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Abstract: The interactions between topology and algebraic geometry expose various interesting 
properties. This paper proposes the deformations of topological n-manifolds over the automorphic 
polynomial ring maps and associated isomorphic imbedding of locally flat submanifolds within the 
n-manifolds. The manifold deformations include topologically homeomorphic bending of subman-
ifolds at multiple directions under algebraic operations. This paper introduces the concept of a top-
ological equivalence class of manifolds and the associated equivalent class of polynomials in a real 
ring. The concepts of algebraic compositions in a real polynomial ring and the resulting topological 
properties (homeomorphism, isomorphism and deformation) of manifolds under algebraic compo-
sitions are introduced. It is shown that a set of ideals in a polynomial ring generates manifolds re-
taining topological isomorphism under algebraic compositions. The numerical simulations are pre-
sented in this paper to illustrate the interplay of topological properties and the respective real alge-
braic sets generated by polynomials in a ring within affine 3-spaces. It is shown that the coefficients 
of polynomials generated by a periodic smooth function can induce mirror symmetry in manifolds. 
The proposed formulations do not consider the simplectic class of manifolds and associated quan-
tizable deformations. However, the proposed formulations preserve the properties of Nash repre-
sentations of real algebraic manifolds including Nash isomorphism. 
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1. Introduction 
The studies about algebraic forms of manifolds often require the elements of alge-

braic geometry and topology to gain deeper understandings. For example, the compact 
real algebraic n-manifolds are formulated over the polynomial ring ],.....,,[ 21 nxxxR , where 
the real algebraic field R  is considered as closed. The topological properties of real man-
ifolds consider that the manifolds are the real algebraic varieties, and Seifert illustrated 
that such real algebraic manifolds can be approximated by a normal product bundle [1]. 
Nash generalized these results further by assuming that the associated real algebraic va-
rieties are non-singular, and the topologies of the manifolds are compact, indicating that 
such real algebraic manifolds are embeddable in the topological spaces of higher dimen-
sions [1,2]. Nash considered that the algebraic zero-set )( fZr  of ],.....,,[ 21 nxxxRf ∈  
is Zariski closed, and the resulting real algebraic manifolds are analytic as well as topo-
logically connected, admitting homeomorphism of real algebraic manifolds. On the other 
hand, it is shown that, in the case of closed complex algebraic field C , the polynomials 

],.....,,[, 21 nxxxCgf ∈  are topologically equivalent if they maintain isolated singulari-
ties, and one can be deformed into the other by applying polynomial function 

CCh n →:   in the complex field [3]. Interestingly, the topology of complex algebraic 
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curves with isolated singularities and their deformations can be studied by employing the 
irreducible real algebraic polynomials. For example, if CCh →2:  is holomorphic with 
germ at 2)0,0( Ci ∈   and iih 0))0,0(( =   has isolated singularity at i)0,0(  , then the 
germ of the function can be viewed as a product of real algebraic polynomials, and it ad-
mits the deformations class ]}1,0[:],[{ )( ∈∈ tyxRh tD   of real algebraic polynomials 
within a small neighborhood at zero [4]. Note that the topological deformations may not 
always preserve the class of manifolds. Earlier, it was shown that, in the case of compact 
as well as complex analytic manifolds in the p-Kähler class, any small deformation results 
in the formation of a non-p-Kähler class of manifolds [5]. In other words, the topological 
deformations of manifolds are not stability invariant in all cases. 

1.1. Preliminaries 
Let us review the notions of topological deformation of spaces, imbedding and the 

isotopy in an n-manifold denoted as nM . First, we present the concept of topological de-
formation in the general form [6]. 

Definition 1. Let a topological space be given as BAX ∪= . The topological deformation of set 
A   into set B   is given by XIA →×:θ   such that AA Id=× }0{|θ   and BA ⊂× })1{(θ  , 

where AId  is the respective identity function. 

If we consider a topological n-manifold nM  and the subspace nME ⊂ , then the 
proper imbedding of E  into nM  is defined as follows [6]. 

Definition 2. If the injective function n
imb MEi →:  is an imbedding, then it is proper if 

nn
imb MEMi ∂∩=∂− )(1 . 

This leads to the definition of the formation of the isotopy class and smooth imbedding, 
which is stated as follows, considering a family of imbedding [6,7]. 

Definition 3. If ]}1,0[::{ )( ∈→ tMEi n
timb  is a set of imbedding, then it forms the isotopy 

of E  in nM  if ),()()( txhExi timb =∈  is continuous, where nMEh →× ]1,0[:  is also 

continuous. Moreover, if E  is a simplicial complex equipped with 3: REf → , then (.)f  is 
piecewise-smooth if it is piecewise-smooth for each simplex E⊂Δ . 

Remark 1. The isotopy of a locally flat submanifold can be suitably extended under covering maps 
if the locally flat submanifold is isomorphic to the corresponding proper imbedding and the 
respective submanifold is compact. Furthermore, two simplicial embeddings are isotopic if there is 
an isotopic homeomorphism maintaining Haefliger–Wu conditions [7]. 

Let 3M  be a compact 3-manifold with the incompressible boundary 3M∂ . The de-
formation of 3M , generating a hyperbolic topological space )( 3MDH , retains the local 

connectedness at parabolic points [8]. Note that 3M   and )( 3MDH   are in the ho-
motopy equivalence class. Moreover, the retention of local connectivity within 

o
H MD ))(( 3   requires that the fibrations must not be separated. However, the defor-

mation of topological manifold 3M  invites the formation of topological bumping. The for-
mations of topological bumping due to deformation are first uncovered by Anderson and 
Canary [9]. The definition of bumping in a topological manifold due to deformation is 
presented as follows [8,9]. 
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Definition 4. Let )( 3MDH  be a topologically deformed manifold and the set 
o

H MDBA ))((},{ 3⊂  be representing two locally connected components. The component set is 

defined to be topologically bumped at )( 3MDp H∂∈  if BAp ∩∈ . 

The characterization of manifold components in o
H MD ))(( 3  is presented showing 

that the topological bump occurs in 3M   under deformation if it has incompressible 
3M∂  [10]. Note that, if the deformation of 3M  does not produce any topological bump 

at )( 3MDp H∂∈ , then it is a topological rigid point. This leads to the following theorem 
[8]. 

Theorem 1. Let 3M  be a compact 3-manifold such that it preserves the non-cylindrical 
),( 3 ISMHom ×  property for a surface S . If the point )( 3MDp H∂∈  is rigid, then there 

is no bump at that point. 

The proof of the theorem is presented in detail in [8]. Interestingly, if we consider that 
nn CMp ⊂∈  is a point on an n-manifold nM  generated in complex affine n-space, 

then for all nMp∈ , the neighborhoods )( pN  are locally connected and locally home-
omorphic real algebraic submanifolds [11]. This observation topologically bridges be-
tween the real algebraic varieties as manifolds and the holomorphic complex affine spaces. 

1.2. Motivations 
The varying degrees of deformations of topological manifolds retaining stabilities as 

well as homeomorphisms have applications in various domains of sciences, and they are 
largely dependent on the class of manifolds [12–15]. It was mentioned earlier that a topo-
logical manifold can be viewed as a real algebraic variety, and the topological manifolds 
can be formed over a special class of polynomials, called simplicial polynomials, in a real 
polynomial ring [1,16]. On the other hand, a real algebraic manifold can also be viewed as 
a topologically connected sheet of real algebraic variety, allowing for the formations of 
cusps and self-intersections [2]. Nash proposed that a proper representation of a real alge-
braic manifold needs the isolated sheet, and the isomorphic ring map BA RR →:λ  be-
tween two rings can induce homeomorphism between the respective two real algebraic 
manifolds of analytic types [2]. On the other hand, in a complex field, the weighted ho-
mogeneous polynomials in a ring form manifolds involving the isolated singularities [17]. 
Interestingly, the manifold deformation has a relationship with algebraic power series and 
product−∗  operations. For example, if nM  is a simplectic n-manifold admitting the 

corresponding deformation algebra )( nMCA ∞=   on the respective manifold, then 
),( vAAD  forms the space of all algebraic power series with the complex variable v , and 

the coefficients are in )( nMCA ∞=  , employing algebraic product−∗   and Poisson 

brackets [18]. Let us consider a pair of n-manifolds given as ),( nn MEM ⊂ , where E  

is locally flat. It was shown earlier that the closure of imbedding nn
emb MMUi →⊂ )(:  

preserves the isomorphism property denoted as ))(),(( EBEUIsom ⊂∩   within the 
manifold, maintaining the corresponding isotopy class [6]. These observations motivate 
us to ask the following questions. (1) How can we generalize the topological deformation of 
manifolds, considering the bending and folding of manifolds over a polynomial ring? (2) What are 
the roles of automorphic ring maps in forming topological deformations of manifolds? (3) What are 
the different classes of axial symmetries generated during the deformations and is there any for-
mation of a topologically equivalent class of polynomials, if any? This paper addresses these 
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questions in relative detail by combining the elements of algebraic geometry and topol-
ogy, considering the real algebraic sets and real polynomial rings. 

1.3. Contributions 
This paper proposes the formulations of topological n-manifolds over the polynomial 

ring, considering real field and its deformations, by employing the concept of automor-
phic ring map. The topological deformations of n-manifolds include bending of subman-
ifolds at multiple directions under algebraic compositions. The proposed formulation ad-
mits the isomorphic embeddings of locally flat submanifold E  of manifold M  under the 
algebraic zero-set ))(( EIZr  of the corresponding ideals )(EI . The locally flat subman-
ifold E   preserves the isomorphism property given as ))((,( MIZrXIsom  , where 

 
i

is MIfvZrMX )))(})({(()( ⊂=⊂ γ   is a local submanifold agreeing with E  

and the composition )( svγ   is an automorphic ring map in ],....,,[ 21 nxxxF   over 
closed real field (details are presented in the following sections). Note that, as a distinc-
tion, the proposed formulations of n-manifold deformations do not assume that the man-
ifold is in the simplectic class, and the quantizable deformation is not considered by form-
ing any complex power series over the manifold. In this paper, the proposed formulations 
employ a generalized approach by using polynomial rings over the real algebraic field 
and the associated automorphic ring maps inducing manifold deformations. Moreover, 
the proposed formulations preserve the topological homeomorphism of the deformed 
manifolds in all cases and admit embeddable submanifolds, which are the Zariski closed 
algebraic sets. We preserve the concept of Nash representation of a real algebraic manifold 
by allowing for two aspects of it: (1) the formation of topologically connected sheets, where each 
component of the connected sheet can have representation of respective isolated sheet, and (2) em-
ployment of commutative ring automorphism as a modified form of Nash isomorphism 

BA RR →:λ   between two rings, generating the equivalence class of real algebraic manifolds 
),( AA RM   and ),( BB RM  . Moreover, the preservation of topological homeomorphism 

under deformations in the proposed formulations admits the notion of the 
),( BA MMHom  property of analytic manifolds, as pointed out by Nash, under the ring-

isomorphism. Furthermore, we introduce the concept of a topological equivalence class of real 
algebraic polynomials and real algebraic sets without considering singularities, and we show, 
through the numerical simulations, the existence of such a class under algebraic composi-
tion operations forming isomorphic manifolds. The numerical simulations show the for-
mations of multiple axes of symmetries during the topological deformations of manifolds 
retaining isomorphisms and homeomorphisms. The interrelationships between PL-home-
omorphism, self-homeomorphism, mirror symmetries and the formation of characteristic 
polynomials of the graph structures with varying symmetries (along with the applica-
tional aspects) are explained in brief. 

The rest of the paper is organized as follows. The concepts and definitions of the 
topological equivalence class and the automorphic ring maps are presented in Section 2. 
The formations of topological manifolds over the polynomial ring maps, their defor-
mations and the concept of algebraic compositions over topological manifolds are pre-
sented in Section 3. The details about the numerical simulations are illustrated in Section 
4. The PL-homeomorphism, self-homeomorphism with mirror symmetries and the appli-
cational aspects of characteristic polynomials of graphs are illustrated in Section 5. Finally, 
Section 6 concludes the paper. 

2. Automorphic Ring Maps and Topological Equivalence 

Let us consider a polynomial ring ],....,,[ 21 nxxxF   over the closed real algebraic 

field F   and a ring automorphism ],....,,[],....,,[: 2121 nn xxxFxxxF →γ   such that 
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)(]),....,,[)(( 21 FExxxFFE n
n

n ⊂⊆γ   condition is admitted. Suppose we consider a 
selection function ],....,,[],....,,[: 2121 nns xxxFxxxFv →  by following the principles of 
axioms of choice in the polynomial ring. The resulting definition of the polynomial ring map 
is given as follows. 

Definition 5. If ],....,,[ 21 nxxxF  is a polynomial ring over the respective closed algebraic field 
admitting automorphism (.)γ  and ],....,,[],....,,[: 2121 nns xxxFxxxFv →  is a unique 

selection function for every ],....,,[)( 21 n
n xxxFFEf ⊆∈ , then )()( γγ  ss vv =  is an 

automorphic ring map such that the following diagram commutes (see Figure 1): 

 
Figure 1. Commutative diagram of automorphic ring map. 

Note that the automorphic ring map ))()(( FEv n
s γ   preserves the dimensionality 

within the respective polynomial ring; however, the degrees of polynomials can vary un-
der automorphic ring maps. 

Remark 2. The preservation of dimensionality allows for the uniformity and homogeneity of the 
ring map. If we consider a topologically affine n-space )(FAn  and )(),....,,( 21 FAxxx n

n ∈ , 
then the automorphic ring map admits the following condition: 

).,....,,(),....,,)((
},{})({
,:

2121 nn xxxgxxxfw
gf
FFw

=
=

→


γ  (1)

Example 1. We present a set of examples by considering the varying dimensionalities. First, we 
present the polynomial ][xREp ⊂∈  and its forms, considering one dimension under two ring 
maps generating Eqq ⊂},{ 21  as illustrated in Figures 2–4. Note that we have fixed 

1)deg( =p  and 2)deg()deg( 21 == qq . 

 
Figure 2. The polynomial )2()( −= xxp . 
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Figure 3. The polynomial )3()(),})({( 2
11 +=⊂= xxqEpvq sγ . 

 

Figure 4. The polynomial )1()(),})({( 2
212 ++=⊂= xxxqEqvq sγ . 

Next, we increase the dimensionality such that ],[2 yxREp ⊂∈ , and the results of the 
ring maps are illustrated in Figures 5–7 as follows. Note that the polynomials have 

3)deg()deg( 2 == qp  and 2)deg( 1 =q . 

 

Figure 5. The manifold of polynomial )1(),( 2 += yxyxp . 

 

Figure 6. The manifold of polynomial )1(),(),})({(),( 1
2

1 +=⊂= xyyxqEpvyxq sγ . 

 
Figure 7. The manifold of polynomial 

)2(),(),})({(),( 2
2

2
12 ++=⊂= xyyxyxqEqvyxq sγ . 
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It is interesting to note that, in all cases, the algebraic ring maps preserve the topo-
logical property of homeomorphisms in various dimensionalities. In some cases, the man-
ifolds are isomorphic in nature. This shows that topological properties are retained in 
some cases even if the real algebraic sets generated by the ring maps vary to some extent. 
As a consequence, this invites the concept of a topological equivalence class of manifolds 
and the associated polynomials in a ring. The following definition presents the concept of 
a topological equivalence class of polynomials generated by the corresponding real alge-
braic sets. 

Definition 6. If ],....,,[, 21 nxxxFgf ∈  are two polynomials with )deg()deg( gf ≠  over 
a closed field, then },{][][ gfgf ==  is a topological equivalence class if the respective 

manifolds )( fM n  and )(gMn  admit the ))(),(( gZrfZrIsom  property. 

Note that the topological equivalence class of polynomials depends on the isomor-
phism property, which is relatively stronger than homeomorphism. As a result, the iso-
morphic manifolds representing the corresponding real algebraic sets are also in the top-
ological equivalence class of manifolds. The existence of the topological equivalence class 
of polynomials is illustrated in detail through the numerical simulations as presented in 
the Numerical Simulation section (Section 4) of this paper. 

3. Deformations of Topological Manifolds over Rings 
In this section, we present the definitions and properties of real algebraic sets repre-

senting the respective topological manifolds and their deformations. Recall that the topo-
logical manifolds are generated retaining the homeomorphism property, irrespective of 
varying dimensionalities. Let us consider a polynomial ],....,,[ 21 nxxxFf ∈  such that it 

can be decomposed into ∏
=

=
3

1i
ipf , where ],....,,[ 21 ni xxxFp ∈ . Thus, it preserves the 

algebraic zero-set as 
i

ipZrfZr )()( = . This leads to the formation of a topological n-

manifold and associated conditions, which are defined in the following section. 

3.1. Definitions 
First, we present the definition of formation of real algebraic manifolds in affine top-

ological spaces. 

Definition 7. Let us consider a topological affine space )(FAn  generated by naa ],[−  and 

Fa∈ . If )()( FAfZr n⊂  condition is maintained such that mpi ≤)deg( , then 

),( faM n ±  is a topological n-manifold generated by )( fZr  in )(FAn . 

We can form another topological manifold over the polynomial ring 
],....,,[ 21 nxxxF  with the employment of an automorphic ring map. This is called an im-

age n-manifold, which is defined as follows. 

Definition 8. Let us consider a topological affine space )(FAn  and two polynomials such that 

],....,,[, 21 nxxxFgf ∈ . If the polynomial }{],...,,[))(( 21 gxxxFEv n
n

s =⊂γ  is 

decomposable as ∏
=

==
3

1i
iqg , then it generates an image n-manifold denoted as ),( gaM n ±  

in )(FAn  if the following conditions are maintained: 
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)).()(())()((
},{}))({(
},{}))({(

22

33

11

qZrpZrgZrfZr
qpv
qpv

s

s

≅=∩
=
=




γ
γ

 (2)

Note that the decomposability of a set of polynomials in the ring is a necessary con-
dition to form an image manifold under the suitable ring map. Moreover, it is interesting 
to note that an algebraic composition operation, denoted by ⊕ , can be formulated consider-
ing )( fZr  and )(gZr  along with the automorphic ring map )( γsv . The definition 
of algebraic composition operation is presented as follows. 

Definition 9. If ],...,,[, 21 nxxxFgf ∈  are decomposable such that }{))(( gEv n
s =γ  and 

the corresponding algebraic zero-sets are 
i

ipZrfZr )()( =  and 
i

iqZrgZr )()( = , then 

the algebraic composition operation ⊕  is defined as 
)()()()( 223311 qpZrqpZrqpZrgfZr =∪+∪+=⊕ . 

It is important to note that the algebraic composition operation under the automor-
phic ring map within a polynomial ring considers that the participating polynomials in 
the composition operation are decomposable into multiple irreducible components. 

3.2. Topological and Algebraic Properties 
This section presents the topological as well as algebraic properties of the proposed 

concepts and formulations. First, we show that two topological n-manifolds can be com-
bined into a composite n-manifold through the algebraic composition operations in the 
set of corresponding polynomials in the real ring. 

Theorem 2. If ),( faM n ±  and ),( gaM n ±  are two topological manifolds over the 

polynomial ring, then ),( gfaM n ⊕±  is also a topological manifold in an affine )(FAn , and 
it is a composite topological manifold. 

Proof. Let ),( faM n ±  and ),( gaM n ±  be two topological n-manifolds generated 

over the respective polynomial ring in )(FAK nn ⊂ . If the polynomials 
],...,,[, 21 nxxxFgf ∈  are decomposable, then the respective ideals are 

)(},{ n
ii KIqp ⊂  and, as a result, )(}3,1:{ n

ii KIiqp ⊂=+  are also ideals. Note that the 

respective algebraic zero-sets maintain the condition that ))()(()( 22 qZrpZrBZr
i

≅= , 

where }3,2,1:{}3,2,1:{ =∪== iqipB ii . Thus, the composed algebraic curve 

represented by )).().(()( 33211 qppqpgf ++=⊕  preserves the condition that 

)()( nKIgf ∈⊕ . Hence, the structure ),( gfaM n ⊕±  is also a manifold in )(FAn . 
□ 

Note that the formations of composite n-manifolds from multiple real algebraic sets 
do not always require the automorphic ring maps for each and every irreducible compo-
nent. In other words, we can consider that )(.)( svγ  is invariant for some irreducible 
components representing prime ideals. It leads to the following corollary. 
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Corollary 1. In each of the topological manifolds ),(1 faMA n ±= , ),(2 gaMA n ±=  and 

),(3 gfaMA n ⊕±= , the Zariski closed topological subspace 
i

iAZr )(  is an algebraic 

variety representing the submanifold under invariant ))(( hvsγ  for ],...,,[ 21 nxxxFh∈  
under the ring map, where )(| gfh ⊕ . 

The proof of the corollary is relatively straightforward, and we present a set of exam-
ples accordingly in the Numerical Simulations section (Section 4). The concept of locally 
flat imbedding of a manifold and the isotopy class can be preserved in the proposed for-
mulations. The following theorem illustrates that the isomorphic embedding within a 
manifold is admissible considering the respective real algebraic sets. Moreover, such iso-
morphic embedding is invariant to the automorphic ring map. 

Theorem 3. Let E  be an affine Zariski topological space, and consider ]1,0[×⊂ EBt  for 

]1,0[∈t . There is an isomorphic embedding o
tem MBi →: , where DM∈ , and 

)},(),,(),,({ gfaMgaMfaMD nnn ⊕±±±=  is a set of real algebraic manifolds. 

Proof. Let us consider a set of real algebraic manifolds given by 
)},(),,(),,({ gfaMgaMfaMD nnn ⊕±±±=  and the corresponding algebraic set 

))()()(( gfZrgZrfZrH ⊕∩∩= . This indicates that oMH ⊂ , where DM ∈ . If 

we consider an affine Zariski topological space E  such that ),( oo HEIsom  

isomorphism is preserved, then it admits the isomorphic embedding o
tem MBi →: , 

where ]}1,0[{ ∈×⊂ tEB o
t . □ 

The formation of a composite n-manifold can be considered as a topological defor-
mation of the participating real algebraic sets. This observation is presented in the follow-
ing lemma. 

Lemma 1. The composite manifold ),( gfaM n ⊕±  is a topological deformation of 

),( faM n ±  and ),( gaM n ±  over the respective polynomial ring. 

Proof. Note that )( ii qpZr +  is not isomorphic to )( ipZr  and )( iqZr  for 3,1=i . 

Thus, the composite n-manifold ),( gfaM n ⊕±  is a topological deformation of 

),( faM n ±  and ),( gaM n ± . □ 

4. Numerical Simulations 
In this section, we present the formation of topological manifolds over the polyno-

mial ring maps, and the associated manifold deformations are formed through the alge-
braic composition operations as well as ring maps. The manifolds are numerically simu-
lated in the topological product space 3R  such that ]10,10[)],([ −=⊂− Raa . We pre-
sent the results of the numerical simulations considering three distinct cases. 

4.1. Case I: Considering ][xR  

First, we consider that the polynomial rings are formed over closed real field such 
that 1)dim( =ip  for ][xRpi ∈ . Note that we are not restricting the )deg( ip . The for-
mations of topological manifolds for various polynomials in a ring due to the applications 
of ring maps are illustrated in Figures 8 and 9. 



Symmetry 2024, 16, 556 10 of 16 
 

 

 

Figure 8. The topological manifold of )3)(1)(2()(1 −+−= xxxxp . 

 

Figure 9. The topological manifold of )5)(1)(3()( 2
2 −++= xxxxp . 

The formation of a composite topological manifold under automorphic ring maps 
and the algebraic composition operation is presented in Figure 10. Note that each of the 
topological manifolds is topologically homeomorphic, and the composite manifold given 
in Figure 10 is isomorphic to the topological manifold given in Figure 9. 

 

Figure 10. The topological manifold of )()( 21 xpxp ⊕ . 

It indicates that the composite 1-manifold is capable of retaining the isomorphism of 
one of the real algebraic sets under ring maps, and it is topologically homeomorphic to 
the other one. 

4.2. Case II: Considering ],[ yxR  

In this set of experiments, we increase the dimensionality while preserving the ring 
over the closed field of reals. The formations of the resulting topological manifolds with 

1)deg( >ip  are illustrated in Figures 11 and 12. Note that the respective manifolds have 
different proportions of topological bending retaining the homeomorphism property. 
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Figure 11. The topological manifold of )2)(1)(1(),( 32
1 −++= xxyxyxp . 

 

Figure 12. The topological manifold of )2)(1)(1(),( 3
2 −++= yxxyyxp . 

It is interesting to observe, considering Figures 11 and 12, that the 2-manifolds are 
homeomorphic and not isomorphic. The formation of a composite topological manifold 
under ring maps and algebraic composition operation is illustrated in Figure 13. 

 

Figure 13. The topological manifold of ),(),( 21 yxpyxp ⊕ . 

Note that the topological deformations are pronounced in this case due to the appli-
cations of ring maps and algebraic composition operations in two dimensions. Interest-
ingly, the composite manifold is homeomorphic and not isomorphic in this case, which is 
a different result as compared to one dimension. Moreover, note that the manifolds admit 
the locally flat submanifolds in all cases. 

4.3. Case III: Considering ],[ yxR  with Higher Degrees of Polynomials 

In this set of experiments, we maintain the algebraic field and dimensionality unal-
tered. However, we considerably increase the degrees of the polynomials forming the cor-
responding algebraic zero-sets. The topological manifolds participating in algebraic com-
position operations are illustrated in Figures 14 and 15. Note that the manifolds are not 
isomorphic. 
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Figure 14. The topological manifold of )2)(1)(1(),( 35432
1 −+++= xyxxyxyxp . 

 

Figure 15. The topological manifold of )2)(1)(1(),( 3543
2 −+++= yyxxxyyxp . 

The effects of the ring maps and algebraic composition operation are pronounced 
within the resulting composite 2-manifold. The composite manifold is illustrated in Figure 
16. 

 

Figure 16. The topological manifold of ),(),( 21 yxpyxp ⊕ . 

It is interesting to note that the higher degrees of topological deformations are in-
duced in the manifold given in Figure 16 as compared to the manifold given in Figure 13. 
However, the deformed 2-manifolds retain the homeomorphism property and topological 
connectedness within the manifolds. This illustrates the resulting topological effects due 
to the increase in degrees of polynomials in a real algebraic ring in two dimensions. Fur-
thermore, the deformed manifolds preserve locally flat submanifolds irrespective of the 
varying degrees of the polynomials in a ring. 

4.4. Case IV: Topological Equivalence of Manifolds and Polynomials 
In this section, we compare the topological structures of two manifolds under defor-

mations generated by two different sets of polynomials with varying dimensions and de-
grees. We show the retention of isomorphism property under the algebraic composition 
operation. Consider two real algebraic zero-sets by considering ))()(( 21 xpxpZr ⊕  and 

)),(),(( 21 yxpyxpZr ⊕  as presented in Figures 10 and 16, respectively. Note that both 
admit locally flat submanifolds at different dimensions. Next, we simulate the topological 



Symmetry 2024, 16, 556 13 of 16 
 

 

2-manifold generated by )),(),(())()(( 2121 yxpyxpZrxpxpZr ⊕∪⊕  by combining 
the respective submanifolds under the algebraic composition operation. The resulting iso-
morphic manifolds are presented in Figure 17. The results illustrate that the manifolds 
generated by 

],[)))},(),()).(()((()),,(),({( 212121 yxRyxpyxpxpxpyxpyxp ⊂⊕⊕⊕   are topo-
logically isomorphic under the respective algebraic composition operations, where 

][))()(( 21 xRxpxp ∈⊕ . 

 

Figure 17. Equivalence class of ),(),( 21 yxpyxp ⊕   and 

)),(),()).(()(( 2121 yxpyxpxpxp ⊕⊕ . 

Interestingly, the topological deformations generate multiple axes of symmetries 
within the composite and deformed manifolds. Moreover, the mixed-axial symmetries of 
the composite manifolds under deformations are preserved, illustrating that the respec-
tive two sets of polynomials in a ring are topologically equivalent under algebraic com-
positions generating isomorphic topological manifolds. Thus, we can consider that the 
manifolds presented in Figure 17 are in a topologically equivalent class of manifolds, and 
the respective polynomials are also in an equivalence class within the polynomial ring 
under automorphic ring maps. Furthermore, the results illustrate that the real algebraic 
varieties of higher degrees generating locally flat submanifolds are invariant under alge-
braic composition operations. 

Remark 3. It is important to note that a topological equivalence class of manifolds is sensitive to 
the coefficients of the monomials. If an algebraic variety is irreducible, then the periodically varying 
coefficients can induce an equivalence class of manifolds or a set of manifolds with mirror symmetry 
depending upon the values of the coefficients under periodic smooth functions. This observation is 
presented in Figures 18–20. 

 

Figure 18. Manifold generated by )3( 10 −x . 
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Figure 19. Manifold with mirror symmetry generated by )3)(4sin( 10 −x . 

 

Figure 20. Equivalent class of manifold generated by )3)(40sin( 10 −x . 

5. PL-Homeomorphism, Self-Homeomorphism and Applicational Aspects 
In this section, we consider the PL-homeomorphism and associated self-homeo-

morphic functions in general forms and the incorporation of mirror symmetry by topo-
logical deformations of manifolds. We briefly indicate the interrelationships between the 
characteristic polynomials of graphs, symmetries and the potential applicational aspects. 
Earlier, it was shown that the PL-homeomorphism and self-homeomorphism of a topo-
logical manifold cannot be considered as equivalent [19]. For example, the smooth and 

non-singular self-homeomorphism of the function )/1sin()4/1()(
2

xexxf x−−+=   rep-
resents a line with infinitely many isolated fixed points near origin as illustrated in Figure 21. 

 
Figure 21. Non-singular smooth line of )(xf  with isolated fixed points near origin. 

However, the multiplicative inclusion of a smooth periodic function into the corre-
sponding self-homeomorphic function can induce mirror symmetry in the resulting top-
ological manifold as illustrated in Figure 22. Note that, in this case, the function )(xf  is 
not in a standard polynomial form. 

 
Figure 22. Induced mirror symmetry in topological manifold of )()sin( xfx . 

Finally, this is to note that there is an interrelationship between polynomials and 
graphs with several applications. The derivation of a characteristic polynomial from a 
graph is an interesting concept. If a graph is given as ),( EVG = , then the characteristic 
polynomial associated to the respective graph can be derived from the adjacency matrix 

)(GA  of the graph [20]. Interestingly, the roots of a characteristic polynomial of a graph 
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),( EVG =   are the eigenvalues of the graph. Moreover, if the graph ),( EVG =   is a 
symmetric graph, then it admits semi-free actions of Abelian groups [20]. In other words, 
the symmetry or asymmetry of the graph structures affects the properties of the associated 
characteristic polynomials. In the views of applicational aspects involving the character-
istic polynomials, symmetries and graphs in the domain of chemical sciences, the mole-
cules can be represented in numerical forms representing the underlying graph structures 
with varying symmetries, and the chemical properties of the molecules vary accordingly 
[21,22]. 

6. Conclusions 
The formations of algebraic varieties representing topological n-manifolds over a set 

of polynomials in a polynomial ring allow for the homeomorphic deformation of n-man-
ifolds in an affine topological space. The notions of automorphic ring maps and the alge-
braic composition operation within a set of polynomials in a ring admit the corresponding 
manifold composition from a set of manifolds, and it induces the resulting deformations 
of manifolds within the composite manifolds. The deformations include topological bend-
ing of submanifolds at multiple directions while retaining the isomorphic embedding of 
a locally flat submanifold. The Nash isomorphism of manifolds is admissible in the pro-
posed formulations. One of the reasons is that the proposed concept of a topologically 
equivalent class of polynomials gives rise to a set of isomorphic topological n-manifolds, 
where such a set of n-manifolds can be considered as a topological equivalence class of n-
manifolds. The numerical simulations exhibit the topological deformations of the 1-man-
ifolds and 2-manifolds in various forms, preserving homeomorphism and isomorphism 
under algebraic composition operations. It is important to note that the proposed formu-
lations do not consider formations of singularities within the real algebraic sets, indicating 
that an n-manifold can be imbedded in a topological (n+1)-space. Moreover, the proposed 
formulations are generalized in nature without being specifically restricted to the simplec-
tic class of topological manifolds. 
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