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Abstract: Deep learning algorithms are widely used for pattern recognition in electronic noses, which
are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift,
which can degrade the accuracy of the system over time, even if it is initially trained to accurately
estimate concentrations from sensor data. In this paper, an effective drift compensation method is
introduced that adds sensor drift information during training of a neural network that estimates
gas concentrations. This is achieved by concatenating a calibration feature vector with sensor data
and using this as an input to the neural network. The calibration feature vector is generated via a
masked-autoencoder-based feature extractor trained with transfer samples, and acts as a prompt
to convey sensor drift information. Our method is tested on a 3-year gas sensor array drift dataset,
showing that a neural network using our method performs better than other models, including a
network with additional fine tuning, demonstrating that our method is efficient at compensating
for sensor drift. In this study, the effectiveness of using prompts for network training is confirmed,
which better compensates for drifts in new sensor signals than network fine-tuning.

Keywords: sensor calibration; sensor drift; deep learning; masked autoencoder; representation
learning; prompt-based learning

1. Introduction

An electronic nose (E-nose) is a system comprising an array of gas or chemical sen-
sors and a pattern recognition module that can identify and measure simple or complex
gases [1]. E-noses are increasingly studied and they have been widely used in various fields,
such as the food industry, agriculture, healthcare, air pollution monitoring, and security
systems [2]. Various sensor applications utilize machine learning algorithms for specific
purposes [3], and these algorithms are also used to process multiple time-varying sensor
signals generated in E-noses to quantify and identify target gases. Initially, E-nose algo-
rithms employed linear techniques, such as principal component analysis and partial least
squares regression [2,4,5], or nonlinear techniques such as support vector machines [2,6].
Nowadays, applying deep learning to E-noses has become more popular due to its superior
ability to handle complex data [7–10].

Although conventional machine learning is highly effective for E-nose applications,
its long-term performance is hindered by sensor drift, which is a phenomenon that causes
temporary or gradual changes in sensor characteristics due to factors such as aging, contam-
ination, or environmental fluctuations [1]. To address this issue, researchers have developed
a method known as component correction, which involves identifying and modeling the
drift direction in reference samples and subtracting it from new data [5]. While component
correction is typically performed using linear techniques such as principal component
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analysis, partial least squares regression, or independent component analysis [11], it does
not account for the nonlinear behavior of the drift. A representative approach to compen-
sate for the drift in deep learning is fine-tuning new sensor data, adjusting the weight of
some or all neurons in response to new samples [5]. Adaptive drift correction, which is a
method that updates a classifier continuously using new samples, has been implemented
in various deep learning structures [5]. Fine-tuning has also been carried out for novel deep
learning models such as autoencoders [12], restricted Boltzmann machines [13], deep belief
networks [14], and augmented convolutional neural networks [15]. Furthermore, online
drift compensation methods, which can update trained models with new samples, have
been studied. An online domain adaptation extreme learning machine, a combination of
an existing domain adaptation extreme learning machine with an online learning theory,
was utilized in [16] for gas identification. To reduce the annotation effort, an active learning
method was applied to online drift compensation in [17]. This field of online sensor drift
compensation has been expanded not only to gas classification but also to gas concentration
estimations, and this research trend regarding sensor drift compensation via fine-tuning
methods is still ongoing [18]. Nonetheless, the fine-tuning process can be time-consuming
and complex, which may be problematic given the limited onboard memory in sensor
systems [5,15], and there are still many unsolved challenges [18].

Meanwhile, in the field of natural language processing, the concept of prompt-based
learning has been actively studied as a substitute for fine-tuning [19–21]. A prompt is a
snippet of context information that is added to the input training data during the train-
ing phase. During the training phase, a model learns to associate the prompts with the
corresponding inputs and outputs. This method has been shown to be effective for large
language models when used for different tasks without fine-tuning [19,21,22]. Prompts can
be generated by humans or by the model, and the latter is called auto prompting. In this
case, a model automatically produces an adequate prompt corresponding to data [23,24].
The prompts can be classified as discrete prompts or continuous prompts based on their
form. Discrete prompts are natural language, while continuous prompts are embedding
vectors which function as a prompt [25,26]. We use the concept of prompt-based learning to
design an effective drift compensation method for a deep learning algorithm that estimates
gas concentrations.

In this paper, we propose a method for training neural networks by augmenting the
input sensor data with a prompt which contains sensor drift information. We call the
prompt a calibration feature vector, which functions as a continuous prompt generated by a
feature embedding module called a calibration feature encoder (CFE) and it is concatenated
to input sensor data. In a drifted environment, transfer samples are obtained by collecting
sensor signals and subsequently determining the concentration of gases in that environment.
The CFE is a masked-autoencoder-based module which is trained with past transfer samples
to produce calibration feature vectors for future transfer samples. In contrast to fine-
tuning methods, which tune a neural network using new transfer samples from the drifted
environment, our method trains a neural network only once using past sensor samples with
prompts produced by the CFE. The neural network learns to estimate gas concentrations
with sensor data and drift information, which makes it robust to future sensor drift without
fine-tuning while simultaneously improving the performance. Our method is capable
of learning nonlinear drift behavior, does not require neural network fine-tuning, and
shows superior performance compared to other models, including a neural network with
fine-tuning. The main contributions of this paper are as follows:

• We propose a training method for deep learning models that estimate gas concentra-
tions by concatenating a prompt which contains sensor drift information with input
sensor data. By training the model with the prompt, the model is robust to sensor drift
without fine-tuning.

• We utilize a masked-autoencoder-based CFE for the effective feature extraction of
sensor drift information. The experimental results demonstrate that the deep learn-
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ing model using a CFE outperforms the control group, indicating that the CFE can
effectively generate prompts containing sensor drift information.

The remainder of this paper is as follows. Section 2 explains the experimental data,
overall concept, and the proposed methodology. The experimental settings and results
are discussed in Section 3. Finally, Section 4 provides the conclusions and describes
future works.

2. Materials and Methods
2.1. Dataset

For our experiments, we utilized the publicly available dataset that was constructed
by Vergara et al. [27], which is a well-known dataset used in drift compensation re-
search [7,12,14,15,28–30]. This dataset comprises 13,910 measurements gathered from an
E-nose device with 16 chemical sensors that were exposed to the 6 gases of ethanol, ethylene,
ammonia, acetaldehyde, acetone, and toluene at various concentrations. The data were
accumulated over the course of three years and were divided into 10 batches, which were
chronologically arranged as shown in Table 1. Each sample in the dataset is represented by
a 128-dimensional feature vector, which was extracted from the E-nose signal along with
the corresponding gas type and concentration. A detailed explanation of the dataset and
the feature vector can be found in the paper by Vergara et al. [27].

Table 1. Details about the dataset by Vergara et al. [27].

Batch ID
(Months ID)

Number of Samples

Ethanol Ethylene Ammonia Acetaldehyde Acetone Toluene

Batch 1
(Months 1–2) 90 98 83 30 70 74

Batch 2
(Months 3–10) 164 334 100 109 532 5

Batch 3
(Months 11–13) 365 490 216 240 275 0

Batch 4
(Months 14–15) 64 43 12 30 12 0

Batch 5
(Months 16) 28 40 20 46 63 0

Batch 6
(Months 17–20) 514 574 110 29 606 467

Batch 7
(Months 21) 649 662 360 744 630 568

Batch 8
(Months 22–23) 30 30 40 33 143 18

Batch 9
(Months 24–30) 61 55 100 75 78 101

Batch 10
(Months 36) 600 600 600 600 600 600

We categorized the dataset into three groups based on the elapsed time. Dataset-
A includes samples from months 1 to 20 which represent past samples, and dataset-B
and dataset-C include samples from months 21 to 23 and months 24 to 36, respectively.
Dataset-B and -C were used to analyze the drift compensation ability in addition to fine-
tuning in later experiments for comparison purposes.

2.2. Overall Concept

In this section, we discuss the fundamental principles of the CFE and how it can be
implemented. The steady-state response of gas sensors can be written in an abstract form
as follows [31]:

R = f (R0, K, T, C),

where R ∈ Rns is the resistance of the sensor chemicals in response to the gas mixture, ns
is the number of gas sensors, f is a function derived from chemistry, R0 ∈ Rns is the base
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resistance of the sensor chemicals, K ∈ Rnk is the sensitivity coefficient, nk is the number
of coefficients, T ∈ R is the temperature, C ∈ Rnc is the concentration of gases in the
mixture, and nc is the number of gases. Since the form of the function f is complex and
K is unknown, we use pattern recognition algorithms to estimate the gas concentration C
given measured values of R, R0, and T. Even if we train a pattern recognition algorithm
with samples, the values of R0 and K change after a long time due to sensor drift, which is
the rationale behind drift compensation methods.

Transfer samples are pairs of a measured sensor signal and a concentration which are
taken some time after the first training of the E-nose’s pattern recognition algorithm [12].
These samples are collected using the same E-nose over a small time interval in which
the drift of the E-nose is negligible. The concept behind the CFE is based on the fact that
transfer samples carry information on f , R0, and K. For instance, assuming that we know
the form of f and the temperature T, we can obtain the values of R0 and K from the transfer
samples using optimization or equation-solving techniques, even in the presence of sensor
drift. By utilizing transfer samples to train the CFE, sensor drift features are extracted and
a calibration feature vector is generated that contains sensor drift information. In normal
neural networks for concentration estimation [8,32], the sensor signal values are input and
the corresponding concentration is predicted, as shown in Figure 1a. To address sensor
drift, network fine-tuning is performed by using new transfer samples to adapt to the
drifted R0 and K values. In our proposed method, rather than tuning the parameters with
new transfer samples, we train the neural network with sensor data concatenated with
a calibration feature vector produced from the CFE, which makes the network robust to
sensor drift without fine-tuning.

sensor signals

es mated 

concentra on

(a)

sensor signals

es mated 

concentra on

measured 

concentra on

(b)
Figure 1. (a) Conventional neural network (b) Neural network with a prompt that is the calibration
feature vector generated from CFE, which is concatenated with a sensor signal.

2.3. Proposed Method

In the proposed method, a deep learning model is trained to estimate gas concentra-
tions by concatenating a calibration feature vector which contains sensor drift information
to input sensor data. By training the model with a calibration feature vector, it learns to es-
timate gas concentrations by correlating the input sensor data and sensor drift information,
making the model robust to sensor drift without fine-tuning. This methodology of prompt
learning, i.e., training a neural network with context information, has shown to be effective
when learning a robust model without fine-tuning for new data [19–21]. To extract good
sensor drift features, we design a masked-autoencoder-based encoder, the CFE, which is
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trained with past transfer samples to generate calibration feature vectors. The main aim of
masked autoencoders in computer vision tasks is to remove random patches in an input
image by masking and training an autoencoder model to reconstruct the original image.
Masked autoencoders have been proven to produce complex, holistic reconstructions that
lead to a good performance in many computer vision tasks [33]. We applied this idea to
design a CFE to extract calibration feature vectors, as illustrated in Figure 2. After the CFE
is trained, we trained a neural network that estimates gas concentrations only once with
past sensor data concatenated with a calibration feature vector produced by the CFE. The
CFE’s procedure is illustrated in Figure 1b.

64 nodes 32 nodes 8 nodes16 nodes d nodes 8 nodes 16 nodes 32 nodes 64 nodesmask 

target dim : 129input dim : 129

Figure 2. Architecture of the designed masked autoencoder. The dimension of the input data is 129
since it is comprised of a 128 dimension sensor signal and a corresponding concentration value.

The input data for the CFE are transfer samples which are composed of 128-dimensional
sensor signals and corresponding concentration values. The transfer sample in the i-th data
is denoted as Si, which is {Ci, G1

i , G2
i , G3

i , . . . , Gk
i }, where Gj

i denotes the j-th value of sensor
signals in the i-th data and Ci denotes the concentration value in the i-th data. In our case,
k is 128 since the sensor signal sample from the E-nose is represented by a 128-dimensional
feature vector. The mask is a 129-dimensional vector consisting of 0s and 1s, which is then
multiplied by the Hadamard product with each batch of training data. For the input data, 75%
of the gas sensor data are masked out and this mask is generated randomly for each batch
while the concentration value remains the same. The target is the same data as the original
input data before masking, and the masked autoencoder is trained to reconstruct the target
from the masked data. Thus, the objective function to be minimized is the reconstruction error
between the input data and the reconstructed data as follows:

LMSE =
1
B

B

∑
i=1

∥Si − Ŝi∥2,

where Si ∈ R129 and Ŝi ∈ R129 are the i-th transfer sample and the i-th reconstructed output
in each batch, respectively, and B is the number of data included in the batch. When the
training is complete, the encoder part is extracted and used as a module to produce calibra-
tion feature vectors from new transfer samples. This procedure is illustrated in Figure 3.
The designed masked autoencoder includes 5 layers with 129, 64, 32, 16, and 8 nodes
sequentially at the encoder and 5 layers with 8, 16, 32, 64, and 129 nodes sequentially at
the decoder. The latent space dimension is n and transfer samples from dataset-A are
used for training. The training, validation, and test data are partitioned in a 7:2:1 ratio
and all samples are normalized using standard normalization with the mean and standard
deviation of the training set. For training, we use the Adam optimizer, the ReLU activation
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function, and a learning rate of 0.0001 for 500 epochs, and early stopping is applied when
the performance does not improve further on the validation set for 100 subsequent epochs.
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Figure 3. (a) Training phase of CFE. A masked autoencoder model is trained with past transfer
samples. The j-th value of sensor data in the i-th data is denoted by Gj

i . The value of concentration in
the i-th data is denoted by Ci. The batch size is denoted by B. The symbol ⊙ denotes the Hadamard
product. The first value of the mask is always 1 because the concentration value is kept unchanged.
(b) CFE that is extracted from the trained masked autoencoder model at the training phase in the left
figure. A new transfer sample which is a pair of new sensor signals and corresponding concentration
information is denoted by Snew.

After the CFE is extracted from the trained masked autoencoder, a gas concentra-
tion estimation model is trained with past sensor data concatenated with a calibration
feature vector. We designed a multi-layer perceptron (MLP) consisting of several fully
connected layers for concentration estimations as a representative model for gas concen-
tration estimation as multi-layer perceptrons are commonly used in gas identification and
gas concentration estimation tasks from sensor values [8,34,35]. The MLP is trained using
sensor data from dataset-A concatenated with a calibration feature vector generated from
samples of the same dataset. The CFE is not trained further but generates prompts, which
means that it just produces extra information for the MLP. The hidden layers of the MLP
here include 3 layers with 32 nodes and 4 layers with 16 nodes, and the input dimension is
128 + n, where n is the latent space dimension of the CFE. A dropout layer of 0.3 is applied
to the last hidden layer to prevent overfitting, and the loss function, the optimizer, the
activation function, and the learning rate are the same as those used for training the CFE.
The loss function is as follows:

LMSE =
1
B

B

∑
i=1

(yi − ŷi)
2,

where yi ∈ R and ŷi ∈ R are the i-th ground truth concentration value and the i-th estimated
concentration value in each batch, respectively, and B is the number of data included in
the batch. Early stopping is also applied while training in the same way as it is applied
in training the CFE. For training, the MLP uses samples from dataset-A, and the partition
ratio of the training, validation, and test data and the normalization method are the same as
those for the dataset used for the CFE. We denote this MLP trained with calibration feature
vectors as MLP-CFE.
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3. Experiment and Results
3.1. Experiment Setting

We designed five different models to compare with the MLP-CFE. The first is the
MLP-normal model, which is an MLP consisting of an input layer, hidden layers, and an
output layer. Only sensor values are used as input; the hidden layers include 12 layers
with 32 nodes, 9 layers with 16 nodes, and a dropout layer. The output layer has one node
for predicting the gas concentration. The second model is a partial least squares (PLS)
model which is a representative linear technique method. We chose this model since PLS
is a popular linear feature extractor [36–38]. We trained the PLS model on each gas and
chose the optimal number of principal components based on the accuracy for each gas. The
third model is the MLP-PLS, which has the same structure as the MLP-CFE except for the
input dimension. As the MLP-PLS model uses a trained PLS model as a feature extractor
to compensate for sensor drift, the input dimension is 128 + k, where k is the number of
principal components in the PLS model for each gas, which is 30, 31, 7, 32, 28, and 28 for
ethanol, ethylene, ammonia, acetaldehyde, acetone, and toluene, respectively. The fourth
model is an MLP-AE which shares the same architecture and utilizes the same training
dataset as the MLP-CFE, but the autoencoder is unmasked during training. The fifth model
is the MLP-tuned model, which has the same structure as the MLP-normal model but whole
layers with transfer samples from new sensor data are fine-tuned. We tested the MLP-CFE
and MLP-AE models using an encoder module with different latent space dimensions
(n = 2, 3, 4, where n denotes the latent space dimension). We used comparable numbers
of parameters for the models that include an MLP for the sake of a fair comparison; see
Table 2 for the number of parameters used. The MLP-encoder model in the table includes
both the MLP-CFE and MLP-AE models, but the number of parameters is the sum of the
encoder module parameters and the MLP parameters. The MLP-tuned model has the same
number of parameters as the MLP-normal model because they have the same architecture.
All algorithms were implemented in Python and Pytorch.

Table 2. The number of parameters of models, where n denotes for latent space dimension of the
autoencoder model.

Model
Number of Parameters

Ethanol Ethylene Ammonia Acetaldehyde Acetone Toluene

MLP-normal 18,465 18,465 18,465 18,465 18,465 18,465
MLP-PLS 19,425 19,457 18,689 19,489 19,361 20,353
MLP-encoder (n = 2) 18,747 18,747 18,747 18,747 18,747 18,747
MLP-encoder (n = 3) 18,788 18,788 18,788 18,788 18,788 18,788
MLP-encoder (n = 4) 18,829 18,829 18,829 18,829 18,829 18,829

All models, except for the MLP-tuned, were trained, validated, and tested using
samples from dataset-A, while the training, validation, and test data were partitioned in a
7:2:1 ratio. A total of 10 percent of samples from dataset-B and dataset-C were set aside as
the second and third test sets, respectively, to analyze the drift compensation ability of these
models. All the test sets were normalized using standard normalization with the training
set of dataset-A because the models were trained with this dataset. MLP-tuned was trained
through the following three steps. For data from 1–20 months, it was trained, validated, and
tested using samples from dataset-A. For data from 21–23 months, it was trained, validated,
and tested with samples from dataset-B using the parameters of the model initialized based
on the parameters from the previous step. Finally, for data from 24–36 months, MLP-tuned
undergoes the same process as that of the second step with samples from dataset-C. The
samples at each step are normalized by performing standard normalization of the training
sets of each dataset. During this training process, the fine-tuning process is implemented
with new transfer samples. Figure 4 shows a schematic diagram of training for MLP-tuned.
When training the autoencoder models and PLS, transfer samples are randomly selected
from dataset-A.
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<1-20 months> <21-23 months> <24-36 months>

Figure 4. A schematic diagram of training process of MLP-tuned. MLP-tuned undergoes training at
each step using the dataset of that step, with the parameters of the model initialized based on the
parameters from the previous step.

3.2. Results

We calculated the root mean squared error (RMSE) of concentration estimations for
each model with the test set of each gas type listed in Table 1. The resulting RMSEs are
plotted in Figure 5, where n denotes the latent space dimension and was set to 3. In Figure 5,
the RMSE generally increases with time due to sensor drift. The top three models with the
lowest RMSE for the test set of dataset-C are MLP-tuned, MLP-CFE, and MLP-AE for every
gas. For the test set of dataset-B, except for ammonia and toluene, the top three models
with the lowest RMSEs are MLP-tuned, MLP-CFE, and MLP-AE.
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Figure 5. RMSE graphs of (a) Ethanol, (b) Ethylene, (c) Ammonia, (d) Acetaldehyde, (e) Acetone, and
(f) Toluene for each models.

For the six gases, the mean RMSE and the standard deviation of the RMSE, which
represent the average accuracy of gas concentration estimations and robustness to gas type,
respectively, were compared for MLP-tuned, MLP-CFE, and MLP-AE (Figure 6 and Table 3).
For this comparison, latent layer dimensions of two, three, and four are also used for MLP-
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CFE and MLP-AE. MLP-CFE (n = 3) shows the lowest mean RMSE on dataset-A and -C
test samples. On dataset-B test samples, it shows the second lowest mean RMSE, with a
small difference of 1.33 compared to MLP-AE (n = 3). For the standard deviation of the
RMSE, MLP-CFE (n = 3) shows the lowest RMSE on dataset-A and -C test samples, while
for dataset-B test samples, it shows the second lowest RMSE, with a small difference of
1.38 compared to MLP-AE (n = 3). When the mean RMSEs for 0–20 months, 21–23 months,
and 24–36 months are averaged for each of the models, MLP-CFE (n = 3) exhibits the
lowest value of 6.63. In addition, when the standard deviations of the RMSE for these three
periods were averaged in the same way, MLP-CFE (n = 3) exhibits the lowest value of 2.79.
Notably, the MLP-CFE (n = 3) model, which is our proposed model, exhibits a superior
performance over the other models with regard to the mean and the standard deviation
of the RMSE for all test sets. In particular, for the dataset-C test set, the best performing
model is MLP-CFE (n = 3), which means that our method for compensating sensor drift is
efficient for long-term sensor drift and also robust to different types of gases.
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Figure 6. (a) Mean of RMSE of 6 gases for each model (b) Standard deviation of RMSE of 6 gases for
each model.

Table 3. The mean of RMSE and the standard deviation of RMSE for each model. SD denotes for
standard deviation. n for latent space dimension.

0–20 Months 21–23 Months 24–36 Months

Mean SD Mean SD Mean SD

MLP 21.12 15.14 62.4 45.47 107.9 44.71
PLS 23.1 20.51 48.55 17.19 97.83 37.89
MLP-PLS 18.09 14.08 64.43 44.76 105.5 43.09
MLP-AE (n = 2) 8.4 7.64 7.89 3.77 21.52 17.39
MLP-AE (n = 3) 4.63 2.12 5.79 1.73 10.04 6.14
MLP-AE (n = 4) 7.77 8.76 7.84 7.33 10.22 8.27
MLP-CFE (n = 2) 8.26 4.66 8.6 4.22 15.17 8.35
MLP-CFE (n = 3) 3.73 1.65 7.12 3.11 9.05 3.62
MLP-CFE (n = 4) 9.51 8.23 9.85 7.44 14.69 8.6
MLP-tuned 21.12 15.14 51.759 54.83 21.99 22.03

The training times per epoch, averaged for six gases, were compared for each model
and are shown in Table 4. The results for the MLP-CFE and MLP-AE models with latent
vector dimensions of n = 2, 3, 4 were averaged to represent the time complexity of MLP-
CFE and MLP-AE. MLP-PLS has the longest training time per epoch, at an average of 0.239 s,
followed by MLP and MLP-tuned at 0.1592 s and 0.132 s, respectively. The average training
time per epoch is 0.0912 s and 0.0084 s for MLP-CFE and MLP-AE, respectively, both below
0.1 s, which is lower than training times for MLP, MLP-PLS, and MLP-tuned. These results
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indicate that, despite the presence of a decoder part during training of the encoder module,
our proposed method outperforms other methods, including the fine-tuning method, in
terms of time complexity.

Table 4. The training time per epoch (s/epoch) for each model.

MLP-CFE MLP-AE MLP MLP-PLS MLP-Tuned

time (s/epoch) 0.0912 0.084 0.1592 0.239 0.132

4. Conclusions

In this paper, we introduce an effective method for compensating for sensor drift
using deep learning algorithms. Our method involves concatenating calibration feature
vectors, embedded from a trained calibration feature encoder as prompts, with sensor
data, which are then used as inputs to the neural network during training. The CFE re-
ceives transfer samples as inputs and encodes the calibration feature vectors which contain
sensor drift information, allowing the neural network to learn sensor drifts and output
a drift-compensated label based on a new sensor signal. We evaluate the effectiveness
of this method by testing it on a 3-year dataset of gas sensor array drifts for six types of
gases at different concentrations. Our results show that our method achieves a higher
accuracy than a conventional MLP, an MLP with other feature extractors, and even an
MLP with additional fine tuning. Our work verifies that representation learning methods
like masked autoencoders can efficiently represent sensor drift information from transfer
samples that have a complex and nonlinear structure. In addition, we show that training a
neural network with informative prompts is effective in terms of model performance. As far
as the authors are aware, the proposed methodology is the first proposal of compensating
for sensor drift in deep learning models without-fine tuning. The research community can
develop this prompt-based learning approach in future studies, leading to active research
in the area. In this field, classifying gas types is just as important as gas concentration
estimations; however, in this research, this method was only validated via concentration
estimations, constituting a limitation. Furthermore, this methodology has only been val-
idated on regression models based on multi-layer perceptrons. Thus, future work will
focus on extending the proposed methodology across other tasks and various types of deep
learning models.
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