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Abstract

An important open question in the modeling of biological tissues is how to identify the right

scale for coarse-graining, or equivalently, the right number of degrees of freedom. For con-

fluent biological tissues, both vertex and Voronoi models, which differ only in their represen-

tation of the degrees of freedom, have effectively been used to predict behavior, including

fluid-solid transitions and cell tissue compartmentalization, which are important for biological

function. However, recent work in 2D has hinted that there may be differences between the

two models in systems with heterotypic interfaces between two tissue types, and there is a

burgeoning interest in 3D tissue models. Therefore, we compare the geometric structure

and dynamic sorting behavior in mixtures of two cell types in both 3D vertex and Voronoi

models. We find that while the cell shape indices exhibit similar trends in both models, the

registration between cell centers and cell orientation at the boundary are significantly differ-

ent between the two models. We demonstrate that these macroscopic differences are

caused by changes to the cusp-like restoring forces introduced by the different representa-

tions of the degrees of freedom at the boundary, and that the Voronoi model is more strongly

constrained by forces that are an artifact of the way the degrees of freedom are represented.

This suggests that vertex models may be more appropriate for 3D simulations of tissues

with heterotypic contacts.

Author summary

Proper programming of the collective behavior of cells in biological tissues is required for

successful embryonic development, and this programming breaks down in diseases such

as cancer. Therefore, an important question is how to develop accurate computational

models that can predict emergent collective behavior of cells. Two existing computational

models, vertex and Voronoi models, have been used successfully to make quantitative pre-

dictions for collective cell behavior, and both predict the same fluid-to-solid transition in

tissues, which is important for developmental processes such as body axis elongation. In

this work, we study whether Voronoi and vertex models predict the same emergent
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behavior for cell sorting between two different tissue types, which is important for

compartmentalization of tissues and organs during development. We find that the two

models predict different features for the geometry and motion of cells, and that the more

computationally intensive vertex model more accurately represents cell shapes and

dynamics near an interface between two tissue types.

1 Introduction

Mechanical interactions between molecules, cells, and tissues are increasingly being identified

as control mechanisms in development and disease. In order to make quantitative predictions

about how physical forces impact processes such as tissue compartmentalization and cell

migration in dense cellularized tissues, it is necessary to develop well-vetted mechanical mod-

els. In this work, we focus on models for confluent tissues, such as epithelial layers, where

there are no gaps or overlaps between cells.

Traditionally, much of the computational work to simulate confluent tissue has been

restricted to two-dimensional (2D) models [1–8]. While 2D models for confluent tissue are

extremely powerful, they rely on several assumptions in order to approximate collections of

cells that exist in three-dimensional (3D) space. One assumption is that all the cells of interest

exist in a single monolayer, and that the mechanics of that monolayer is dominated by interac-

tions in a single (usually apical) 2D plane. Another assumption is that any interactions with

the environment, such as a basement membrane, can be approximated by body forces acting

on cell centers or vertices. Finally, it is assumed that any fluctuations or dynamics in the unre-

solved third dimension (such as fluctuations in height) can be mapped in a simple way onto

dynamics in the two-dimensional plane (such as fluctuations in cross-sectional area). But

clearly, these assumptions are not always valid, and there are many systems that require a fully

three-dimensional model such as in organ/organoid development [9, 10], cancer spheroids

[11–13], and cell sorting in 3D cellular aggregates [4, 14].

In addition, compartmentalization of different tissue types and formation of boundaries

between different cell types is crucial to proper function in development [15–22], and treat-

ment of disease [23, 24]. While the exact mechanisms that drive compartmentalization and

boundary formation are still an area of active research, several simple hypotheses have helped

to drive forward the field over the past 60 years. The differential adhesion hypothesis (DAH)

[25, 26] postulates that cell sorting is driven by differences in cell surface tensions, which in

turn arise from differences in cell adhesion. This hypothesis correctly explains behavior in par-

ticle-based simulations of cells where particles interact with adhesion-like terms that depend

on the distance between cell centers [27, 28].

In experimental observations of confluent tissues, where cells are not well-represented as

sticky spheres, cell-cell adhesion must instead influence cell shapes and cell interfacial tensions.

The differential interfacial tension hypothesis (DITH) [29] hypothesizes that differences in

interfacial tension between two cell types drive cell sorting, and suggests that adhesion and sur-

face contractility compete to create an effective interfacial tension between cells of opposite

types, sometimes called a heterotypic interfacial tension [5, 30–32]. Importantly, DITH and

DAH are not irreconcilable, as in many tissue types there are signaling feedbacks between

adhesion and cortical tension [33] that lead to a down-regulation of cortical tension at inter-

faces with increased adhesion, so that both DITH and DAH predict similar outcomes [34, 35].

In confluent tissues, adhesion expression governs both individual cell shapes in a mono-

layer [3] and heterotypic interactions between two different cell types [30, 36]. It is not
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immediately obvious whether differences in cell shape alone are also sufficient to generate sort-

ing. Recent experiments and simulations have suggested that at least in cell monolayers, differ-

ences in cell shape can generate small-scale segregation but not large-scale demiximing [3].

In contrast, simulations with heterotypic interfacial tension exhibit robust large-scale cell

sorting [5] with sharp boundaries between tissue types, which closely mirrors the dynamics

and boundaries observed in experimental tissues [37–40]. It is difficult to quantify heterotypic

interfacial tensions directly in situ, although laser ablation approaches [41] can approximate

differences in tension up to an assumed viscous constant. Alternatively, pipette aspiration

experiments [35, 42, 43] can study tension properties of extracted cell doublets or triplets.

Recent simulation work has focused on understanding how the geometry of heterotypic

interfaces impacts their mechanical properties. A study focused on 2D Voronoi and vertex

models demonstrated that several different definitions of surface tension that are all equivalent

in equilibrium fluids are not the same in confluent tissue models. Heterotypic surface tension

along interfaces suppresses capillary waves, resulting in sharp yet deformable boundaries [31],

with characteristic geometric signatures in cells near the interface [3]. Both effects appear to be

less strong in vertex compared to Voronoi models in 2D. In 3D Voronoi model simulations,

similar geometric signatures are observed including elongation of cells on the boundary, sharp

interfaces, and compartmentalization of cells of opposite types [4].

Interestingly, a recent paper observes a small difference in the geometric behavior of cells

on a heterotypic boundary in the 2D vertex and Voronoi models [4]. In the Voronoi model,

cells across a heterotypic interface will align their cell centers, while in the 2D vertex model,

their degree of alignment is significantly smaller. This presents a challenge to Voronoi models,

as the choice of model degrees of freedom should not change predictions about tissue mor-

phology if both models use the same energy functional and are meant to encapsulate the same

physics.

Quite a lot of 3D modeling of confluent tissues has been performed using 3D Voronoi mod-

els [9, 44–46], mainly due to their computational efficiency and simplicity compared to 3D

Vertex models. Almost two decades ago, a first 3D vertex model was described and simulated

[47], and more recent work has explored other aspects of tissue mechanics with 3D vertex

models [48–50]. However, this code was not made available open source, and there are signifi-

cant subtleties and challenges in handling changes to topology in 3D vertex models, whereas

those are handled automatically in Voronoi code bases. Very recently, Zhang and Schwarz

have reported on rigidity transitions and topological protection in 3D vertex models for orga-

noids, and concurrently released an open-source 3D vertex model code [10, 51], which permits

a clear view of the coding choices made and is a significant contribution to the field.

Given the small difference seen between cell geometries in 2D vertex and Voronoi models,

and the important role cell geometries play in both the physics of interfacial tension and in

comparing model predictions to experimental observations, an important open question is

whether there are any geometric differences near heterotypic interfaces in 3D vertex and Voro-

noi models. Therefore, we adapt the 3D vertex simulation code developed by [10] to investi-

gate cell shape and dynamics at heterotypic interfaces. We compare that to the 3D Voronoi

model to discern whether there are differences and, if so, explain the mechanisms that drive

those differences.

2 Model and methods

2.1 Simulation methods

For both 3D vertex and Voronoi models, the simulated confluent tissue is composed of

N = 1728 cells driven by active forces. Each cell i is represented by polyhedra with mechanics
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that are driven by the energy functional

E ¼
XN

i

KAðAi � A0Þ
2
þ
XN

i

KVðVi � V0Þ
2
þ E0; ð1Þ

where the mechanical interaction forces between cells are given by Fi = −riE. The first term

describes the competition between surface tension and adhesion where cell-cell contacts are

represented by intercellular areas and have area modulus KA. The second term represents a

soft constraint on the characteristic cell volume V0 with volumetric modulus KV. Here we are

explicitly relaxing the constraint that cells are incompressible and suggesting that a combina-

tion of biological mechanisms, such as ion channels, regulate the volume to stay within a range

parameterized by KV. Then both systems evolve under Brownian dynamics. The only differ-

ence between the two models is the degrees of freedom in the Voronoi model are the cell cen-

ters and the degrees of freedom in the vertex model are the cell vertices.

A three-dimensional non-dimensionalized shape index can be defined as S0 ¼ A0=V
2=3

0 . As

the shape index of a cell increases cells will become less circular or more elongated. Both mod-

els experience a rigidity transition in homogeneous systems in which the tissue goes from

behaving solid-like to fluid-like as a function of the cell shape. In the 3D Voronoi model, this

rigidity transition occurs at a cell shape of s0 = 5.413 and is identified by the point in which the

shear modulus vanishes [52]. In the 3D Vertex model, the rigidity transition is identified by

looking at the neighbor-overlap function and the tissue becomes fluid-like when the typical

time-scale for rearrangements becomes zero which occurs at s0 = 5.39 ± 0.01 [10]. A similar

agreement in the location of rigidity transition with cell shape is seen in the 2D vertex and

Voronoi models [1, 2]. Unless otherwise noted, S0 = 5.6 in our simulations, so that the simu-

lated tissues are in the fluid regime. This allows the tissue to efficiently explore configuration

space to find low-energy states, and avoids additional surface stresses that arise between con-

tacting solid surfaces.

While homogeneous tissue seems to behave quite similarly between the two models, it is

also important to investigate tissue consisting of multiple cell types. As previously stated, the

addition of an additional energy cost for heterotypic interfaces can cause large-scale demixing

and compartmentalization between different cell types [3]. This additional interfacial tension

also induces a large difference in cell morphologies for cells at the interface between the tissue

types.

In the 2D vertex and Voronoi models the addition of interfacial tension between cells of dif-

ferent types changes the energy to

E ¼
XN

i

KPðPi � P0Þ
2
þ
XN

i

KAðAi � A0Þ
2
þ E0 þ

X

HIT

gijlij; ð2Þ

where the sum is over all heterotypic interfaces, lij is the interface between cell i and j, and γij is
the additional interfacial tension between cell types of cell i and j. While a seemingly small

term, it turns out that this provides a remarkably strong collective effect. This term causes cells

of different types to quickly and robustly completely demix [3, 30, 31] and can create sharp

boundaries between cell types [31]. In completely confluent tissues these sharp boundaries

generate constraints on the topology of neighbors.

First, for a vertex on a completely flat boundary to be stable, it must have four neighbors

instead of the typical three-fold coordination. Since a stable vertex is under force balance and a

flat interface will have two parallel edges, the third edge can never achieve force balance alone.

This line of reasoning can be extended to prove that in homogeneous vertex models fourfold
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vertices are unstable [53, 54], although in Voronoi models stabilized fourfold coordinated ver-

tices have been observed at very high shape values. In contrast, the addition of heterotypic

interfacial tension can regularly stabilize four-fold coordinated interfaces in both vertex and

Voronoi models at all shape values [31].

To investigate the configurations of cells on the boundary researchers quantified the distri-

bution of edge lengths of cells on heterotypic interfaces in simulations of the 2D Voronoi

model [31]. They find that there is an increasingly bimodal distribution of edge lengths as

interfacial tension increases. This distribution is caused by perturbations to the stable interface

due to finite temperature fluctuations. These perturbations will cause the predicted fourfold

coordinated vertices to split and the single long-edge heterotypic interface will split into one

large edge and one or two small edges.

In 2D Voronoi models, the breaking of these fourfold vertices generates a discontinuous

restoring force that suppresses fluctuations. To quantify these discontinuities the researchers

examined the restoring force generated by perturbing cells along a vector perpendicular to the

interface. The authors then analytically calculated the restoring force on a Voronoi cell that is

perturbed from a 9-cell square lattice. They found that the average restoring force cells experi-

enced in simulations were very similar to that predicted by the analytic calculation and that

the discontinuous restoring force scaled with the magnitude of the interfacial tension.

The inclusion of heterotypic interfacial tension in 3D models is similar to that of 2D except

the additional edge cost is for the shared surface area between cells of different types rather

than edges.

E ¼
XN

i

KAðAi � A0Þ
2
þ
XN

i

KVðVi � V0Þ
2
þ E0 þ

X

HIT

sijAij; ð3Þ

where the sum is over interfaces between cells of different types, σij is the interfacial tension

between the type of cell i and the type of cell j and Aij is the interfacial area between cell i and

cell j.
The authors of Ref [4] investigate the geometric and dynamic signatures that arise from this

additional interfacial tension. There is rapid demixing between cells of different types which

causes the tissue to compartmentalize. Both the speed and magnitude of this demixing are

determined by the magnitude of the interfacial tension. In addition, the cell shapes on the

interface will start to elongate and orient perpendicular to the interfacial axis. Additionally, as

cell shapes on the boundary increase as interfacial tension is increased, cells in the bulk will

round up and decrease their cell shape.

Cell orientation is calculated using the moment of inertia tensor of the best-fit ellipsoid to

the cell vertices. Then the orientation is defined as the angle the long axis of the ellipse makes

with the interface. The authors find that as heterotypic interfacial tension increases the cells go

from random orientation as in the case with no heterotypic interfacial tension to highly ori-

ented perpendicular to the axis of tension at high values of interfacial tension.

They also investigated a similar effect to what was seen in 2D which was the effect hetero-

typic interfacial tension had on the interfacial area along the interface. They observe a similar

behavior to the 2D models, as the magnitude of the interfacial tension increase there is an

increasingly bimodal distribution of small area facets and large area facets. This suggests a sim-

ilar phenomenon to the breaking of fourfold vertices in 2D.

Finally, the authors noticed that cells on the boundary start to resemble one-sided prisms

with flat interfaces at the boundary. In a Voronoi model to achieve this geometry, cells on one

side of the interface would need to align their centers in a plane parallel to the interface. Addi-

tionally, cells across the boundary must align their cell centers to minimize the distance
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between their centers in the plane parallel to the interface such that the cell centers become

stacked or registered. This registration effect is defined in a system in which the heterotypic

interface is in the XY plane in the following equation.

R ¼ 1 �
d
l0
; ð4Þ

where d is the distance between neighbors across the interface in the XY plane and l0 is the

average lattice spacing. If a cell is perfectly registered directly on top of its neighbor the regis-

tration will be unity and if they are perfectly misaligned half a lattice spacing away the registra-

tion will be zero. Sahu et al [4] find that as the interfacial tension magnitude increases, the

height of cells on the same side of the boundary converges and that registration goes from

roughly uniformly distributed to being highly peaked near unity.

In the paper supplement, they investigate this registration effect in the 2D models. They

find that while the registration for the 2D Voronoi model shares similar behavior to the 3D

Voronoi model, the 2D vertex model exhibits differences. The vertex model goes from a uni-

form registration to having a registration peak around a value of R� 0.55, which is distinct

from uniform but obviously less than the value near unity seen in Voronoi models. The

authors hypothesize that the difference is due to extra degrees of freedom in the vertex model

which allows a relaxation of some of the constraints at the interface. But this poses the ques-

tion: are the geometric signatures seen in the 3D Voronoi model robust to the choice of

model?

To investigate the differences between these two models in three dimensions we adapt the

3D Voronoi model code used in Ref [44] and the open-source 3D vertex model first published

in Ref [10].

The equation of motion for both models assumes overdamped dynamics with the interac-

tion forces given by the spatial derivative of the energy functional, Eq 3, with respect to the

positional degrees of freedom. In addition, we include fluctuations as a translational white

noise on each of the degrees of freedom—either the cell centers or vertices, respectively. This

generates the following equation of motion:

dr
dt
¼ mrEþ Z; ð5Þ

where η is a white noise process with diffusion constant μkBTeff. In our simulations we set

μ = 1, V0 = 1, and report lengths in units of the cell length l ¼ V1=3

0 ¼ 1. Energies are reported

in natural units of KsV
4=3

0 . In these natural units, our simulation time step is dt = 0.01. We tune

the magnitude of the white noise in each models so that the mean-squared displacement of

cells is diffusive and the same in both models at our chosen value of the shape parameter S0. In

practice, we set the fluctuation magnitude in the Voronoi model to kBTVor = 0.1 and in the ver-

tex model to kBTvert = 0.1.

The simulation data is available at [55].

2.2 Experimental methods

To image the ectoderm-mesoderm boundary in the Xenopus gastrula, cryosections were pre-

pared from Xenopus gastrulae expressing membrane-targeted GFP [56], and immunolabelled

using an anti-GFP primary mouse antibody (Thermofisher/Invitrogen) and a secondary anti-

rabbit Alexa488 antibody. z stacks were obtained by confocal microscopy using a 40x,

NA = 1.25 oil objective. Maximal projections spanning 3–5μm thick slices were used for
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analysis. Outlines on cells on both sides of the boundary were manually segmented using poly-

gon selection and ROI in ImageJ.

Dryad DOI

10.5061/dryad.4tmpg4fgn [55].

Results

3.1 Comparing vertex and Voronoi model structures in 3D

First, we investigated the behavior of a 3D vertex model simulation comprised of two different

cell types with heterotypic interfacial tension between them. Just as seen in 3D Voronoi models

[4], cells rapidly segregate and become completely demixed, with a snapshot of a demixed

states in each model shown in Fig 1C and 1D. The speed and magnitude of this demixing

increase as the magnitude of the interfacial tension is increased, as shown in Fig 1E. Addition-

ally, if the tissue is initialized in a completely demixed state, the boundaries will remain stable

and the tissue will stay demixed, as shown by the darker green and magenta lines in Fig 1F.

This confirms that the demixed state is energetically preferred.

Fig 1. (A,B) Schematic of 2D Voronoi model (green, degrees of freedom are cell center) and 2D vertex model (purple, degrees of freedom are cell

vertices). (C,D) Snapshot of the 3D Voronoi model (green) and vertex (purple) simulations with a heterotypic interface between light and dark cells. (E)

Demixing behavior of the 3D Vertex model initialized in a mixed state withDP� 0. The color represents different values of the heterotypic interfacial

tension: σ = 0.1 (light pink), σ = 0.2 (medium purple), σ = 0.5 (dark magenta). (F) Demixing as a functional of initial conditions between 3D Vertex and

Voronoi models. The dark green (Voronoi) and dark magenta (vertex) are initialized in a sorted state and remain sorted. The bright green (Voronoi)

and light pink (vertex) are initialized in a mixed state and rapidly sort.

https://doi.org/10.1371/journal.pcbi.1011724.g001
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Next, cell shapes in the tissue were examined. A simulation snapshot of a smaller system

highlighting individual cell shapes is shown in Fig 2A In the 3D Vertex model, the cells in the

bulk of the tissue, shown as dashed lines in Fig 2B, decrease their observed cell shape index as

the magnitude of the heterotypic surface tension increases, consistent with the behavior

observed in the Voronoi model. Similarly, cells on the boundary, shown as solid lines in Fig

2B, experience increases in cell shape with heterotypic tension, and the magnitude of the

increase is even larger than the Voronoi model at large values of interfacial tension. This is

likely due to the extra degrees of freedom in the vertex model allowing cells access to a wider

range of cell shapes.

The cells along the boundary also exhibit similar registration behavior in both models. In

the vertex model, cells on the same side of the interface will start to align their height in a plane

as interfacial tension increases. Fig 2C shows a histogram of the heights (z) relative to the bot-

tom of the periodic box. These cells will also start to register with cells across the interface with

an increasing magnitude as heterotypic interfacial tension increases. The magnitude of

Fig 2. A) Zoomed simulation snapshot of the 3D Vertex model with heterotypic interfacial tension between cells of different types. B) Cell shape s as a

function of the magnitude of heterotypic interfacial tension σ for cells that are adjacent to the boundary (solid lines) and cells that are in the bulk and do

not share a heterotypic interface (dashed lines). In both models, the shape index of the boundary cells increases, while the shape index of the bulk cells

decreases as a function of increasing interfacial tension. Error bars represent the standard error with respect to each ensemble. C) The probability

distribution (pdf(z)) of the heights of cell centers (z) reported in natural length units from the bottom of the box. Different colors correspond to

different magnitudes of the heterotypic interfacial tensions σ 2 0.04, 0.08, 0.16, 0.32, 0.64 from light pink to dark magenta. D) The registration of cell

centers on either side of the interface (defined by Eq 4) increases for Voronoi (green) and vertex (magenta) models as a function of increasing

interfacial tension. Error bars represent the standard error.

https://doi.org/10.1371/journal.pcbi.1011724.g002
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registration is significantly higher in the Voronoi model than in the vertex model, shown in

Fig 2D, and consistent with observations in the 2D models.

Moreover, the orientation cells on the boundary exhibit a surprising difference between the

two models. In the Voronoi model, as the magnitude of interfacial tension increases the cells

become highly oriented perpendicular to the interface. But, in the vertex model, the cells

remain randomly oriented. To quantify this orientation effect over an ensemble we define an

average orientation metric.

hOi ¼ h
y � p

2

� �2

p2

4

i; ð6Þ

where θ is the angle the long axis of a cell’s moment of inertia tensor makes with the hetero-

typic interface. This metric is designed such that the alignment of all cells completely parallel

to the interface yields an average orientation of zero and alignment completely perpendicular

yields a value of unity, with examples from simulations shown in Fig 3 panels (A-C). Random

orientations correspond to 0.2 < hOi< 0.25. As shown in Fig 3(D), the cells at the boundary

in both models are randomly oriented with 0.2 < hOi< 0.25 for very small values of the het-

erotypic tension, as expected. Strikingly, as the heterotypic interfacial tension increases, this

metric displays a sharp difference between the two models. The average orientation increases

steadily for the Voronoi model as heterotypic interfacial tension increases, meaning the long

axis of the boundary cells becomes increasingly oriented perpendicular to the interface. In con-

trast, there is a negligible change in the orientation of vertex model cells.

3.2 Dynamic differences between models at the boundary

What mechanism is causing this dramatic geometric/structural difference? For orientation to

occur on the tissue boundary in Voronoi models, two things must occur; cells must remain on

the interface and elongate perpendicular to the interface. In completely confluent simulations

with periodic boundary conditions, for cells to elongate perpendicular to the interface, they

must reduce their surface area with the interface, and new cells must fill that gap. This means

there must initially be a net flow of cells moving from the bulk to the interface to allow the

geometry change. We speculate that this might occur if cells are kinetically pinned at the

boundary, so that it is easier for them to move to the boundary than leave. The previously dis-

cussed cusp-like restoring force at heterotypic interfaces in Voronoi models [57] does pin cells

to the boundary. We hypothesize that the magnitude of this restoring force is lower in the ver-

tex model, which allows more frequent rearrangements at the boundary, and prevents the ori-

entation effect.

To test this hypothesis and measure these restoring forces, we perform a new set of simula-

tions where we initialize a completely segregated system of two different cell types. This system

is allowed to relax over 105 time steps with thermal fluctuations and then over an additional

106 steps with no fluctuations to reach an energetic equilibrium. Then a single cell is selected

and the cell center is displaced by a length � (in natural units) in a direction perpendicular to

the interface boundary. In the Voronoi model, we define the restoring force Fr(�) as the result-

ing force on the cell center (e.g. the gradient of the energy given by Eq 3 with respect to the cell

center, evaluated at that value of the displacement), and in the vertex model as the average

force on each vertex that comprises the cell (e.g. gradient of the energy given by Eq 3 with

respect to each vertex position in that cell, evaluated at that value of the displacement).

As in previous work, we expect that a cusp in the energy will result in a restoring force that

scales linearly with the interfacial tension and is independent of the displacement up to a

length scale at which the normal Hookean response starts to dominate. Fig 4A shows that both
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the Voronoi (different shades of green, solid lines) and vertex (different shades of magenta,

dashed lines) models exhibit a flat, non-zero plateau over a range of small displacements, dem-

onstrating the both models exhibit a discontinuous restoring force.

The different shades in Fig 4A correspond to different magnitudes of the interfacial tension.

For the Voronoi systems, the lowest tension corresponds to the lightest green, while the high-

est tension correspond to the darkest green, and for the vertex systems, the lowest tension is

the lightest pink while the highest tension is dark magenta. This figures shows that the magni-

tude of this restoring force increases significantly faster as function of the magnitude of the

interfacial tension in the Voronoi model, as seen in Fig 4B. This is consistent with the 2D

results [31] for the Voronoi model. In contrast, the plateau value in the vertex model is much

Fig 3. (A-C) Simulation snapshots of tissues with different values of average orientation hOi defined by Eq 6 (0.24, 0.38, 0.18 for A,B,C respectively) for

cells adjacent to the heterotypic boundary (D) Average orientation hOi as a function of the magnitude of the heterotypic interfacial tension σ for the

Voronoi (green) and vertex (magenta) models. Error bars represent the standard error with respect to each ensemble.

https://doi.org/10.1371/journal.pcbi.1011724.g003
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Fig 4. (A) The average cusp-like restoring force for cells, hFri, being perturbed a distance � perpendicular to the heterotypic boundary. The solid green

lines are from 3D Voronoi model simulations with σ 2 0.04, 0.08, 0.16, 0.32, 0.64, with the colorscale ranging from light green at the lowest tensions to

dark green at the highest, and the dashed purple lines are from the 3D vertex model with σ = 0.04, 0.08, 0.16, 0.32, 0.64 with the color shade ranging

from light pink to dark magenta. (B) The plateau values at low tensions extracted from panel (A). (C) The distribution of restoring forces with � = 10−4

for each set of parameters over an ensemble ofN = 100 systems. In both systems, the forces are Gaussian-distributed around a central peak (Shapiro-

Wilk test with P-values between 1e–5 and 1e–15), with colorscale the same as in panel (A). (D) Numerical simulations of the restoring force generated

by perturbing a single Voronoi cell in 9 cell configuration in 2 dimensions. (E) Schematic diagram illustrating cell boundaries after a perturbation of � =

10−1 to the cell center of a Voronoi (E, green) cell. (F) Schematic diagram illustrating cell boundaries after adding a random displacement of magnitude

� = 10−1 to each vertex of the center cell. In both (E,F), the blue lines represent the heterotypic interface with increased interfacial tension, and the red

dots highlight positions of the vertices along the interface.

https://doi.org/10.1371/journal.pcbi.1011724.g004
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less sensitive to heterotypic tension magnitude. This results in an order of magnitude differ-

ence in restoring force for moderate values of interfacial tension that are approximately 10%

higher than the average homotypic tension, and suggests that something different is going on

in the vertex model.

For a fixed displacement value � = 10−4, the distribution of forces over an ensemble of

N = 100 simulations in Fig 4C shows an approximately normal distribution for both models,

with a goodness of fit quantified by a Shapiro-Wilk test with P-values between 10−5 and 10−15.

This suggests that the variation in average restoring force between the two models is not from

outlier behavior in either model, but due to a systematic difference in boundary behavior. We

hypothesize that the difference in restoring force is due to the extra degrees of freedom in the

vertex model that allow fluctuations at the interface to overcome the energetic barriers that

protect fourfold coordinated vertices at the interface.

To make this hypothesis more concrete, we construct a simple 9-cell numerical toy model

in 2 dimensions, with a geometry shown in Fig 4E and 4F. First, we perturb a single Voronoi

cell a displacement � perpendicular to the heterotypic interface, Fig 4E, and calculate the result-

ing force, replicating the work done in Ref [31]. Then, to capture the variability in accessible

states in the vertex model, we look at the same initial 9-cell configuration but randomly per-

turb the vertices on the interface with a magnitude 10−3, as seen in Fig 4F. All the vertices of

the center cell are displaced by � perpendicular to the interface and the resulting restoring

force is recorded. We average the restoring force over an ensemble of N = 1000 trials. Compar-

ing the 2D toy model in Fig 4D to the full 3D simulations in Fig 4A reveals substantial similari-

ties, suggesting the 2D toy system is capturing the important features.

In the toy 2D vertex model, we can directly show that the insensitivity to heterotypic inter-

facial tension σ arises for a different reason compared to the Voronoi model. In the vertex

model, the area and perimeter term contributions to the the restoring force are much larger

than contributions from the heterotypic interfacial tension contributions over a wide range of

heterotypic interfacial tension values σ� 15. This is because in vertex models, unlike Voronoi

models, it is no longer the breaking of a four-fold vertex into two three-fold vertices that gener-

ates the cusp. In fact, perfect four-fold coordinated vertices have no cusp when perturbed, as

shown by the green line in Fig 5B.

Instead, the cusps are generated by geometric nonlinearities introduced when a nearly four-

fold coordinated vertex at the end of a long edge is displaced nearly perpendicularly to that

edge, as highlighted by the red and blue lines in the schematic in Fig 5A. Fig 5 panels (C-E)

illustrate how these changes to a single vertex that is nearly four-fold coordinated alter the

geometry of nearby cells.

To demonstrate this effect, we use coordinates where the stationary boundary point corre-

sponding to a putative perfect four-fold vertex is at {0, 0} and the actual vertex is initially

shifted to a position {xi, yi} from this origin. We write an analytic expression for the restoring

force when this vertex is then displaced a distance � from its initial position in the positive x-
direction, as shown in Fig 5A:

Fs ¼
s

�
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððxi þ �Þ
2
þ y2

i

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
i þ y2

i

p
Þ: ð7Þ

This equation confirms that in the limit that the initial x-component xi is zero, the cusp dis-

appears. In this case of a perfect four-fold vertex, the restoring force scales linearly with the dis-

placement into the interface as shown by the green line in Fig 5B. As also shown in panel (B),

the restoring force is lower than the 4-fold expectation if the vertex is initially located in the

opposite (negative) direction compared to the displacement � (red), and higher than the 4-fold

case if the vertex is initially located in the same (positive) direction as � (blue). For this “blue”
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case, the magnitude of the restoring force and the size of the plateau are proportional to the

component of the initial displacement perpendicular to the interface xi. Parallel displacements

of the initial vertex yi have a higher order effect on the restoring force. This makes it clear that

the origin of the cusp for vertex models is simply the non-linear nature of hypotenuses.

In the vertex model with finite temperature, we expect that there will always be such “red”

and “blue” fluctuations of the vertex positions, and since the restoring forces in the blue case

are much larger than the red case, they will dominate the average. This effect is what gives rise

to the finite, small plateau that is largely independent of interfacial tension for the magenta ver-

tex model curves in Fig 4A and 4D).

3.3 Comparison to experimental data

We wanted to compare the results for orientation O and registration R of cells at a heterotypic

interface from Voronoi and vertex models to experimental data in the literature. Unfortu-

nately, the data already available in the literature typically contains only one or two representa-

tive images of cell geometries, which are not sufficient to reliably calculate averages of these

parameters. Therefore, as described in the methods section above, we analyzed new data sets

from images of the heterotypic interface between mesoderm and ectoderm in seven developing

Xenopus gastrula. The observed field of view typically encompasses 10-25 cells on each side of

Fig 5. (A) Schematic of perturbations to the x–component of the initial position xi of a single vertex relative to a

putative four-fold coordinated vertex on the boundary. The green line represents a perfect four-fold vertex where xi is
zero, the blue represents a coordinate that has a positive xi towards the interface and the red represents a vertex that is

further from the interface xi negative. (B) Analytic restoring force (Eq 7) due to the interfacial tension alone due to the

perturbations of vertices on the interface. The solid lines represent intial perturbations of the moving cell’s vertex a

distance xi = {−10−4, 0, 10−5, 10−4, 10−3} colored {red, green, dark blue, blue, cyan} respectively with yi = 1. The dashed

blue line represents a perturbation parallel to the interface such that {xi, yi} = {10−4, 1.1}. (C-E) Schematic diagrams of

how the larger-scale cellular structure changes when a nearly four-fold coordinated vertex is perturbed as shown in

(A).

https://doi.org/10.1371/journal.pcbi.1011724.g005
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the interface. A representative image from a confocal z-stack from one gastrula is shown in Fig

6A, and a manual tracing of cell outlines for cells adjacent to the heterotypic boundary is

shown in Fig 6B. We then used this data to compute the best-fit ellipse to each cell shape and

the center of mass of each cell (shown in Fig 6C), and then used this information to compute

the registration and orientation in exactly the same way as for the simulation data. A histogram

of all of the registration values and orientation values for all of the cells in all of the embryos is

shown in Fig 6D. In Fig 6E we plot the average value of orientation and registration, where the

error shown is the standard deviation of these average values across embryos. For comparison,

we also shown the average range of these observables found in vertex (magenta) and Voronoi

(green) models with heterotypic interfacial tensions between 0.1 and 1.0, which is a very broad

estimate of the possible range of values estimated for heterotypic interfacial tensions in embry-

onic tissues [30, 37]. Fig 6E demonstrates that the cells at this particular type of heterotypic

interface are not highly registered, consistent with the vertex models but not with the Voronoi

models. They are also slightly oriented perpendicular to the interface, which is consistent with

the Voronoi model results and slightly outside the average of what is seen in vertex models. As

discussed below, these observations may also be impacted by specific features of the experi-

mental system that are different from the assumptions we made in either model.

Fig 6. (A) Representative image from a confocal z-stack from one Xenopus gastrula across the ectoderm-mesoderm boundary. Scale bar is 50 μm. (B)

Example of manual tracing of projected cell shapes from this image. (C) Image illustrating calculation of center of mass (black dot) and best-fit ellipse

(red ellipses) for cell shapes across the heterotypic interface. (D-E) Histograms of the average registration R for pairs of cells (D), and orientationO for

all cells (E) in images from seven Xenopus gastrula. (F) Bar plot illustrating the averageO and R in experiments (box with black and white lines), with

an error bar representing the standard deviation. For comparison, the averageO and R for the vertex (light magenta) and Voronoi (dark green)

simulations across a broad physiological range of heterotypic interfacial tensions (between 0.1 and 1) is also shown, with the error bar representing the

max and min values of those observed parameters in simulations for that range of tensions.

https://doi.org/10.1371/journal.pcbi.1011724.g006
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4 Conclusions and future work

We have investigated differences in structure and dynamics for heterotypic interfaces between

two tissue types in the 3D vertex and Voronoi models. Both models share significant similari-

ties in demixing behavior and cell shape on the boundary and the bulk. However, the registra-

tion of cell centers (quantified by R defined by Eq 4) is significantly smaller in vertex models

compared to Voronoi models, and cells on the boundary between tissue types will orient per-

pendicular to the interface in the 3D Voronoi model but not the vertex model.

Previous work has also characterized the roughness of the heterotypic interface (roughness

is typically measured as the width of the interface compared to the length of the interface). Ini-

tial simulations of 2D vertex models found interfaces that were unexpectedly rough [37]. Sub-

sequent studies—in a similar parameter regime for the magnitude of the interfacial tension—

found interfaces in Voronoi model simulations that were much less rough [31], and that same

paper also presented a small data set for 2D vertex models that also had a less-rough interface.

An important difference between those two studies is the fluidity of the tissue; the tissue in

[37] was solid-like while the tissue in [31] was fluid-like. Due to the limitations in box length

for 3D systems from increased computational complexity, we were unable to study a large

enough range of box sizes to extract roughness scaling in 3D vertex models in this work. How-

ever, the interface image in Fig 2A and the data for cell height fluctuations in Fig 2C demon-

strates that typical fluctuations perpendicular to the interface are significantly less than a cell

diameter, which is quite different from that seen in [37]. This suggests that surface roughness

is not too different between vertex and Voronoi models, and that tissue fluidity may play an

important role. This would be an interesting avenue for future work.

In the Voronoi model, the restoring force for perturbations to cells along the boundary is

an order of magnitude higher than that of the vertex model for moderate values of interfacial

tension. The difference in restoring force arises from the different mechanisms that drive

cusps on the boundary; in Voronoi models four-fold vertices must split into pairs of three-fold

vertices in response to a perturbation, while in vertex models the cusps are created by subtle

geometric nonlinearities and only arise when averaging over fluctuations, resulting in pinning

forces that are much weaker. In practice, this difference means that in Voronoi models more

cells can be pinned at a heterotypic interface, leading to an orientation effect not seen in vertex

models. This indicates that cell shapes at heterotypic boundaries of Voronoi models are a con-

sequence of the representation of the degrees of freedom and not of the underlying energy

functional.

We also compared features of the cell shapes found in simulations to those same features in

a set of experimental images of a heterotypic interface in Xenopus gastrula, and found that the

cells were slightly oriented with their long axis perpendicular to the interface, and that they

were not strongly registered. The orientation magnitudes were similar to those seen in a Voro-

noi model at physiologically relevant values of the heterotypic surface tension, while the regis-

trations were more similar to that seen in vertex models. In our simulations the two tissue

types were exactly the same except for a heterotypic interaction, but that is clearly not the case

in the experiments. In Xenopus gastrula, ectoderm and mesoderm cells have different pro-

jected cross-sectional areas (suggesting different volumes), and also different degrees of elon-

gation (suggesting that the cell target surface areas are different as well). This cell elongation

has been noted previously [58], and associated with secreted chemoattractants [58, 59]. All of

these effects, as well as a multitude of additional signaling processes, could impact the registra-

tion and orientation seen in experiments. Nevertheless, the experimental observations are con-

sistent with our claim that the extreme registrations seen in the Voronoi model—even at very

low values of the heterotypic interfacial tension—are not seen in typical experimental data.
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This makes sense, as we expect real cells are able to independently move their vertices and so

their shapes are not governed by the putative location of their center of mass.

As Voronoi models are significantly less computationally intensive and require fewer

parameters than vertex models, this suggests that researchers should consider the dynamics

and structures they are trying to resolve when choosing how to represent the degrees of free-

dom in a model. In simulations where dynamics near cell boundaries are not expected to play

an important role, both Voronoi and vertex models generate similar mechanical and structural

properties. In models that need access to more diverse cell shapes or where researchers are

interested in making predictions about cell dynamics near boundaries, the 3D vertex model

may be preferable.
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