the study, as did 36 of the negative for intraepithelial lesion or malignancy
(NILM) patients. Table 1 shows the data for each patient when they entered the study and
at each follow-up, which in the case of CI patients ceased post-surgery.
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Table 1. Clinical and virological characteristics of patients studied.

Patient Age Lesion Genotype(s) Genotype
Group

Variant
T350G VL0 VL1 VL2 VL3 VL4 GROUP

1 32 NILM 53 Nonα9 4.4 3.5 CI
2 65 NILM 18 Nonα9 3.7 4.3 6.4 2.7 NCI
3 45 HSIL 31/33 α9 4.8 4.9 3.9 CI
4 61 LSIL 44/66 Nonα9 5.1 4.9 4.2 CI
5 39 HSIL 16 HPV16 YES 5.1 2 CI
6 30 LSIL 16/51 HPV16/α9 NO 4.8 8 8.7 3.8 0 NCI
7 37 LSIL 52 α9 4 4.1 6.4 CI
8 30 HSIL 33/31 α9 5.3 6.1 CI
9 23 LSIL 53/66 Nonα9 2.4 3.1 0 NCI
10 63 NILM 16 HPV16 YES 4 3.8 5.9 0 NCI
11 30 HSIL 16 HPV16 YES 4.2 4 CI
12 57 HSIL 66 Nonα9 6 4.5 4.5 CI
13 44 LSIL 31 α9 5.4 4.9 0 0 NCI
14 49 HSIL 16 HPV16 NO 3.7 3.4 3.1 4.4 4.1 CI
15 38 HSIL 33 α9 5.3 5.3 CI
16 33 NILM 31 α9 3.1 4.3 0 NCI
17 44 LSIL 16/66 HPV16 YES 9 8.6 8.5 7.8 CI
18 29 NILM 31 α9 4.9 6.1 3.8 0 NCI
19 38 NILM 16/45 HPV16/nonα9 NO 5.2 7.3 5.9 CI
20 64 NILM 52 α9 3.4 3.5 4.2 CI
21 60 NILM 16 HPV16 NO 4.2 3.6 3.9 3.4 NCI
22 39 NILM 18 Nonα9 4.2 4 4.6 CI
23 68 HSIL 16/52 HPV16/α9 YES 6.5 10.8 6.4 CI
24 56 LSIL 53/56 Nonα9 5.4 5.8 5.6 4.8 CI
25 57 NILM 31 α9 3.8 2.4 3.3 0 NCI
26 30 NILM 52/56 α9 5.1 5.2 3.6 0 0 NCI
27 43 NILM 31 α9 5.6 5.7 5.4 0 0 NCI
28 26 NILM 52 α9 3 3.8 4.6 4.3 CI
29 35 NILM 52 α9 4.7 4.8 5.2 0 0 NCI
30 27 NILM 56 Nonα9 4.9 3.9 4.1 4.6 CI
31 35 HSIL 16 HPV16 NO 5 4 CI
32 24 LSIL 16 HPV16 NO 4.9 5.8 0 0 NCI
33 67 NILM 31 α9 3.6 3.2 3.4 CI
34 46 HSIL 16 HPV16 YES 3.8 3.9 4.3 CI
35 37 NILM 16 HPV16 YES 4 2.7 CI
36 52 NILM 16 HPV16 YES 3.9 2.5 2.5 2.7 0 NCI
37 34 LSIL 31 α9 4.2 2.9 4.7 4.1 0 NCI
38 32 NILM 16/59 HPV16/nonα9 YES 10.9 9.2 11.5 9.6 CI
39 27 LSIL 31 α9 6.7 3.4 3.2 0 NCI
40 58 HSIL 16 HPV16 YES 3.5 3.5 CI
41 43 LSIL 56 Nonα9 4.9 5.2 CI
42 62 NILM 52 α9 4.6 3.6 CI
43 37 NILM 33 α9 4.9 4.6 3.6 CI
44 39 NILM 31 α9 3.1 5.3 6 5.3 3.6 NCI
45 26 LSIL 16 HPV16 NO 4.4 4.5 0 0 NCI
46 36 NILM 58/66 α9 5.6 5.3 5.2 NCI
47 30 ASCUS 31/66 α9 6.9 6.1 CI
48 37 NILM 45/52 α9 3.2 3.7 5.5 CI
49 23 ASCUS 58 α9 5.5 6.3 3.9 0 0 NCI
50 31 HSIL 16 HPV16 NO 5 3.9 3.1 3.1 CI
51 28 NILM 35 α9 5.7 4.8 CI
52 30 HSIL 18 Nonα9 5.1 6.2 5.4 5.2 CI
53 49 LSIL 52 α9 5.4 3.6 5.1 CI
54 35 NILM 59 Nonα9 4.2 5.7 4.5 2.7 CI
55 56 LSIL 16 HPV16 NO 4.6 4.8 CI
56 53 NILM 51 Nonα9 5.3 2 CI
57 59 HSIL 31 α9 4.1 2.8 CI
58 49 HSIL 16/66 HPV16/nonα9 NO 8.4 10.4 CI
59 38 NILM 39 Nonα9 6.5 6 0 NCI
60 36 LSIL 16 HPV16 YES 2.9 5.4 5.8 3.3 CI
61 40 NILM 51 Nonα9 4.8 4.7 3.4 0 NCI
62 26 LSIL 16 HPV16 YES 5.4 5.4 5.3 0 0 NCI
63 28 ASCUS 56 Nonα9 4.2 5.4 0 NCI
64 26 NILM 31/33 α9 5.6 6 3.7 0 0 NCI
65 47 HSIL 16 HPV16 YES 2.8 4 CI
66 53 NILM 31 α9 7.1 5.8 5.7 3 CI
67 37 LSIL 35 α9 5.7 4.4 CI
68 22 ASCUS 16 HPV16 NO 4.9 4.7 4.4 CI
69 30 HSIL 33 α9 5 4.2 CI
70 39 ASCUS 18 Nonα9 3.3 5.9 0 NCI
71 30 LSIL 52 α9 3.8 4.5 4 3.2 0 NCI
72 47 NILM 39 Nonα9 6.1 6.1 3.8 0 NCI
73 40 NILM 16 HPV16 YES 2.1 3 2.1 CI
74 33 NILM 18 Nonα9 4.9 4.2 3.2 3.7 NCI
75 28 NILM 16 HPV16 NO 4.7 3.5 3.5 4.3 CI
76 37 HSIL 35 α9 4.2 3 3.3 CI
77 29 NILM 35 α9 5.6 5.7 5.8 CI
78 45 NILM 35 α9 3 4.6 4.6 CI
79 40 NILM 31 α9 6.3 3.1 2.7 0 0 NCI
80 48 NILM 16 HPV16 NO 4.6 5.2 4.1 CI
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Table 1. Cont.

Patient Age Lesion Genotype(s) Genotype
Group

Variant
T350G VL0 VL1 VL2 VL3 VL4 GROUP

81 42 NILM 31/70 α9 3.4 3.3 NCI
82 33 LSIL 51 Nonα9 2.1 2.2 5 0 NCI
83 34 LSIL 66 Nonα9 5.7 5.9 5.6 CI
84 51 NILM 16 HPV16 NO 4.2 4.2 4.5 6.7 CI
85 33 NILM 51 Nonα9 2.8 6.8 5.2 3.2 CI
86 24 NILM 52 α9 2.5 2.7 CI
87 59 HSIL 58 α9 2.7 2.6 CI
88 39 NILM 16 HPV16 NO 3.7 4 3.5 CI
89 53 NILM 16 HPV16 NO 5.1 5.4 4.4 4.7 4.5 NCI
90 42 HSIL 39/58 α9 4.1 4.7 4.7 3.8 4.3 CI
91 27 LSIL 16/52 HPV16/α9 YES 11.2 10.5 8.6 8.1 4.6 NCI
92 50 NILM 31 α9 2.9 4.5 3 CI
93 42 LSIL 51 Nonα9 5.6 5.4 5.6 6.6 4.6 CI
94 55 NILM 51 Nonα9 4.6 7.1 7.6 CI
95 60 NILM 35 α9 4 2.9 3.3 3.6 NCI
96 34 NILM 31 α9 5.4 3 2.7 CI
97 54 NILM 16 HPV16 YES 4.4 4.5 CI
98 33 LSIL 18 Nonα9 6.9 6 6 6.9 6.9 CI
99 31 NILM 16 HPV16 YES 2.9 3.3 3.8 CI

100 30 ASCUS 33/61 α9 3.9 4.3 6 0 NCI
101 27 HSIL 16 HPV16 NO 5.8 6.2 5.8 4 CI
102 33 NILM 16 HPV16 YES 6 3.3 CI
103 29 LSIL 56 Nonα9 7 4.1 3.6 CI
104 43 NILM 52 α9 3.7 3.9 3.8 3.2 NCI
105 28 NILM 16 HPV16 YES 4.2 3.8 0 NCI
106 29 NILM 56 Nonα9 5.9 5 0 NCI
107 58 NILM 31/53 α9 4.7 4.3 5.2 CI
108 31 NILM 39 Nonα9 6.2 4.6 5 0 NCI
109 49 NILM 16 HPV16 NO 5.1 4.7 CI
110 33 ASCUS 56 Nonα9 7.1 5.6 3.6 4.8 CI
111 46 LSIL 31/51 α9 3.6 6.7 6.1 6.1 CI
112 38 NILM 16 HPV16 NO 5.4 3.6 4.3 CI
113 28 HSIL 16/31 HPV16/α9 YES 7.9 7.8 3.4 CI
114 27 NILM 16 HPV16 NO 2.1 4.3 3.4 3.2 0 NCI
115 61 NILM 45 Nonα9 3.2 4.4 4.5 0 NCI
116 53 NILM 66 Nonα9 6 3.3 4.3 CI
117 48 NILM 16 HPV16 YES 4.9 3.2 5.3 CI
118 49 LSIL 16/52 HPV16/α9 NO 8.8 9.3 9.6 CI
119 30 LSIL 51 Nonα9 5.8 7.1 4.3 5.4 5.2 CI
120 26 NILM 31 α9 5.6 5.2 5.6 CI

VL: Viral load; CI: Clinical intervention. Data in grey correspond to the last viral load measurement prior to
clinical intervention; NCI: No clinical intervention; NILM: Negative for intraepithelial lesion or malignancy;
ASCUS: Atypical squamous cells of undetermined significance; LSIL: Low grade intraepithelial lesion; HSIL: High
grade intraepithelial lesion. Results of VL are expressed in copies of HPV/1000cells.

3.1. Genotype

The influence of age, genotype and the presence of single or mixed infections on the
evolution of patients was studied.

There was no difference in age between those patients who received clinical interven-
tion and those that did not when looking at the amalgamated data for single and mixed
infections. The picture was, however, different when mixed and single infections, and
the different genotype groups, were examined separately. In mixed infections and for the
HPVα9non16 group, women were younger than in the respective CI group.

In terms of genotype group, HPVα9 genotypes (either HPV16 or HPVα9non16) were
found in 95 cases (73.6% of total), of which 41 were HPV16 (43.1% of the subgroup).
Consideration of genotype and disease evolution data showed that HPV16 was found in
30 (35.2%) CI patients compared to 11 (25%) NCI patients, while HPVα9non16 was present
in 34 (40%) CI and 20 (45%) NCI cases, and HPVnonα9 was detected in 21 (24.7%) CI and 13
(29.5%) NCI patients. The HPV16 variant T350G was present in 16 (20.5%) CI patients and
in 5 (11.9%) NCI (p = 0.31). Furthermore, all of the 24 patients with mixed infection (20%
of the total) were positive for HPVα9 genotypes (either HPV16 or HPVα9non16) and of
these, 16 received CI (20.5% of the CI subgroup) while 8 did not (19% of the NCI subgroup)
(Table 2).
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Table 2. Age distribution according to genotype and evolution.

Age CI Patients Age NCI Patients p
n x ± σ (Range) CI95 n x ± σ (Range) CI95

Total 78 41.4 ± 11.49 (22–68) 38.8–43.9 42 37.7 ± 12.13 (23–65) 33.9–41.4 0.104
Single 62 40.66 ± 11.34(22–67) 37.9–43.7 34 39.41 ± 12.63 (23–65) 34.5–43.6 0.52
Mixed 16 44.56 ± 11.93 (28–68) 38.2–50.9 8 30.5 ± 6 (23–42) 25.4–35.5 0.005

HPV16 30 41.03 ± 10.72 (22–68) 37.02–45.03 11 37.82 ± 15.55 (24–63) 27.3–48.2 0.53
HPVα9non16 34 43.82 ± 13.32 (24–68) 39.1–48.4 20 34.50 ± 10.19 (23–60) 29.7–39.2 0.019
HPVnonα9 21 39.1 ± 9.42 (27–57) 34.8–43.3 13 38.77 ± 12.05 (28–65) 31.4–46.05 0.934

3.2. Viral Load

Of the 42 NCI patients, viral load became undetectable in 34 while, in contrast, all
78 of the patients who needed surgery to eliminate the infection had a detectable viral
load throughout the study period (p = 0.0003). The average viral load at each follow-up
according to treatment condition (CI/NCI) and the number of patients who cleared the
infection spontaneously (NCI group) or through surgery (CI group) is shown in Table 3.

Table 3. Number of patients clear of HPV or that were intervened at each follow-up.

Initial Test (0) Follow-Up 1 Follow-Up 2 Follow-Up 3 Follow-Up 4

n VL n VL n VL n VL n VL p

NCI

VL 42 4.66 ± 1.55
(2.1–11.2) 42 4.71 ± 1.53

(2.2–10.5) 41 3.45 ± 2.37
(0.0–8.7) 32 1.61 ± 2.17

(0.0–8.1) 8 1.58 ± 2.21
(0.0–4.6) <0.0001

CI95% 4.17/5.14 4.23/5.18 2.7/4.19 0.82/2.39 −0.26/3.4
Undetectable

(number and %) 0 1 2.3% 10 23.8% 23 54.7%

CI

VL 78 4.96 ± 1.57
(2.1–10.9) 78 4.83 ± 1.79

(2.0–10.8) 54 4.9 ± 1.65
(2.1–11.5) 21 4.98 ± 1.76

(2.7–9.6) 5 ** 5.02 ± 1.13
(4.1–6.9) 0.989

CI95% 4.6/5.31 4.42/5.23 4.44/5.35 4.15/5.8 3.61/6.42
Surgery * 0 24 30.7% 33 42.3% 16 20.5%

p 0.318 0.713 0.0007 <0.0001 0.0086

* Number and % of women receiving surgery between previous and current follow-up. ** In these women clinical
intervention took place after this control.

As shown in Table 3, viral load was maintained in both groups during the first year.
In the NCI group, viral load decreased (1 log) throughout the second year of follow-up,
while it remained constant in the CI group. This decrease was more pronounced along
the follow-up.

Because the COBAS HPV (Roche) detects a pool of 12 HR genotypes in the same
channel, viral load of mixed infections was treated globally for this analysis.

A further analysis of differences in viral load for the NCI and CI group in terms of
the different genotype groups at each follow-up was carried out (Table 4). The amount of
data for the fourth year of follow-up was not sufficient for any statistical analysis in terms
of genotype.

Figure 1 shows in graphical form the data from Table 4. The difference in viral load
(all genotypes) between the NCI and the CI group (A), and also by HPV genotype group
(B, C, D), are shown for the annual follow-up tests (C1 to C4 in A, but C1 to C3 in the rest).

In order to establish whether reduction in viral load was a good patient outcome
marker, the ROC curves were studied. Figure 2 shows these curves for all patients (A) and
by genotype for the second and third year of follow-up. The 0.95 logarithm decrease in
viral load at follow-up in the second year and the 2.35 logarithm drop in the third year of
follow-up indicate that the test is reliable.
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Table 4. Variation in viral load by genotype group over the course of patient follow-up tests.

Follow-Up 1 Follow-Up 2 Follow-Up 3 Follow-Up 4

n x ± σ
(Range) CI95 n x ± σ

(Range) CI95 n x ± σ
(Range) CI95 n x ± σ

(Range) CI95

Total

CI 78 −0.13 ± 1.44
(−3.3/4.3) −0.4/0.19 54 −0.11 ± 1.53

(−4.5/3) −0.52/0.30 20 −0.43 ± 1.5
(−4.1/2.5) −1.13/0.27 5 −0.3 ± 0.62

(−1/0.4) −1.28/0.68

NCI 42 0.05 ± 1.29
(−3.3/3.2) −0.35/0.62 41 −1.22 ± 2.55

(−6.5/3.9) −2.02/0.41 32 −3.26 ± 2.42
(−6.7/2.2) −4.07/−2.29 8 −3.35 ± 2.22

(−6.6/0.5) −5.05/−1.64

p 0.46 0.017 0.0000016 0.02

HPV16

CI 30 −0.17 ± 1.27
(−3.1/2.5) −0.64/0.30 19 0 ± 1

(−1.9/2.9) −0.48/0.48 8 −0.1 ± 1.42
(−1.9/2.5) −1.28/1.08 1 0.4

NCI 11 0.09 ± 0.91
(−1.4/2.2) −0.52/0.70 11 −1.66 ± 2.44

(−4.9/1.9) −3.29/−0.02 9 −2.37 ± 2.29
(−5.3/1.1) −4.1/−0.60 2 −1.2

p 0.469 0.052 0.026

HPVα9non16

CI 34 −0.11 ± 1.05
(−2.4/3.1) −0.47/0.25 24 0.24 ± 1.30

(−2.7/2.6) −0.30/0.78 5 −0.24 ± 2.49
(−4.1/2.5) −3.33/2.85 0

NCI 20 −0.21 ± 1.35
(−3.3/2.2) −0.84/0.42 19 −1.12 ± 2

(−5.4/2.9) −2.09/−0.16 18 −3.71 ± 2.5
(−6.7/2.2) −4.96/−2.47 3 −2.8

(−4.7–0.5)
p 0.77 0.014 0.03

HPVnonα9

CI 21 −0.20 ± 1.75
(−3.3/4) −0.99/0.59 17 −0.31 ± 1.76

(−3.5/3) −1.21/0.59 9 −0.34 ± 1.16
(−2.3/1.4) −1.23/0.55 3 −0.53

(−1–0)

NCI 13 0.47 ± 0.99
(−0.9/2.6) −0.1/1.06 13 −1.42 ± 3.05

(−6.5/3.3) −3.26/0.42 10 −3.52 ± 2.27
(−6.5–/0.6) −5.14/−1.89 1 −3.8

p 0.155 0.25 0.0017
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4. Discussion

HPV infection is a necessary condition for the development of cervical cancer, although
other factors also influence this process. HPV features are, however, important in disease
progression. HPV-infected women may develop a series of cervical cancer precursor
lesions. Fortunately, a large number of women regress spontaneously, but others need
to be treated to eliminate these lesions as well as the virus. Techniques that are able to
clinically distinguish between these two types of infection are important in order to avoid
unnecessary surgical interventions and to reassure women.

HPV infection is believed to clear spontaneously within 2 years in more than 90% of
cases [13,14]. However, other authors have described a much lower rate, around 40% [15,16].
This regression is a slow process because HPV evades the immune system, and this delays
adaptive immunity [17].

In terms of spontaneous regression, none of the patients became undetectable for
the virus before the first year of follow-up, and clearly none of the CI group achieved
spontaneous regression. However, by the end of the follow-up, 80% of NCI patients had a
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viral load of zero, but only 26.1% of NCI patients had cleared the virus by the third year of
follow-up, which indicates that virus removal is slow and controls should be performed
for years. Despite this, in studies carried out in younger patients, it has been seen that
most infections became undetectable within 1–2 years [18,19] and it occurs rapidly among
infections destinated to clear [20].

Many studies have evidenced that virus replication control occurs more frequently in
younger women [7,21], but this was not the case here. Furthermore, the CI group included
women in their 30s, and even one 22-year-old woman. This highlights the fact that the
initiation of HPV-based cervical cancer screening at 35 years old, as proposed by most
guidelines, should perhaps be reconsidered, and that beginning when women are in their
early 30s or before might be a better alternative.

Numerous authors have studied the influence of genotype on the severity of HPV
infection and its influence on progression to cancer. The most frequent genotype found in
this study was HPV16 (41), followed by HPV31 (15), HPV52 (9) and HPV56 (6), similar
results to those found by Kjaer [22]. Other authors have, however, found HPV18 and HPV45
to be the most frequent after HPV16, although here, these genotypes were only occasionally
detected. Finally, here, HPVnonα9 genotypes were found in the same proportion as in
other studies [22–25]. In this study, no link was found between HPV16, HPVα9non16 or
HPVnonα9 and surgical intervention.

Within HPV16, the T350G variant was present in some patients, but no relationship
with CI was found.

The incidence rates of mixed infections described in the literature vary widely, ranging
from 20–30% to 79.2% [26–30]. What is more, the implications of coinfection remain
unknown. According to the one virus one lesion hypothesis, it seems that it is unlikely
that several different HPV genotypes infect the same cell, but that each one is associated
with a different lesion [31]. The rate of mixed infections in this study was 20%, and the
same percentage of women infected with more than one type of HPV received surgery as
those who did not (20.5%). However, a potentially important finding of this study was that
in all cases of coinfection, one of the genotypes always belonged to the HPVα9 family. In
addition, a trend was discerned that women with mixed infection in the CI group were
older than those in the NCI group, although the low number of patients in these subgroups
limits the interpretation of these results.

Some studies have attempted to establish a relationship between a single viral load
and the severity of lesions [32–34]. While it might seem logical to think that a high
viral load could be translated into a greater degree of injury [35] and, in consequence,
poorer prognosis, it must also be remembered that at the beginning of any viral infection,
replication rate is always high because no immune defense is yet present. In this study, we
did not find a significant difference in viral load between CI and NCI women in the initial
test, with average VL being around 5 log copies of HPV per 1000 cells across both groups.

Other authors have asserted that such decreases in VL for different HPV types during
the follow-up period can be a good clinical biomarker [36–38]. In line with this, and in order
to add to current knowledge on this aspect of the evolution of HPV, variation in viral load
at a series of follow-up appointments was studied here. In this study, where women were
followed and treated by expert gynecologists in cervical pathology, a significant decrease
in the VL of NCI patients in the second year of follow-up was observed, specifically, an
average reduction of 0.95 log copies/1000 cells compared to mean VL in the initial test. The
trend continued, and was in fact more pronounced, in the third follow-up, where mean VL
dropped by a further 2.35 log copies/1000 cells. In the fourth control, 80% of NCI patients
had undetectable levels of HPV. Considering the genotype groups separately, the decrease
was found to be slower in HPVnonα9 types, as indicated by the ROC curves, and faster for
HPVα9 genotypes. Furthermore, our results show that the drop in VL for HPV16 patients
was greatest between the first and second follow-up, while for the other genotype groups
the reduction in VL was greater at each follow-up. Thus, it would seem that, in spite of
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being aggressive, HPV16 seems to be cleared (when it happens) faster than other members
of the HPVα9family.

The main limitation of this study was that it worked with patients in follow-up and
a random design was not developed. A study with a greater number of patients in both
groups and for a long time should be carried out to verify the results obtained.

Obtaining biopsies is undoubtedly necessary to see the degree of the lesion and for
decision-making by the gynecologist. This study tried to find an easy and non-invasive
marker that could help to determine the evolution of the HPV infection, avoiding biopsies
as much as possible. In any case, the results obtained in this study indicate that monitoring
the variation in normalized HPV viral load during the course of follow-up could help to
understand the evolution of this disease. It would allow, in the case of a viral load decrease,
surgical interventions to be postponed for up to two years (or as long as the severity of
the lesion permits) as well as avoid the adverse effects of these interventions. Moreover,
VL can be useful in screening programs for follow-up patients before they are referred for
pathology consultation.

In summary, normalized viral load should be used as a determining marker in women
with HPV infection. A decrease in normalized VL appears to be a better indicator to predict
good prognosis than other markers such as genotype or lesion grade. Further studies,
however, are needed to confirm our findings.
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