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Abstract: In the process of silicon single-crystal preparation, the timely identification and adjustment
of abnormal conditions are crucial. Failure to promptly detect and resolve issues may result in
a substandard silicon crystal product quality or even crystal pulling failure. Therefore, the early
identification of abnormal furnace conditions is essential for ensuring the preparation of perfect
silicon single crystals. Additionally, since the thermal field is the fundamental driving force for
stable crystal growth and the primary assurance of crystal quality, this paper proposes a silicon
single-crystal growth temperature gradient trend classification algorithm based on multi-level feature
fusion. The aim is to accurately identify temperature gradient changes during silicon crystal growth,
in order to promptly react to early growth failures and ensure the stable growth of high-quality
silicon single crystals to meet industrial production requirements. The algorithm first divides the
temperature gradient trend into reasonable categories based on expert knowledge and qualitative
analysis methods. Then, it fuses the original features of actual production data, shallow features
extracted based on statistical information, and deep features extracted through deep learning. During
the fusion process, the algorithm considers the impact of different features on the target variable and
calculates mutual information based on the difference between information entropy and conditional
entropy, ultimately using mutual information for feature weighting. Subsequently, the fused multi-
level feature vectors and their corresponding trend labels are input into a Deep Belief Network (DBN)
model to capture process dynamics and classify trend changes. Finally, the experimental results
demonstrate that the proposed algorithm can effectively predict the changing trend of thermal field
temperature gradients. The introduction of this algorithm will help improve the accuracy of fault
trend prediction in silicon single-crystal preparation, thereby minimizing product quality issues and
production interruptions caused by abnormal conditions.

Keywords: entropy; multi-level feature fusion; crystal growth; DBN

1. Introduction

Integrated circuits are the cornerstone of modern technology, the driving force behind
the booming information industry, and an important reflection of national strength [1].
Nowadays, semiconductor silicon single crystals are widely used in many fields of the
national economy and defense technology. The Czochralski method (CZ) is the mainstream
method for growing silicon single crystals [2]. With the rapid development of the informa-
tion technology industry and the continuous improvement in the linewidth requirements
of large-scale integrated circuits, silicon single-crystal growth is moving towards large size
and electronic grade. However, with the continuous improvement in quality requirements
for crystal growth, crystal growth equipment is becoming increasingly complex. The design,
manufacturing, testing, operation, and maintenance costs throughout the lifecycle of the
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equipment have increased significantly. At the same time, the probability of equipment
failure, performance degradation, and functional failure also increases, thereby affecting
the safety and crystal quality of the silicon single-crystal growth process. A stable thermal
environment is the primary guarantee for producing high-quality silicon single crystals,
and the temperature gradient near the solid–liquid interface is generally related to the
crystal diameter [3,4]. However, due to limitations in production equipment and detec-
tion technology, it is difficult to directly obtain temperature gradients, and the number of
temperature measurement points in the thermal field is limited, with significant process
lag. Therefore, it is usually necessary to carefully design experiments and conduct multiple
repetitions to explore the process curve, which is time-consuming and costly. Therefore,
research on the real-time monitoring of temperature gradient trends in the thermal field is
necessary. There are two reasons for this:

1. The change in temperature gradient indeed provides information about the local
and instantaneous temperature distribution. The temperature gradient, which rep-
resents the rate of temperature change between a point in the thermal field and its
neighboring points, is a physical quantity that measures the temperature variation
within a unit distance. This concept reveals the direction and rate of the most rapid
temperature change in a specific area. However, relying solely on the information
of instantaneous temperature gradient changes to take control measures may lead
to inappropriate adjustments and increased furnace condition fluctuations. This is
because the temperature gradient at a given moment may change suddenly but can
be corrected in the next moment.

2. The change trend of the thermal field temperature gradient serves as the basis for
identifying early abnormal states. The operation and control of the silicon single-
crystal growth process primarily rely on accurately classifying the change trend of the
temperature gradient.

In actual production, on-site operators primarily rely on manual experience to judge
the change trend of the temperature gradient, which makes it difficult to ensure the quality
of the crystals. However, this method has certain uncertainties regarding the reliability of
production. In response to the aforementioned issues, there is an increasing demand in
the industry for the real-time monitoring of the crystal growth process. This study aims
to establish a classification model for the trend of temperature gradient changes in the
CZ silicon single-crystal growth process and apply it to practical work. Currently, the
monitoring of production status in industrial production processes is commonly achieved
through mechanism-based methods, data-based methods, and expert experience [5,6]. In
fact, the silicon single-crystal growth process is characterized by severe parameter coupling,
high nonlinearity, strict requirements for parameter fluctuations, high safety and reliability
requirements, unclear mechanisms, and difficulties in establishing mathematical models.
However, the silicon single-crystal growth process is severely coupled, highly nonlinear,
requires strict parameter stability, and has high requirements for safety and reliability.
Additionally, the mechanism is not clear, and it is difficult to establish mathematical
models. Therefore, implementing mechanism-based methods is challenging [3]. At the
same time, with the development and application of distributed control systems and the
rapid advancement of storage technology, a large amount of data can be collected during the
silicon single-crystal growth process. Therefore, it is more reasonable to apply data-driven
techniques to classify the trend of temperature gradient changes in the thermal field.

Data-driven modeling techniques have been widely used in the industry after decades
of development, mainly to solve modeling problems related to key indicators in industrial
processes [7–9]. These techniques include Support Vector Machines, partial least squares,
neural networks, and deep learning networks. Wan et al. [10] studied soft measurement
modeling methods for the V/G ratio in the CZ silicon single-crystal growth process using
a stacked autoencoder network. Zhang et al. [3] combined the finite element method
(FEM) with control strategies to study the regulation of crystal growth processes. This
control strategy solves the problem of controlling crystal temperature in traditional crystal
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growth systems and enables the growth of high-quality single-crystal silicon. Ren et al. [11]
proposed a modeling method for soft sensors called VMD-SEAE-TL. This method combines
variational mode decomposition (VMD), stacked enhanced autoencoder (SEAE), and trans-
fer learning (TL) algorithms, aiming to detect key variables in the industrial production
process of silicon single crystals. Due to the complexity of silicon single-crystal production,
predicting key indicators is challenging.

Most of the existing prediction models for key indicators are built on supervised
learning algorithms using labeled data. However, in practical applications, the inconsistent
sampling frequency of process variables leads to a waste of a large amount of unlabeled
data, resulting in a “data-rich, information-poor” situation. Secondly, these models usually
only use single-layer features to describe the silicon single-crystal growth process. There-
fore, when operating conditions fluctuate, especially after long-term operation, the accuracy
of the model may deviate [12]. In response to this issue, researchers have proposed a new
adaptive nonlinear predictive control method for crystal diameter based on hybrid integra-
tion modeling [13,14]. This method combines engineering practice and decomposes the
original data into several sub-sequences using the wavelet packet decomposition method. It
removes high-frequency signals from the sub-sequences to reduce non-stationarity and the
impact of random noise. Next, each sub-sequence is modeled separately, and the prediction
results of each model are fused. Compared to a single model, this integrated modeling ap-
proach significantly improves the prediction accuracy. Furthermore, the prediction results
of this method mainly rely on current information, but the models constructed usually
cannot accurately describe the entire process of silicon single-crystal growth. Inspired
by the above content, this study uses multi-level features to describe the complex silicon
single-crystal growth process. Among them, the classification period of the temperature
gradient trend model should not be too short, because if only the time interval between two
offline analysis values is considered, then this short-term local information provides limited
decision support for onsite operators. Therefore, this paper determines the classification
time interval of the trend change based on expert experience and data analysis. In addition,
due to the advantages of DBN in effectively describing object characteristics and their
achievements in multiple fields, we choose to use DBN networks to establish the model.

This study establishes a data-driven model based on multi-level feature fusion to
classify the change trends of variables. The main contributions of this paper are as follows:

1. For the CZ silicon single-crystal growth process, this paper proposes a pioneering
data-driven method for monitoring the change trend of the thermal field temperature
gradient, which is used to monitor the real-time changes in temperature gradient.
This method lays the foundation for the safety and quality control of the silicon
single-crystal growth process. This marks the first application of process monitoring
in this field.

2. To obtain appropriate temperature change trend labels, we designed a method based
on expert knowledge and qualitative analysis to determine the classification time
interval so that the model can provide results with more decision support. Next,
we qualitatively defined trend labels through different basic elements, which can
comprehensively describe the growth status of silicon single crystals.

3. To ensure the accuracy of the model under fluctuating operating conditions, this paper
employs multiple methods to extract raw features, shallow features, and abstract
features to describe the process of silicon single-crystal growth. Specifically, we use
variable analysis, statistical information, and SAE to extract these three types of
features. Each type of feature corresponds to a different description of the same stage.

The remaining content is arranged as follows. First, Section 2 briefly introduces the
basic theory of SAE and DBN models. Then, in Section 3, we propose a basic research
framework, which includes feature extraction, obtaining silicon content trend labels, and
multi-level feature fusion. Next, in Section 4, we conduct simulation experiments and
analyze the effectiveness of the multi-level fusion feature algorithm. Finally, in Section 5,
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we summarize the work performed in this article and provide prospects for future re-
search directions.

2. Preliminaries of SAE and DBN
2.1. SAE

An autoencoder (AE) is an unsupervised learning model that is trained using the
backpropagation algorithm and optimization methods such as gradient descent [11,12].
Its working principle is to utilize the input data for supervision and attempt to learn a
mapping relationship in order to obtain a reconstructed output [15]. A typical autoencoder
consists of a simple three-layer network, including an input layer, a hidden layer, and an
output layer. The mapping process from the input layer to the hidden layer is considered
the encoding process, while the mapping process from the hidden layer to the output layer
is equivalent to the decoding process, aiming to reconstruct the original input as closely as
possible, as shown in Figure 1.
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The stacked autoencoder (SAE) is a network structure constructed by stacking multiple
such autoencoders, as shown in Figure 2. This network structure is mainly used to extract
deep data features from massive industrial data.

The encoding and decoding processes of an AE network are shown as (1) and (2),
respectively:

a = s f (W1x + b1) (1)

x̂ = sd(W2a + b2) (2)

where the network input is denoted as x and the reconstructed output is denoted as x̂. In
both processes, we use the sigmoid function, represented as s f and sd, as the activation
function for the neurons. The features of the hidden layer are represented as a, and the
weights for the encoding and decoding processes are denoted as W1 and W2, respectively.
The biases for the encoding and decoding processes are denoted as b1 and b2, respectively.
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The main objective of an AE network is to achieve input reconstruction by minimizing
the reconstruction error. The loss function for this purpose is shown as (3):

J(W1, W2, b1, b2) =
1
m

m

∑
i=1

(xi − x̂i)
2 (3)

When multiple autoencoders are stacked layer by layer, it forms an SAE network. The
SAE is an unsupervised learning network. In order to achieve supervised learning for soft
sensor modeling, the decoding process of the stacked autoencoders is removed, and an
output layer is added at the end to predict the target variable.

2.2. DBN

The DBN is a probabilistic generative model proposed by Geoffrey Hinton in 2006 [16].
It is primarily composed of several Restricted Boltzmann Machine (RBM) units and a
stacked error backpropagation network (BP), forming a deep neural network structure. The
connections between neurons in the DBN form a graphical structure, which can generate
training data based on the maximum likelihood [17]. From the perspective of structural
composition, the DBN structure is shown in Figure 3. In the training process of the DBN, a
layer-wise training strategy is adopted, which effectively addresses the training challenges
of deep neural networks. DBNs can be used not only for unsupervised learning but also
for supervised learning, making it widely applicable in practical applications.

The RBM is an efficient unsupervised learning model that is primarily used for effec-
tively extracting data features and constructing new data structures for predictive analy-
sis [18]. In neural networks, the RBM is often used as a part of initializing a feedforward
neural network to improve the network’s generalization ability.

From the perspective of network structure, as shown in Figure 4, the RBM is a shallow
neural network with two layers, including a visible layer and a hidden layer. The visible
layer, also known as the input layer, consists of visible units and is used to input training
data. The hidden layer consists of hidden units and can be seen as feature detectors. Unlike
Boltzmann Machines (BMs), the RBM requires no connections between neurons within the
same layer. In other words, when the state of visible layer neurons is given, the activation of
hidden layer neurons is independent, and vice versa. Therefore, RBMs can learn different
features at different levels. It is worth mentioning that the RBM, due to its excellent feature
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extraction capability, is often used as a learning module in DBNs. The DBN is a deep neural
network composed of multiple stacked RBMs. In this way, DBNs can learn increasingly
abstract and advanced features at different levels.
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As shown in the Figure 4, v = (v1, v2, · · · , vi, · · · vm)
T i, m ∈ Z∗ represents the state

vector of the visible layer, vi represents the value of the i-th node in the visible layer, and m
is the number of nodes in the visible layer. h =

(
h1, h2, · · · , hj, · · · hn

)T , j, n ∈ Z∗ represents
the state vector of the hidden layer, hj represents the value of the j-th node in the hidden
layer, and n is the number of nodes in the hidden layer. W =

(
wij

)
, i ∈ [1, m], j ∈ [1, n]

represents the weight matrix, a = (a1, a2, · · · , ai, · · · am)
T represents the bias vector of the

visible layer, and b =
(
b1, b2, · · · , bj, · · · bn

)T represents the bias vector of the hidden layer.
θ = (W, a, b) represents the parameters in the RBM, for any i and j, vi, hj ∈ {0, 1}.

RBM can also be viewed as an energy-based model, where the network’s equilibrium
corresponds to the lowest-energy state. For a given set of (v, h), the specific energy function
can be represented as follows:

Eθ(v, h) = −
m

∑
i=1

aivi −
n

∑
j=1

bjhj −
m

∑
i=1

n

∑
j=1

hjwijvi (4)

The joint distribution of the RBM defined by the energy function is

P(v, h) =
1
Z

e−E(v,h) (5)
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where Z = ∑
v,h

e−E(v,h) is the normalization factor to ensure that the sum of the probability

distribution is 1. By taking the marginal distribution of the joint probability distribution,
we can obtain:

P(v) = ∑
h

1
Z

e−E(v,h) (6)

P(h) = ∑
v

1
Z

e−E(v,h) (7)

The training process of DBNs mainly consists of two stages: pre-training and fine-
tuning. In the pre-training stage, each layer of the RBM network undergoes individual
unsupervised training to initialize weights and extract features. The goal of this stage is to
ensure that the feature vectors can map to different feature spaces and preserve the feature
information of the original data as much as possible. Specifically, the pre-training process
is conducted through unsupervised greedy layer-wise training. It starts from the bottom
by training the bottommost RBM with the original input data and then uses the features
extracted by the bottom RBM as input to train the top RBM. This process is repeated to
train as many RBM layers as possible.

After completing pre-training, the DBN enters the fine-tuning stage. In this stage, a
backpropagation neural network (BPNN) is set up at the last layer of the DBN. The output
of the last RBM is used as input to the BPNN, and the entire network is optimized through
supervised learning to further adjust the parameters and improve the model’s performance.
The purpose of fine-tuning is to optimize the data feature extraction capability of the DBN,
making it better suited for various tasks such as classification, regression, feature learning,
and transfer learning [19,20].

3. Classification Model Based on Multi-Level Feature Fusion

The data-driven classification method introduced in this section is based on multi-level
feature fusion and the Deep Belief Network (DBN). The method is mainly divided into
four parts: acquiring temperature gradient trend labels, deep feature extraction, multi-level
feature fusion, and overall classification framework.

In the temperature gradient trend label acquisition stage, temperature gradient trend
labels for different stages of silicon single-crystal growth are obtained through expert
qualitative analysis. These labels effectively describe the different stages of the growth
process and provide important auxiliary information for subsequent classification tasks.
Then, the deep feature extraction stage is where we use unsupervised learning methods
to extract temperature gradient features from the silicon single-crystal growth process.
These features fully reflect various information about the growth process and provide a
foundation for subsequent feature fusion and classification. Then, the multi-level feature
fusion stage is where we fuse features from different levels to fully utilize various feature
information. Lastly, the overall classification framework involves inputting the extracted
features from different levels into the DBN for training and testing, thus achieving automatic
classification of the silicon single-crystal growth process.

3.1. Labeling Temperature Gradient Trend Changes

In the process of preparing silicon single crystals, failure to promptly detect and
adjust abnormal conditions can lead to unexpected product outcomes or even crystal
pulling failure. Therefore, accurately identifying abnormal furnace conditions is crucial for
producing perfect silicon single crystals. The most direct manifestation of changes in the
growth conditions of silicon single crystals is the temporal variation in the thermal field
temperature gradient, which exhibits certain trends on the time axis. Recognizing these
trend patterns helps identify early abnormal situations and provides guidance for on-site
operations [18]. The entire process of silicon single-crystal growth typically lasts for over
100 h, and its fundamental requirement is stable operation. If control is based on transient
changes in the thermal field temperature gradient, it can result in improper adjustments
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and frequent fluctuations in furnace conditions. On the other hand, if control is based on
long-term changes in the thermal field temperature gradient, it may lead to a decline in
crystal quality or crystal variation. Additionally, there is a time delay of approximately
11–30 min in adjusting the power of the heater. Taking all these factors into consideration,
expert experience suggests choosing a time interval of 20 min to classify the change trends
of the thermal field temperature gradient. The classification results are shown in Figure 5.
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The seven trend primitives are represented by first-order and second-order derivatives.
They are denoted as A(0,0), B(+,+), C(+,0), D(+,−), E(−,+), F(−,0), and G(−,−). A sliding
window is used to group the thermal field temperature gradient on the time axis. The
data within the sliding window are fitted using polynomial regression, and the signs of
the first-order and second-order derivatives of the fitting equation describe the trend of
the thermal field temperature gradient changes. This method qualitatively describes the
temperature trend information using the seven primitives (Algorithm 1).

Algorithm 1: Labeling the Trend of Key Process Indicators

Input: Values of thermal field temperature gradient, size of sliding window.
Output: Trend labels.
Begin:
Step 1: Determine the total window width M, where ((x1, y1), (x2, y2), ..., (xM, yM)) is

predetermined in the study. Based on the classification time interval, determine the width of the
sliding window as 20 min.

Step 2: Fit the data in the sliding window using a zero-order polynomial. Determine the
goodness of fit using an F-test. If the equation is not significant, record the trend of thermal field
temperature gradient changes as stable. Otherwise, proceed to Step 3.

Step 3: Fit the data using a first-order polynomial and determine the goodness of fit using an
F-test. If the equation is not significant, determine the trend as linear increasing or linear
decreasing based on the sign of the slope. Otherwise, proceed to Step 4.

Step 4: Fit the data using a second-order polynomial. If the first-order and second-order
derivatives are positive, it is considered a convex upward trend. If the first-order derivative is
positive and the second-order derivative is negative, it is considered a concave upward trend. If
the first-order derivative is negative and the second-order derivative is positive, it is considered a
convex downward trend. If both the first-order and second-order derivatives are negative, it is
considered a concave downward trend. If the first-order and second-order derivatives do not fall
into the above cases, proceed to step 5.

Step 5: Select the equation with the best fit and record the trend information.
Step 6: Perform Steps 2 to 5 for each sliding window to obtain the trends. The termination

condition is when all sliding windows have been processed appropriately.
End
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3.2. Deep Feature Extraction

The SAE is a method that learns abstract features layer by layer, allowing for the
better representation of complex systems [21,22]. This concept has gained widespread
attention and has achieved state-of-the-art results in many fields. Furthermore, the SAE is
constructed based on greedy layer-wise unsupervised pre-training, making it particularly
suitable for situations where there is a lack of labeled samples due to inconsistent sampling
frequencies of industrial sensors. In this study, the SAE is used to extract abstract features,
and the implementation details are shown in Figure 6.
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A deep network is composed of numerous independently functioning autoencoders
within a deep architecture. The training process of the autoencoders is similar to that
of traditional neural networks. The model parameters are updated by randomly setting
weights and biases and utilizing error backpropagation. The unique aspect is that the input
and output of the model are the same. After training the (n − 1)th autoencoder with the
original data, the output of its hidden layer serves as input for training the nth autoencoder,
and this process continues in a cycle.

During the pre-training phase, there is no specific task, and the focus is on unsuper-
vised feature extraction from unlabeled data. After layer-wise pre-training is completed, all
the hidden layers are combined to construct the deep network. The network parameters
are based on the learned parameters during the pre-training process [23].

3.3. Multi-Level Feature Fusion Based on Mutual Information

The growth of silicon single crystals by the CZ method is a highly complex process
that cannot be accurately described by abstract features. Based on the expertise and process
knowledge of silicon single-crystal growth, three shallow features are constructed to reflect
the trend of changes within a certain period of time (20 min). In the growth process of silicon
single crystals, the range of variation (R), the rate of variation (∆x/∆t), and the standard
deviation (S) are key features that reflect their developmental trends. The following are the
formulas for calculating these features:

R = xmax − xmin (8)
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∆x/∆t =
1
n

[
2n

∑
i=n+1

xi −
n

∑
i=1

xi

]
(9)

s =

√
1

n − 1

n

∑
i=1

(xi − x)2 (10)

where xmax and xmin represent the maximum and minimum values of the variable, xi
represents the i-th value of the variable, n represents the number of values within the
20 min period, and x represents the mean value of the variable. These shallow features
describe the range of fluctuations and the degree of dispersion of the process variables,
which can reflect the state of the thermal field in the silicon single-crystal furnace within the
20 min period. By analyzing these features, we can understand the changes in the thermal
field during the silicon single-crystal growth process, providing insights for optimizing
thermal field design and improving crystal quality.

In the classification model, the input is divided into three main parts: raw features
collected by sensors, shallow features extracted based on statistical information, and
abstract features learned through deep networks. After considering the impact of different
features on the target variable, a feature weighting method based on mutual information is
proposed [22]. Let us assume that the dataset X has L different classes, where L represents
seven different sets of trend information. The dataset corresponding to the i-th class is
denoted as xi, i = 1, 2, · · · , L, and NX and Nxi represent the number of features X and xi,
respectively. The information entropy of the entire dataset is calculated as follows (for the
i-th class in the entire dataset):

In f o(X) = −
L

∑
i=1

Nxi

NX
log2

(
Nxi

NX

)
(11)

Let us assume the dataset has n features as {x1, · · · , xk, · · · , xn}. Each feature is
a t-dimensional vector xk = (x1

k , x2
k , · · · , xt

k). The dataset is divided into L categories
(categories representing the trend of changes), denoted as (X1, X2, · · · , Xt). The formula
for calculating the conditional entropy of a feature xk is as follows (for a specific feature
belonging to a certain class in the entire dataset):

In f oxk (X) = −
t

∑
j=1

NX j

NX
× In f o(X j) (12)

The mutual information of feature xk with respect to category Gxk can be described
as follows:

Gxk = In f o(X)− In f oxk (X) (13)

If we obtain the mutual information for n different features, then the weight
{w1, · · · , wk, · · · , wn} of the feature vector {x1, · · · , xk, · · · , xn} can be calculated as follows:

wi = Gxi /
n

∑
i=1

Gxi (14)

Based on mutual information, we aim to fuse multi-level features to compensate for
the shortcomings of single features. Through this method, features closely related to the
target variable are strengthened, while those unrelated to it are weakened [24]. Figure 7
shows the ingenious process of multi-level feature fusion.
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3.4. Classification of Silicon Content Trend Based on Multi-Level Feature Fusion with DBN

This study focuses on classifying trend changes in a multi-class problem. The method
is used to directly input the output of the hidden layers of a DBN into a softmax layer. For
the data collected from multiple sensors, mutual information is used for multi-level feature
fusion. The corresponding labels of thermal field temperature gradient trends and the
fused features are input into the DBN model for training, resulting in the final classification
results (Algorithm 2).

Algorithm 2: Multi-level Feature Fusion Model for Classification

Input: X, Y, dataset, SAE parameters, DBN parameters, maximum number of iterations,
maximum number of hidden layers.

Output: Classification results for the test samples.
Begin:

1. Based on expert experience and theoretical analysis, select data from the historical database
for modeling.

2. Preprocess the data, obtain the raw features through correlation analysis, and divide the
dataset into training and testing sets.

3. Using human expertise to extract shallow features while using SAE networks to learn deep
features of the data.

4. After considering the impact of different features on the target variable, perform feature
weighting.

5. Divide the temperature gradient time series into segments and extract trend information
through polynomial regression fitting.

6. Train the DBN model using the fused features and the corresponding temperature gradient
trend labels, and obtain the optimal parameters through the sparrow optimization algorithm.

7. Based on the multi-level fusion model, the classification results are obtained, and the model
accuracy is evaluated using the test set.

End

4. Experimental Verification
4.1. Experimental Data Description and Preprocessing

The historical database of the silicon single-crystal growth process is an important data
source that reflects the process state information. In this study, actual production data from
a specific model of a single-crystal furnace were selected to train the model, and Table 1
provides a detailed description of the variables. However, due to equipment failures and
human errors, there may be outliers in the data. Preprocessing the data is necessary to
improve the quality and accuracy of the classification model’s data processing. The box
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plot method is used to remove outliers, as it accurately describes the data distribution and
quickly identifies outliers. Since the dataset is large, any missing data in the database are
directly deleted [25]. After the aforementioned preprocessing, we scale the values to the
range of [0, 1]:

xnorm = (xi − xmin)/(xmax − xmin) (15)

where xnorm represents the result of variable normalization. xmax and xmin, respectively,
represent the maximum and minimum values of the ith variable.

Table 1. Variable description.

Ranking Variable Name Unit Ranking Variable Name Unit

1 Heating Element Temperature K 8 Secondary Heating Power Kw

2 Liquid Surface Temperature K 9 Crystal Ascending Speed mm/min

3 Main Heater Power Kw 10 Crucible Ascending Speed mm/min

4 Crystal Diameter mm 11 Crystal Weight Kg

5 Average Growth Rate mm/min 12 Magnetic Field Position mm

6 Crystal Rotation Speed rpm 13 Liquid Surface Position mm

7 Crucible Rotation Speed rpm 14 Heating Element Resistance Ω

Considering the complexity of the crystal growth environment, as shown in Figure 8,
there are multiple process variables, and the collected process variables in silicon single-
crystal growth have different impacts on key variables. If too many input variables are
used, it can lead to overfitting problems. Therefore, it is necessary to select input variables
to obtain a more suitable subset for modeling. In this study, the Support Vector Machine
Recursive Feature Elimination (SVM-RFE) algorithm was adopted for feature selection.
The advantage of the SVM-RFE algorithm lies in considering the correlation and nonlinear
relationship between features based on the idea of Support Vector Machines. By iteratively
eliminating the least relevant features, this algorithm can better capture the correlation and
importance between features. The available features are shown in Table 1. After feature
selection, the retained feature indices are 1, 2, 3, 4, 6, 7, 10, and 11. We consider these
8 variables as the original features and provide the raw data of these 8 variables, as shown
in Figure 9.
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It is worth noting that, due to the difficulty in directly measuring temperature gradients
during the actual growth process, the temperature gradient data used in this study are
sourced from professional silicon single-crystal growth simulation software. It is widely
believed in industry that the computational results of this simulation software are nearly
identical to the actual results in industrial production processes. Moreover, there have
been numerous studies utilizing this simulation software for data acquisition and fitting
to further obtain the required data [26–28]. Therefore, the data acquisition process in this
study can be considered reasonable.

4.2. Results and Discussion

The classification time interval for the thermal field temperature gradient change trend
is set to 20 min. After processing, we obtained a total of 1830 sets of data. Among them, we
selected 1200 sets of process data corresponding to the silicon content change trend as the
training dataset, and 630 sets of process data as the test dataset.

To evaluate the performance of the MF-SAE-DBN method, we compared it with
four other methods: PCA-SVM, SAE-SVM, PCA-RNN, and SAE-RNN. In PCA-SVM
and PCA-RNN, we used Principal Component Analysis (PCA) to extract features and
established classification models using Support Vector Machines (SVMs) and Recurrent
Neural Networks (RNNs). In SAE-SVM, we used Stacked Autoencoders (SAEs) to extract
deep-level features and then performed trend classification using SVM and RNN. It is
worth noting that, except for PCA-SVM and PCA-RNN, all other models input multi-level
fusion features.

The model parameter settings for each algorithm are detailed in Table 2.
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Table 2. Model parameter settings.

Models Model Parameters

PCA-SVM Kernel Function: Sigmoid, Regularization Parameter: 0.2

SAE-SVM SAE Hidden Layer Node Numbers: [12, 18, 5], SAE Learning Rate: 0.01, Kernel
Function: Sigmoid, Regularization Parameter: 0.2

PCA-RNN RNN Hidden Layer Node Number: 50, RNN Learning Rate: 0.03

SAE-RNN SAE Hidden Layer Node Numbers: [12, 18, 5], SAE Learning Rate: 0.01, RNN
Hidden Layer Node Number: 50, RNN Learning Rate: 0.03

MF-SAE-DBN SAE Hidden Layer Node Numbers: [12, 18, 5], SAE Learning Rate: 0.01, DBN
Learning Rate: 0.1, RBM Iterations: 500, Hidden Layer Node Numbers: [7, 12].

Evaluate the learning ability and classification ability of the aforementioned method
using accuracy rate hacc:

hacc =
n

∑
i=1

θi

/
n × 100% (16)

where n is the number of test samples. When the ith sample is correctly classified, θi is
equal to 1; otherwise, it is 0. All methods were implemented on the MATLAB R2020b
platform. The accuracy is the average of the results from five cross-validation experiments.
Please refer to Table 3 and Figure 10 for more specific details.

Table 3. Trend classification accuracy of different methods.

Method htrain htest

PCA-SVM 83.33% 81.11%

SAE-SVM 88.33% 85.24%

PCA-RNN 86.5% 81.9%

SAE-RNN 91.66% 88.09%

MF-SAE-DBN 96.00% 93.17%

1 

 

 

Figure 10. The classification results of different methods.
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The research results indicate that among the trend classification algorithms, PCA-
SVM has the lowest classification accuracy, followed by PCA-RNN. This is because these
two algorithms only consider a single type of feature and the traditional PCA algorithm
cannot guarantee the extraction of deep-level information contained in the data. In com-
parison, the RNN has improved feature mining capabilities compared to SVM, resulting
in a slight improvement in the classification accuracy of PCA-RNN. On the other hand,
SAE-SVM, SAE-RNN, and the proposed MF-SAE-DBN algorithm consider multi-level
features, resulting in a higher classification accuracy than single-level features. Addition-
ally, the combination of deep learning algorithms SAE and DBN significantly improves
the predictive accuracy. This indicates the importance of considering multi-level fea-
tures and the application of deep learning algorithms for trend classification tasks. The
combination of SAE and DBN can better explore the latent features in the data and im-
prove the predictive capability of the model. In summary, the proposed MF-SAE-DBN
algorithm can accurately identify temperature gradient trend changes, provide an early
warning for potential faults, and provide basic assurance for the safe and effective operation
of equipment.

Figures 11 and 12, respectively, present the trend prediction results of the proposed
model in this paper and the multi-class confusion matrix corresponding to the test dataset.
In these figures, 1, 2, 3, 4, 5, 6, and 7 represent the convex decreasing trend, linear de-
creasing trend, concave decreasing trend, stable trend, convex increasing trend, linear
increasing trend, and concave increasing trend, respectively. As shown in Figure 11, the
first 1200 entries are the prediction results of the training dataset, while the remaining
630 entries are the prediction results of the test dataset. Combining with Figure 12, it can be
observed that most trends in the test dataset are correctly classified. Out of 630 test samples,
579 were classified correctly, resulting in an overall accuracy of 91.90% for the model. The
accuracy for the stable trend is 93.1%, and the hit rate for changing conditions exceeds
80%, which is valuable for practical industrial scenarios. In the actual growth process of
silicon single crystals, maintaining stable operation and reasonable changes in thermal
field temperature gradients is an essential requirement for ensuring crystal quality. In most
cases, trend information does not change rapidly. Therefore, the accurate classification of
stable conditions is crucial for providing guidance and decision-making information to
on-site operators.

1 

 

 

Figure 11. Trend prediction results of the proposed model.
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5. Conclusions

This paper proposes a silicon single-crystal growth temperature gradient trend clas-
sification algorithm based on multi-level feature fusion, aiming to accurately identify
temperature gradient changes during silicon single-crystal growth and respond quickly to
early fault information in crystal growth, ensuring the stable production of high-quality
silicon single crystals. Firstly, the algorithm reasonably divides the temperature gradient
trend based on expert knowledge and qualitative analysis methods. Secondly, it performs
multi-level feature fusion on the original data features, shallow features, and deep abstract
features, which are used as inputs to the classification network and which output seven
different trend changes. The shallow features extract statistical characteristics of trend
information, the deep features are extracted using the SAE algorithm, and the classification
network uses the DBN. In the process of feature fusion, the influence of different features
on the target variable is considered, and mutual information is calculated based on the
difference between information entropy and conditional entropy, which is ultimately used
for feature weighting. Compared with other algorithms, the proposed MF-SAE-DBN algo-
rithm has better generalization and robustness, effectively classifies temperature gradient
trends, and provides guidance information in advance to ensure the smooth growth of
high-quality silicon single crystals. However, the algorithm also has certain limitations.
Firstly, due to differences in lag parameters of heat fields of different sizes, the selection of
time intervals in the trend division process is difficult to apply to all situations and needs
to be adjusted according to the actual conditions. Secondly, although the algorithm has
made progress in the research stage, overcoming some challenges is still necessary for its
practical application in production.

To address these limitations, we believe it is necessary to further improve the algorithm.
Firstly, we can enhance the classification accuracy by optimizing the algorithm’s parameters
and adjusting the selection of time intervals. Secondly, exploring the use of more advanced
network structures or employing other deep learning models can improve model training
speed and accuracy. Additionally, considering the introduction of other relevant features
or data sources to enhance the algorithm’s robustness and reliability is also a potential
direction for our future efforts.



Sensors 2024, 24, 1254 17 of 18

Author Contributions: Methodology, Y.-Y.L.; Software, P.-J.Z.; Validation, L.-X.M. and P.-J.Z.; In-
vestigation, Y.-Y.L.; Writing–review & editing, Y.-Y.L.; Supervision, L.-X.M.; Project administra-
tion, D.L.; Funding acquisition, D.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grant number
62127809, National Natural Science Foundation of China grant number 62373299, The Young Talent
Fund of University Association for Science and Technology in Shaanxi grant number 20210114, China
Post-Doctoral Science Foundation grant number 2022MD723834 and Key R&D Program of Shaanxi
Province grant number 2024GX-YBXM-093. The APC was funded by National Natural Science
Foundation of China grant number 62373299.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The research data is confidential in the industry. Due to the principle of
confidentiality, the data cannot be shared. Please understand.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

CZ Czochralski
DBN Deep Belief Network
FEM Finite element method
SAE stacked autoencoder
VMD variational mode decomposition
SEAE stacked enhanced autoencoder
TL transfer learning
AE Autoencoder
RBM Restricted Boltzmann Machine
BP backpropagation network
BPNN backpropagation neural network
PCA Principal Component Analysis
SVM Support Vector Machine
RNN Recurrent Neural Network
MF-SAE-DBN Multi-level Feature fusion–Stacked Autoencoder–Deep Belief Network
Symbols Designation
s activation function
x Input
x̂ reconstructed input
W network weights
b network bias
J loss function
E energy function
P probability distribution
R range of variation
∆x/∆t rate of change
S standard deviation
In f o(·) information entropy
Gx mutual information
hacc hit rate
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