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Abstract: Monitoring and mapping crop water stress and variability at a farm scale for cereals such 
as maize, one of the most common crops in developing countries with 200 million people around 
the world, is an important objective within precision agriculture. In this regard, unmanned aerial 
vehicle-obtained multispectral and thermal imagery has been adopted to estimate the crop water 
stress proxy (i.e., Crop Water Stress Index) in conjunction with algorithm machine learning tech-
niques, namely, partial least squares (PLS), support vector machines (SVM), and random forest (RF), 
on a typical smallholder farm in southern Africa. This study addresses this objective by determining 
the change between foliar and ambient temperature (Tc-Ta) and vapor pressure deficit to determine 
the non-water stressed baseline for computing the maize Crop Water Stress Index. The findings 
revealed a significant relationship between vapor pressure deficit and Tc-Ta (R2 = 0.84) during the 
vegetative stage between 10:00 and 14:00 (South Africa Standard Time). Also, the findings revealed 
that the best model for predicting the Crop Water Stress Index was obtained using the random forest 
algorithm (R2 = 0.85, RMSE = 0.05, MAE = 0.04) using NDRE, MTCI, CCCI, GNDVI, TIR, Cl_Red 
Edge, MTVI2, Red, Blue, and Cl_Green as optimal variables, in order of importance. The results 
indicated that NIR, Red, Red Edge derivatives, and thermal band were some of the optimal predic-
tor variables for the Crop Water Stress Index. Finally, using unmanned aerial vehicle data to predict 
maize crop water stress index on a southern African smallholder farm has shown encouraging re-
sults when evaluating its usefulness regarding the use of machine learning techniques. This under-
scores the urgent need for such technology to improve crop monitoring and water stress assessment, 
providing valuable insights for sustainable agricultural practices in food-insecure regions. 

Keywords: Crop Water Stress Index (CWSI); UAV; smallholder farms; maize; machine learning; 
precision agriculture 
 

1. Introduction 
Maize (Zea mays L.) is one of the most crucial crops and a primary food source for 

approximately 4.5 billion people in 95 developing countries, including southern African 
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countries [1]. At the same time, maize is one of the globe’s crops affected by drought and 
heat stress because of a lack of precipitation due to climate change [2]. In particular, the 
limited availability of water adversely affects maize metabolic activities, limiting biomass 
accumulation and decreasing photosynthetic rates due to reduced chlorophylls in leaves, 
ultimately leading to lower yields [3]. Risks linked with precipitation variability could 
threaten national food security in developing southern African countries, considering the 
significance of maize production for local supply in these regions [4]. As a result, water 
stress quantification has become an essential issue for agricultural production, in particu-
lar precision farming. In order to support the design and adaptation of climate change 
mitigation and adaptation measures, it is particularly important to unravel spatiotem-
poral patterns and the severity of water stress at different scales [5]. Soil-based methods 
have traditionally been the primary means of assessing crop water stress; however, there 
has been an increasing preference for plant-based methods. The indirect assessment of the 
actual plant water status, as highlighted by [6], makes this method less preferred. Plant-
based methods offer a more direct proxy for crop water’s actual state than soil-based 
methods [7]. 

Evaluating crop canopy temperature variations as a proxy for water status is one of 
the most widely used plant-based methods. Researchers have investigated canopy tem-
perature as a water stress indicator based on its inverse relationship with the rate of water 
loss and stomatal behaviour [8]. This is because when the heat is absorbed into the crop, 
the temperature of the crop canopy increases, but it cools when the heat is used to evapo-
rate water or transpire. The stomata close in response to soil water depletion, leading to 
decreased water uptake, gas exchange, and photosynthesis [6]. Thus, water-stressed 
plants would generally have less transpiration and thus higher temperatures than those 
not affected by the stress [8–10]. 

Canopy temperature variations are often quantified using imagers and thermal in-
frared thermometers [11]. Hand-held thermometers were developed and gained popular-
ity in the 1970s and 1980s [12,13], leading to the establishment of the Crop Water Stress 
Index (CWSI). This normalised index has been developed to overcome the effects of other 
environmental parameters that significantly alter the relationship between plant stress 
and plant temperature [8]. CWSI ranges between 0 and 1, representing a continuum from 
no water stress to water stress [12,13]. The premise behind the index computation is de-
tailed in the work of [13]. To provide an early intervention in increasing crop production, 
the CWSI could be used to identify water-stressed crops. In this regard, the CWSI, based 
on the surface temperature of the canopy, is now considered the preferred index for quan-
tifying water stress in crops [14]. The literature shows that this range is consistent with 
stress levels in many crops [8] which include grapes [15], olive [8,16], nectarine [17], peach 
[18], potatoes [19,20], sunflower [21,22], African eggplant [23], and wheat [24]. 

Furthermore, the empirical CWSI approach makes it necessary to use a non-water-
stressed baseline (NWSB) generated from the linear relationship between canopy and air 
temperature difference (Tc-Ta) for well-watered crops and vapor pressure deficit (VPD) to 
calculate the lower limit. For a given combination of crop and environmental conditions, 
this relationship is consistent [6]. It is important to highlight that the CWSI has been effec-
tively implemented in determining maize water stress across various climatic conditions. 
Studies in China [25,26], the United States of America [27,28], and Thailand [6,29] have 
successfully implemented the CWSI for this purpose. While CWSI has been widely uti-
lised globally to assess maize water stress, there is still a need to further explore its ap-
plicability in Africa, especially in southern Africa, where a decline in maize production 
has been observed [4,30]. Above all, very few studies have explicitly assessed the maize 
CWSI in smallholder croplands of southern African environmental conditions. 

Meanwhile, incorporating remote sensing techniques into precision agriculture has 
revealed numerous methods conducive to spatially characterizing the CWSI explicitly for 
critical crops such as maize. A remote measurement capability eliminates the need for 
labour-intensive and time-consuming techniques traditionally used to detect water stress 
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at the field or farm level. This efficiency in data collection and stress assessment is a sig-
nificant advantage and a driving force behind the interest in utilising the CWSI for opti-
mising crop production. However, the utility of remote sensing, particularly in regions 
like southern Africa, has been hindered by the scarcity of data suitable for field-scale ap-
plications. Freely available satellite remotely sensed data (i.e., Landsat TM, ASTER, or 
MODIS) are typically characterized by coarse spatial resolutions, which are not suitable 
for accurately capturing canopy temperature variations of different crops against the soil 
background in heterogeneous smallholder croplands [31,32]. 

Furthermore, cloud cover remains an important challenge with the use of satellites 
relaying remote sensing data [33]. Recently, to create a highly spatiotemporally precise 
platform to specifically detect and monitor water stress in crops, UAVs have evolved a 
popularly functioning system that delivers remotely sensed data that is relevant for spatial 
awareness [8,34]. In particular, temperature-based imagery acquired through UAV-borne 
platforms can efficiently capture crop water stress by analysing canopy temperature con-
cerning the physiological parameters of a crop at a field scale [35]. Several studies have 
shown a strong relationship between CWSI data derived from UAVs and physiology pa-
rameters, e.g., transpiration rates, stomatal conductance, leaf water potential, or stem wa-
ter potential, in crops like maize [15,26]. 

Furthermore, regarding the aspect of UAV remotely sensed data’s spatial resolution, 
several studies have illustrated that spectral derivatives exhibit superior performance 
compared to conventional bands in mapping crop attributes [36,37]. In the plant canopy, 
vegetation indexes can detect minute changes [38] because they significantly correlate 
with water stress indicators such as stomatal conductance [39,40]. In the case of [39], a 
large correlation between NDVI and stem water potential was identified with an R2 value 
of 0.68. On the other hand, results obtained by [41] revealed a significant relationship be-
tween stomatal conductance and GNDVI (p < 0.01). Ref. [42] found a correlation of R2 = 
0.77 between the normalised photochemical reflectance index (PRInorm) and CWSI. Ref. 
[31] developed CWSI inversion models based on vegetation indices that showed the best 
relationship with CWSI, TCARI/RDVI, and TCARI/SAVI (both with an R2 value greater 
than 0.80). More efforts are required to document the relationship between UAV multi-
spectral vegetation indices and CWSI, particularly for the maize crops in smallholder 
croplands. 

Moreover, various machine learning methods, such as RFs, SVMs, and ANNs, were 
widely employed and demonstrated to be accurate and effective in detecting and mapping 
various crop attributes, including water stress [37,43–46]. Because they use sophisticated 
statistical techniques, machine learning methods are the most precise and effective meth-
ods to learn complex non-linear functions between spectral data and biophysical param-
eters [47]. For instance, Ref. [48] established that the RF algorithm was best for estimating 
maize’s specific leaf area, equivalent water thickness, and fuel moisture content to rRMSEs 
of 3.48%, 3.13%, and 1%, respectively. RF has been applied to predict the CWSI for crops 
other than maize [49–51]. For instance, Ref. [51] demonstrated that RF could optimally 
estimate the CWSI of B. chinensis var. parachinensis (R2 = 0.86). Ref. [50] observed that RF 
outperformed SVM in estimating chlorophyll content, with average RMSEs of 2.90 and 
3.11, respectively. However, SVM has also shown promising results in predicting relative 
water content, achieving an R2 of 0.72 and an RMSE of 6.22% [49]. Nonetheless, the litera-
ture also shows that, despite the optimum performance of these machine learning algo-
rithms, no algorithm has been exhaustively tested to enable the accurate and effective 
identification and mapping of plant characteristics in a variety of environments [52,53]. 
Additionally, very few studies have sought to characterise the maize CWSI using UAV-
acquired data. Therefore, the efficiency of different commonly used machine learning ap-
proaches in predicting the CWSI needs to be further assessed. 

Therefore, the objective of this study was to conduct a comparative assessment of the 
performance of PLSR, SVM, and RF in estimating the maize CWSI using UAV-acquired 
remotely sensed data in smallholder croplands typically found in southern Africa. To 
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address this objective, the relative contribution of bands, vegetation indices, and both da-
tasets combined was evaluated. This research sought to provide a reference to accurately 
capture the spatiotemporal characteristics of the CWSI in the typical small-scale agricul-
tural areas of developing countries in southern Africa. The study established a maize Crop 
Water Stress Index based on field temperature data to achieve this overall objective. The 
significance of this study lies in its addressing a critical aspect of precision agriculture, 
which is leveraging advanced technologies and analytical methods for the near-real-time 
monitoring and mapping of the maize crop water stress, in the context of smallholder 
farms in developing countries, specifically for optimising food production. The findings 
of this study will have implications for sustainable agriculture and food security in regions 
facing water-related issues. 

2. Materials and Methods 
2.1. Study Site 

This study was conducted at the rural area of Swayimana, uMshwathi Local Munic-
ipality, approximately 55 km north-east of Pietermaritzburg, in the KwaZulu-Natal Prov-
ince, South Africa (−22.125031° to −34.834171° S and 16.451891° to 32.891122° E) (Figure 1). 
The area is dominated by smallholder farming systems with dominant rain-fed crops such 
as sugarcane, maize, sweet potato, and amadumbe (taro). The climate is mainly warm and 
wet in summer and dry in winter. The mean annual temperature is 17 °C, ranging between 
11.8 °C and 24 °C. The mean annual rainfall varies between 600 and 1200 mm, with most 
of it coming during the summer. During the study period, the area received an average of 
242.8 mm rainfall, 82.81% humidity, and a maximum average air temperature of 24 °C 
(Figure 2). These measurements were taken using an Automatic Weather Station installed 
at a school, following the World Meteorological Organization’s standards, proximal to the 
study area. This research was carried out in an area of 0.28 hectares farmed with small-
holder maize (Figure 1). 

 
Figure 1. Location of the Swayimana study area, study site, and smallholder maize field. 
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Figure 2. Swayimana weather conditions over the study period. 

2.2. Maize Canopy Temperature Measurement 
The maize was sown on 8 February 2021 and harvested on 26 May 2021. At the centre 

of the maize field, two infrared radiometers (IRRs; SI-111, Apogee Instruments Inc., Lo-
gan, UT, USA), mounted on a four-meter meteorological tower, were installed (Figure 3b). 
In the range of −60 °C to 110 °C, the sensor measured the target temperature at 8–14 m. 
The surface temperature was measured in a 23 and 45 half angle field of view (FOV) per-
pendicular to the direction of the row. Using the CR1000 datalogger (Campbell Scientific, 
Logan, UT, USA), temperatures were measured 10 s apart and averaged to 5 min, 10 min, 
30 min, and 60 min (Figure 3c). The 10:00–14:00 (South Africa Standard Time) 60 min foliar 
temperature data were used in this study to develop the daily vapor pressure deficit 
(VPD) and vapor pressure gradient (VPG), and ultimately the non-water-stressed baseline 
(NWSB) and non-transpiring baseline (NTB). 

A temperature-controlled room with blackbody cones was used for the radiation 
source calibration of IRR sensors. To do so, sensors were placed within the fitting when 
the blackbody cone was opened. The thermal isolation of IRR sensors from the cones was 
used to ensure that each one could measure its temperature. The IRRs did not change, 
while the cone was monitored and noted to be at temperatures under 12 °C and above 18 
°C in addition to a temperature level equal to or less than that of the IRRs. From every 10 
°C, measurements of the IRRs and blackbody cones were taken until they reached constant 
temperatures. IRR measurements on maize temperature were carried out to calibrate 
hand-held IRT measurements to develop the CWSI. 

 
Figure 3. (a) Automated in-field meteorological tower in the maize field, (b) meteorological tower-
mounted infrared radiometers (IRRs), and (c) CR1000 data logger, Em50 datalogger, and 12 V bat-
tery [54]. 
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A polygon in the experimental field was digitised in the Google Earth Pro domain 
and imported into ArcGIS 10.5 to generate sample points. In the digitised field boundary, 
a total of 50 sample points were generated based on stratified random sampling. These 
points were then uploaded into a hand-held Trimble Global Positioning System (GPS) 
with sub-meter accuracy. These GPS points were used to navigate to the actual sampling 
point in the field. Maize plants that coincided with or were within proximity to the point 
were considered for temperature measurements in this study. For consistent biweekly 
measurements, maize plants were marked at each sampling point. Specifically, 50 maize 
points were sampled four times across the growing season. 

The temperature of the maize, from the early vegetative growth stage to the late re-
productive growth stage, was measured with a hand-held infrared GM320 IRT thermom-
eter, using a digital laser, at two weekly intervals. Infrared thermometers (IRTs) with the 
capability of recording temperatures ranging from approximately −50 °C to 330 °C were 
used to measure maize canopy temperatures in the field. These measurements were car-
ried out concurrently with the UAV image acquisition, between 11:00 a.m. and 2:00 p.m. 
(South Africa Standard Time). IRT values from the vegetative and tasselling stages were 
obtained from the most recent completely grown leaf with an open collar. After that, meas-
urements were taken at the same node as the primary ear shank, where an ear leaf is at-
tached [55]. At each sampling point, the IRT was held at about 2 m above the ground and 
approximately 50 cm from the canopy. Three subsequent temperature measurements 
were taken to ensure that a maize canopy dominated the fields of view. The temperature 
measurements were captured along with each plant’s location. Subsequently, a point map 
with this information was produced in a GIS and later used to extract the crop spectral 
signatures for statistical analysis. 

2.3. Meteorological Data Collection 
The automatic weather station (AWS) was used for the meteorological data. Hourly 

averaged meteorological data comprising air temperature (°C), wind speed (m/s), solar 
radiation (Wm−2), and relative humidity (%) were used. The following temperature and 
relative humidity sensors were used to observe meteorological variables above ground: 
CS215 Temp/RH probe (temperature and relative humidity) and Licor LI2005 pyranome-
ter (solar radiation). 

2.4. Crop Water Stress Index (CWSI) Calculation 
While alternative approaches, such as soil moisture methods and the measurement 

of temperature and stomatal conductance demonstrated by [54], exist, the Crop Water 
Stress Index (CWSI) stands out as one of the proxies that can be effectively correlated with 
the direct detection and mapping of water stress in maize crops. The CWSI was calculated 
using calibrated foliar temperature data measured using a hand-held infrared thermom-
eter (IRT) detailed in Section 2.2 and data measured using the AWS. Specifically, the CWSI 
was calculated by using (1): 

CWSI = ∆T−Twet
Tdry−Twet

  (1) 

where ∆T, Twet, and Tdry are the actual measurements of the difference between the can-
opy and air temperature (Tc − Ta), lower limit, and upper limit of baselines estimated, 
respectively. The upper and lower limits are also, respectively, referred to as NWSB and 
non-transpiring baseline (NTB), and are calculated as follows (2) and (3): 

Twet = m ∗ VPD + b  (2) 

Tdry = m ∗ VPG + b (3) 
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where m and b represent the slope and intercept, respectively. VPD represents vapour 
pressure deficit, and is calculated using (4)–(6) by relating it to air temperature (Ta) and 
relative humidity (RH) collected from the field station, following the description of [55]: 

es =  0.6108 ∗ exp [ 17.27T
T+237.3

]  (4) 

ea =  es ∗ (RH
100

)  (5) 

VPD =  es − ea (6) 

where T, RH, es, and ea are the air temperature, relative humidity, saturated vapor pres-
sure (kPa) at the air temperature Ta, and actual vapor pressure (kPa), respectively. As 
mentioned above, the weather data were measured using the AWS. To calculate Tdry val-
ues, the vapour pressure gradient (VPG) was determined. VPG is the change in the pres-
sure of the air-saturated water vapour at the temperature (Ta) and the pressure of the air-
saturated water vapour at the temperature (Ta + b) [26]. 

The first step to determine the CWSI involved determining functions for Twet and 
Tdry for rainfed maize in Swayimana environmental conditions. This was achieved by 
following the procedure outlined in [56]. After two significant rainfall days, maize ∆T was 
collected using the IRT sensors in the field and plotted with their respective VPD values. 
This assumes that the soil water deficit was remedied because of these wet spells, which 
led to maize having access to adequate soil water. Therefore, conditions existed that were 
not water-stressed. This was determined for 2 h before and 2 h after midday, as recom-
mended in [12]. The resulting equation from this linear segment was extracted to obtain 
the coefficients of (2) and (3). by using simple linear regression. A three-step moving av-
erage was followed to plot the relationship between ∆T and VPD, as [13] suggested. Ac-
cording to [56], the CWSI method is valid only when the conditions of clarity are met, to 
ensure that all the days selected to calculate the CWSI correspond to the field visit days. 
CWSI values range from 0 to 1, with 0 indicating no water stress and 1 indicating the most 
severe stress. In addition, a relationship between foliar temperature and stomatal behav-
iour has been observed during the maize phenological cycle [54]. To illustrate the relation-
ship between water consumption and the foliar temperature used to calculate the CWSI 
in this study, additionally, the CWSI was computed for four phenological stages. 

2.5. UAV Multispectral–Thermal System 
A DJI Matrice 300 (DJI Inc. Shenzhen, China) quad-rotor UAV and Micasense (Mica-

Sense, Inc., Seattle, WA, USA) multispectral sensor covering the RGB, NIR, Red Edge, and 
thermal sections of the electromagnetic spectrum was used to collect images in this study 
(Figure 4b). The MicaSense has a Downwelling Light Sensor 2 (DLS-2) and MicaSense Al-
tum camera to capture images from a platform of a low-altitude UAV camera system over 
the smallholder farms. The MicaSense Altum camera has five high-resolution multispectral 
narrow bands (blue, green, red, red-edge, and NIR) and a radiometric longwave infrared 
thermal camera. The spectral characteristics of the MicaSense are detailed in Table 1 [48,54]. 

Table 1. MicaSense Altum camera specifications [54]. 

Spectral Colour Band Range 
Ground Sampling Distance at a 
Flying Height of 120 m 

Blue 475 nm 5.2 cm per pixel 
Green 560 nm 5.2 cm per pixel 
Red 668 nm 5.2 cm per pixel 
Red Edge 717 nm 5.2 cm per pixel 
Near-Infrared 842 nm 5.2 cm per pixel 
Thermal Infrared 8000–14,000 nm 81 cm per pixel 
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Figure 4. (a) UAV system, DJI Matrice 300, and (b) MicaSense Altum camera. (c) DJI M-300 flight 
plan. (d) MicaSense Altum calibration reflectance (CRP) panel. 

2.6. Image Acquisition and Processing 
A kml file representing the boundary of the maize field digitised in Google Earth Pro 

was used to develop the flight plan. This was transferred into the DJI controller’s intelli-
gent console and used to create flight plans (Figure 4c). The MicaSense Altum sensor was 
calibrated before and after the flight using a calibration reflectance panel (CRP) (Figure 
4d). Users had to manually take an unshaded picture directly over the CRP to determine 
the illumination conditions for a particular flight day, time, and location. The UAV was 
flown in the clearest air conditions every two weeks, between 10:00 and 14:00. This period 
was concurrent with canopy temperature measurements. Detailed flight conditions are 
presented in the works of [48,54]. 

After 3576 images were acquired, they were stitched together and radiometrically 
corrected using Pix4Dfields software 1.8.0 (Pix4d Inc., San Francisco, CA, USA). While the 
exact details of radiometric correction in Pix4d may be proprietary, the general workflow 
involves utilising CRP images captured before and after the flight to administer radio-
metric and atmospheric correction to a MicaSense multispectral image. It applies sensor-
specific calibration parameters to normalise the digital number values. It then implements 
dark object subtraction (DOS) to identify and subtract the dark objects based on the CPR 
images. This corrects for sensor biases and atmospheric scattering. Then, histogram 
matching is implemented to standardise the distribution of pixel values across the bands. 
The CPR images are also used as a white reference for adjusting potential variations in 
illumination conditions, ensuring pixel values are normalised to a standard reflectance 
scale. After processing, Pix4d generates a complete orthomosaic and digital elevation 
model (DEM) as GeoTiff images. Using Google Earth Pro, ground reference points were 
digitised to core-register the orthomosaic image in ArcGIS 10.5. Images were referenced 
to the Universal Transverse Mercator (UTM zone 36S) projection after attaining RMSE less 
than half a pixel (3.5 cm). The image was then used to compute vegetation indices. 

2.7. Vegetation Index Selection 
The GPS coordinates of the ground sampled temperature readings were used to ex-

tract the reflectance values of the multispectral bands. To calculate vegetation indices as 
indicated in Table 2, the surface reflectance values were then used. The selected vegetation 
indices are commonly used to relate to canopy physiological parameters [57]. 
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Furthermore, these indices are intended to improve vegetation optical characteristics as 
part of the whole spectrum response in the canopy of trees. Consequently, VIs are applied 
to minimise unpredictability factors such as background noise on soils, particularly dur-
ing the growth cycle’s first stages [58]. To establish a regression model between UAV-
based data and the CWSI, multispectral and thermal bands, and VI were generated and 
employed. In addition to the indices in Table 2, TCARI/NDVI, TCARI/SAVI, 
TCARI/OSAVI, TCARI/RDVI, and NDVI/REDEDGE were also calculated. The points with 
the CWSI information were then overlaid with the acquired and preprocessed multispec-
tral bands and the derived vegetation indices (Table 2). The spectral signatures were ex-
tracted in a table format and then used for statistical analysis in this study. 

Table 2. List of vegetation indices (VIs) used in modelling the Crop Water Stress Index. 

Vegetation Index Equation Reference 

Normalised Difference Vegetation Index (NDVI) 
NIR − RED
NIR + RED

 [59] 

Green Normalised Difference Vegetation Index 
(GNDVI). 

NIR − GREEN
NIR + GREEN

 [60] 

Normalised Difference Red Edge Index (NDRE) 
NIR − RED EDGE
NIR + RED EDGE

 [61] 

Soil-Adjusted Vegetation Index (SAVI) �
NIR − RED

NIR + RED + L
� × (1 + L) 

L is a constant between 0 and 1. 
[62] 

Optimized Soil-Adjusted Vegetation Index (OSAVI) 
NIR − RED

NIR + RED + 0.16
 [62] 

Green Chlorophyll Index (Cl_green) 
NIR

GREEN
− 1 [63] 

Red Edge Chlorophyll Index (Cl_RED_EDGE) 
NIR

REDEDGE
− 1 [63] 

Red Edge NDVI (RENDVI) 
NIR − REDEDGE
NIR + REDEDGE

 [64] 

Modified Soil-Adjusted Vegetation Index (MSAVI) 
(1/2) × (2 × (NIR + 1)-sqrt ((2 × NIR + 1)2 − 

8(NIR - RED))) 
[65] 

Simple Ratio (SR) 
NIR
RED

 [66] 

Modified Triangular Vegetation Index (MTVI2) 
(1.8(NIR − GREEN) − 3.75(RED − GREEN))/(√((2NIR 

+ 1)2) − 6(NIR − 5√RED) − 0.5) 
[67] 

Canopy Chlorophyll Content Index (CCCI) NDRE/NDVI [68] 

MERIS Terrestrial Chlorophyll Index (MTCI) 
NIR − RED EDGE
RED EDGE − RED

 [69] 

Normalised Difference Water Index (NDWI) (GREN/NIR)/(GREEN/NIR) [70] 

Ration Vegetation Index (RVI) 
RED
NIR

 [71] 

Transformed Chlorophyll Absorption in Reflectance 
Index (TCARI) 

3[REDEDGE − RED − 0.2(REDEDGE/GREEN) 
(REDEDGE/RED)]/OSAVI 

[72] 

2.8. Statistical Analysis 
The R statistical environment was used to statistically estimate the CWSI using re-

motely sensed data. Before conducting the estimations, a Pearson product–moment correla-
tion test was employed to explore the relationship between the CWSI and the derived spec-
tral variables after testing data for normality. The correlation coefficient denoted “r” was 
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used to determine the strength and direction of the relationship between the CSWI and the 
predictor spectral variables. A correlation coefficient ‘r’ ranges between −1 and 1, with −1 as 
a total negative linear correlation, 0 as no correlation, and +1 as a total positive correlation. 
To estimate the maize CWSI, a comparative analysis of the performance of support vector, 
radio forest, and PLS regression was conducted in this study. These algorithms were chosen 
and used based on their optimal performance in remote sensing different optical phenotyp-
ical crop elements [44,45]. All algorithms were implemented as detailed below. 

Partial least squares (PLS) is a multivariate regression technique to define linear rela-
tionships between sets of response variables and predictor variables [73], which in this study 
is the CWSI and spectral reflectance, respectively. It is beneficial to deal with data that have 
a wide range of independent variables because they allow a reduction in correlation coeffi-
cients between the datasets for noncorrelated latent variables [74–77]. PLS was performed 
using the “pls” function and optimised based on the number of components (‘ncomp’) with 
a minimal error in R. Generally, PLSR groups predictor variables into latent variables (com-
ponents) based on their influence in predicting the predicted variable. Then, the optimal 
number of components that exhibit a lower error (root mean square error (RMSE)) is se-
lected. In this study, three components yielded optimal results; hence, ‘ncomp’ was set to 3. 

Support vector machine (SVM) splits classes with a decision surface that increases 
the margin between the classes. The surface is deemed an optimum hyperplane, and data 
points near the hyperplane are support vectors [77]. Ref. [37] define a hyperplane as a flat 
affine subspace of a dimension (p-1), where p indicates the number of dimensions. The 
hyperplane is a straight line in the two-dimensional plot, breaking training data into in-
dividual sections. The SVM uses a non-linear Kernel function for situations with a linear 
correlation to the data. The Radial Basis Kernel was used in performing SVM, which can 
trick the data into a more dimensional space to classify them in different spatialities by 
exploiting the radiative distance across observations. Thus, the “svmRadial” method was 
used for this model in R. To determine the optimal model parameters, ‘sigma’ was held 
constant at a value of 0.084 while ‘C’ was set to 0.5 for the final model. 

The random forest (RF) algorithm randomly selects several samples from the training 
dataset. The most important independent variables of the randomly selected samples are 
used to develop a decision tree. After that, trees are split at each node dependent on the 
most contributing explanatory variable to the response variable. For each prediction of the 
response variable, an average value of a multitude of decision trees and outputs is built. 
The parameter mtry in RF accounts for the number of variables used for splitting at each 
tree node for decision tree learning. R defines the mtry parameter for RF by default as one-
third of the number of predictor variables [78]. This study set the ntree to a default value 
of 500 [79]. Then, the ‘tuneRF’ function, which performs a grid search over the specified 
‘mtry’, was employed by selecting the combination that optimised the errors. Specifically, 
‘mtry’ for the final model was set to 2. 

2.9. Accuracy Assessment 
The overall performance and robustness of the predictive models were appraised us-

ing the coefficient of determination (R2), the root mean square error (RMSE), and the mean 
absolute error (MAE). A K-fold cross-validation technique was employed since all the re-
gressions used in the study had different hyperparameters for optimal performance. Also, 
the K-fold cross-validation was chosen because it is a robust approach for tuning hyperpa-
rameters, which has been demonstrated to be superior in accurately estimating errors [80]. 
The K-fold cross-validation technique precludes overfitting in the case of prediction mod-
els. Therefore, in this study, the overall process of developing predictive models involved 
10-fold cross-validation repeated three times on the training data, using the ‘train ()’ func-
tion from the ‘caret’ package in R. Cross-validation provided the best components to retain 
the lowest RMSE in all three models. The PLS, SVM, and RF analyses were performed 
using the UAV-acquired bands and vegetation indices (VIs) as predictor variables for pre-
dicting CWSI. The field data in this study were divided into 70% for training and 30% for 
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testing samples, respectively, following [81] that the 70/30 approach is optimal for split-
ting training and testing data. 

3. Results 
3.1. Determining Baselines for the Crop Water Stress Index 

Figure 5 shows the slope and intercept of the NWSB from 2 different days after a 
rainfall event in the vegetative stage of maize, resulting in the equation shown in the Tc-
Ta vs. VPD scatterplot. The same coefficients developed for NWSB were used to determine 
NTB, using VPG instead of VPD. The relationship between the Tc-Ta and VPD was signif-
icant (R2 = 0.84). The Tc − Ta decreased with an increase in VPD. 

 
Figure 5. Non-water-stressed baselines used to calculate the CWSI for maize at the vegetative 
growth stage (DOY 93 and 97). 

Figure 6 shows the patterns of the CWSI obtained on three different days represent-
ing different maize growth stages. Generally, there was low crop water stress, with a peak 
on DOY 89 (31 March 2021). The lowest CWSI was recorded on DOY 75, showing almost 
no stress. Maize water stress increases as maize grows and decreases towards the end of 
the vegetative stage. Figure 5 shows that during the entire stage, maize endured low (<0.5) 
water stress levels overall. 

 
Figure 6. CWSI for maize in the vegetative stage. 

3.2. Exploring the Relationship between the CWSI and Spectral Variables 
Table 3 shows the correlation coefficients between the CWSI and the spectral reflec-

tance. The results indicate a link between all the data measured using a UAV and the Crop 
Water Stress Index. Of the six different bands investigated, the strongest relationship, 
which was also positive, was observed between the TIR band and the CWSI (r = 0.59). 
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Meanwhile, the other five bands showed a negative relationship with the CWSI. The Red 
band showed the strongest negative relationship among them all. Similarly, the 21 inves-
tigated VIs showed a negative relationship with the CWSI, except for TCARI_OSAVI (r = 
0.19) and NDWI (r = 0.35). OSAVI yielded the strongest negative relationship with the 
CWSI (r = −0.62). All these VIs were derived from the Blue, Green, Red, Red Edge, and 
NIR bands, which also showed a similar relationship with the CWSI. These findings sug-
gested that the relation between the vegetation indices and the CWSI was slightly higher 
than that of bands only. 

Table 3. Correlation coefficients r between the CWSI, bands, and VIs. 

No. Bands r No. Vegetation Index r No. Vegetation Index r 
1 BLUE −0.41 1 MSAVI −0.51 12 TCARI_OSAVI 0.19 
2 GREEN −0.51 2 SR −0.19 13 TCARI_RDVI −0.55 
3 RED −0.54 3 MTVI2 −0.52 14 CCCI −0.43 
4 RED_EDGE −0.52 4 Cl_RED_EDGE −0.55 15 MTCI −0.50 
5 NIR −0.53 5 Cl_GREEN −0.41 16 RVI −0.19 
6 TIR 0.59 6 RDVI −0.48 17 NDWI  0.35 
   7 TCARI −0.53 18 NDVI −0.14 
   8 NDRE −0.45 19 GNDVI −0.54 
   9 OSAVI −0.62 20 RENDVI −0.33 
   10 TCARI_NDVI −0.55 21 SAVI −0.50 
   11 TCARI_SAVI −0.54    

3.3. Comparing the Performance of Spectral Features in Estimating the Maize Crop Water Stress 
Index across All Algorithms 

Table 4 shows model accuracies obtained using the PLS, SVM, and RF regression al-
gorithms in predicting the maize CWSI based on the bands, indices, and both datasets 
combined. The most optimal model, which exhibited a relatively higher R2 (0.85) and 
lower RMSE (0.05), was derived using a combined dataset of bands and vegetation indices 
(Figure 7). This was followed by a model derived using bands only, with a RMSE of 0.09. 
The least accurate model in this study was obtained using vegetation index-only data. 
Specifically, the vegetation indices yielded an R2 of 0.53 and a RMSE of 0.1. Generally, 
when the bands were combined with the indices, lower RMSE values were obtained across 
all models (Table 4). 

Overall, there was a significant (p = 0.05) difference between the performance of the 
bands, vegetation indices, and combined datasets (Figure 7). Specifically, the mean RMSE 
exhibited by the vegetation indices was significantly higher than that exhibited by bands 
only and the combined datasets. This implied that the vegetation indices did not signifi-
cantly improve the estimation of the CWSI across all algorithms. Nonetheless, bands only 
exhibited a relatively lower average RMSE when compared to the vegetation indices. How-
ever, their mean RSME was extensively higher than that yielded by the combined datasets 
(Figure 7). This implied that the combined datasets significantly improved the model accu-
racies across all algorithms compared to the bands and vegetation indices (Figure 7). 

Table 4. Prediction accuracies of the CWSI derived using optimal models based on the PLS, SVR, 
and RF regression models. 

 Bands Vegetation Indices Combined 
 R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 
PLSR 0.5 0.1 0.078 0.45 0.11 0.088 0.44 0.1 0. 09 
SVM 0.55 0.1 0.073 0.5 0.1 0.065 0.67 0.07 0.04 
RF 0.88 0.06 0.049 0.63 0.08 0.054 0.85 0.05 0.04 
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Figure 7. Comparative performance of bands, indices, and combined datasets in predicting the 
CWSI based on (a) mean R-squares and (b) average RMSEs. 

3.4. Comparing the Performance of Machine Learning Algorithms in Estimating Maize Crop 
Water Stress 

Figure 8 shows the findings from a comparative assessment of the performance of 
algorithms based on all datasets used in this study. It was observed that RF had the highest 
mean R2, and the lowest mean RMSE and MAE (R2 = 0.79, RMSE = 0.06, and MAE = 0.05). 
This implied that RF outperformed SVM and PLSR in estimating the maize CWSI in small-
holder croplands. SVM attained the second highest mean R2, and second lowest mean 
RMSE and mean MAE (R2 = 0.57, RMSE = 0.09, and MAE = 0.06). Meanwhile, PLS had the 
lowest mean R2, and the highest mean RMSE and MAE (R2 = 0.46, RMSE = 0.1, MAE = 0.08) 
(Figure 8). Overall, there was a significant difference between the mean RMSE exhibited 
by PLS, SVM, and RF (Figure 8c). Based on Figure 8, RF emerged as the optimal algorithm 
for predicting the maize CWSI in smallholder croplands, exhibiting the highest R2, and 
lowest RMSE and MAE among all models. 

 
Figure 8. Average (a) R2, (b) RMSE, and (c) MAE derived using the random forest, support vector 
machine, and partial least squares region algorithms. 
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3.5. Optimal Models for Estimating the Maize Crop Water Stress Index 
The most important variables in the PLS, SVM, and RF models are shown in Figure 9(aii–

cii). Ultimately, the PLS model attained an RMSE of 0.1 based on CCCI, MTCI, NDRE, Cl_Red 
Edge, MTVI2, and other variables (Figure 9a), in that order of importance. Meanwhile, SVM 
exhibited a RMSE of 0.07 based on TIR, TCAR_SAVI, TCARI_OSAVI, CCCI, and 
TCARI_RDVI, amongst others, in order of importance. The RF model achieved an RMSE of 
0.05 using variables including NDRE, MTCI, CCCI, GNDVI, and TIR in order of importance 
(Figure 9c). 

 
Figure 9. Relationship between the predicted and observed CWSI derived using combined spectral 
bands and vegetation indices (i) in conjunction with (a) PLR, (b) SVM, and (c) RF, as well as associ-
ated variable importance (ii) models and the model variable importance scores. 
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3.6. Mapping the Spatial Distribution of Maize Crop Water Stress 
The spatial variation of maize water stress was modelled using the optimal variable 

in each model. Figure 10 illustrates the spatial variations of maize stress determined using 
PLS (a), SVM (b), and RF (c). The results indicate that the maize water stress was relatively 
low throughout the field and increased towards the north and east of the plot (Figure 10b) 
and west and south of the field (Figure 9c) for the PLS model. On the contrary, the SVM 
(Figure 9b) modelled map showed an increase eastward towards the edges of the maize 
plot. The RF-modelled map showed relatively low water stress levels across the field, with 
no significant spatial variation. 

 
Figure 10. Spatial distribution of the CWSI developed using the PLS (a), SVM (b), and RF (c) models. 

4. Discussion 
This study’s objective was to compare PLSR, SVM, and RF performance in estimating 

the maize CWSI using UAV-acquired remotely sensed data in smallholder croplands typ-
ically found in southern Africa. To address this objective, the relative contribution of 
bands, vegetation indices, and both datasets combined was evaluated. 
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4.1. Estimating the Crop Water Stress Index 
Determining NWSB at each maize growth stage is necessary for determining the 

CWSI; therefore, NWSB was determined for the vegetative growth stage of maize. The 
results showed a strong relationship between Tc-Ta and VPD with an R2 of 84. This may 
be due to the changes in photosynthesis and transpiration during the vegetative stage of 
maize [15]. Similar relationships were found for maize [31,79]. Furthermore, the results 
showed that the CWSI was relatively low during this growth stage (CWSI < 0.3). This 
could be attributed to the rainfall in the area received during this period, which could 
have replenished the soil with water. According to [82], a significant yield reduction oc-
curs when the CWSI values are greater than 0.40. Moreover, Ref. [83] revealed that the 
CWSI can detect stress levels 24 to 48 h before the manifestation of visible signs of stress 
on plants. Therefore, the results of the CWSI could provide a time-efficient insight into the 
adaptation to climate change and the management of agricultural water resources, which 
could be a valuable option for smallholder farmers. 

4.2. Mapping of the Maize CWSI Using the Optimal Model 
The results showed that the maize CWSI was optimally estimated to an RMSE of 0.05 

and an MAE of 0.04, based on the spectral reflectance of NDRE, MTCI, CCCI, GNDVI, and 
TIR as the most significant variables, in order of importance (Figure 9c). The optimal per-
formance of the chlorophyll-based VIs such as NDRE, MTCI, CCCI, and GNDVI could be 
explained by the fact that the image was acquired during the late vegetative stage charac-
terised by high canopy closure, leaf area index, and chlorophyll content concentrations, 
indicative of highly photosynthesising maize plants, which indirectly alters the tempera-
ture and stomatal conductance of the crop. This explains why chlorophyll-based VIs were 
influential in this study. The TIR, Red, and Blue bands also demonstrated good perfor-
mance in the RF model (Figure 9c(ii)). The significance of the TIR to the model could be 
attributed to the fact that the leaf temperature is primarily determined by the plant’s abil-
ity to photosynthesise and the efficiency of the internal leaf structure such as cavities, 
chloroplasts, and mesophyll cells, compared to ambient temperature [81,82]. Therefore, 
when a plant is undergoing water stress, molecules in the leaf tissue show signals that 
induce physiochemical change, which leads to increased foliar temperature concerning 
air temperature, which explains why it was related to a temperature derived-CWSI in this 
study [84,85]. In addition, the Blue band has been selected as one of the important varia-
bles for estimating CWSI, probably because it is directly related to leaf chlorophyll con-
tent. This is attributed to its strong correlation with chlorophyll in green maize crop pig-
ments, driven by absorption for photosynthesis [86]. This also relates to the vegetative 
growth stage when the maize crop canopy has entirely covered the ground [84], consistent 
with the low CWSI values obtained. 

On the contrary, the NIR band was not very influential in optimally estimating the 
CWSI. The changes in the leaf structure of maize in the study site were likely not captured 
well by the MicaSense NIR range camera. As a result, our results do not agree with several 
other studies which demonstrated that the NIR regions of the electromagnetic spectrum 
are also influential in detecting and mapping crop water stress at the canopy level [8]. 
Subsequently, the NDVI was not among the best performing indices. This is aligned with 
results from other studies, where the NDVI exhibited a low correlation with stomatal con-
ductance [39,40,85]. The high spectral saturation of the NDVI under high vegetation cov-
erage could contribute to this observation. Meanwhile, the impact of the Red Edge band-
derived indices could be attributed to their effectiveness in mitigating saturation effects at 
higher crop foliage density and coverage [86–88]. For example, to increase the perfor-
mance of the RF model, it was found that a combination of traditional vegetative and Red 
Edge-based indices could be used at the late stage. 
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4.3. Comparative Performance of Bands, Vegetation Indices, and Combined Datasets 
The prediction of CWSI was conducted using three different datasets (bands only, 

vegetation indices only, and the combination thereof) based on the SVM, RF, and PLSR 
algorithms. The combined dataset outperformed the bands and VI models in all three 
modelling scenarios. Specifically, the combined data exhibited a mean RMSE of 0.05 in 
relation to an RMSE of 0.06 and 0.08 for bands and VIs, respectively. Using the combined 
data modelling resulted in the most optimal prediction accuracy based on NDRE, MTCI, 
CCCI, GNDVI, and TIR, as important predictor variables, in order of importance. This 
indicates that the combination of indices and spectral bands improved the performance 
of variables that could have saturated under high canopy cover. This could be explained 
by the fact that combining bands and vegetation indices provides a broader spectral range 
coverage. Bands capture spectral information in a single section of the electromagnetic 
spectrum, which is sensitive to a single plant health element or feature, while vegetation 
indices are derived from combinations of bands from different sections of the electromag-
netic spectrum. Subsequently, VIs derive their strength from more than one section of the 
electromagnetic spectrum, making them sensitive to more features. 

Furthermore, VIs tend to reduce the impact of noise on the crop spectral signatures. 
Therefore, combining bands and VIs ensures sensitivity to various aspects of plant health 
and physiological conditions such as water stress. Above all, combining these datasets 
offers a synergistic effect of capturing both structural and physiological aspects of water-
stressed crops, enhancing the overall sensitivity and accuracy of the estimation process. 
Also, health VIs were the most selected estimation features for crop water stress in relation 
to traditional indices such as the NDVI. The optimal performance of VIs such as NDRE, 
MTCI, and CCCI could be explained by the ability to circumvent spectral saturation when 
a crop’s canopy is fully covering the ground. For instance, at high canopy density, the 
NDVI becomes spectrally saturated [89]. Thus, the results reveal that combining wave-
lengths with VIs such as NDRE, MTCI, and CCCI improved the estimation accuracies. 

However, when VIs only were used, the prediction accuracies were significantly re-
duced (RMSE = 0.08). This indicates that the traditional indices combined with the chlo-
rophyll-based indices could not detect crop water stress. This is despite the usefulness of 
indices such as TCARI in reducing non-photosynthetic background noise [89]. Generally, 
VIs improve estimation accuracies, as water stress accumulates [31]. However, this study 
was conducted during the vegetative stage when water stress was limited due to the fre-
quent precipitation in the study area. 

Contrary to the findings of this study, Refs. [31,39] demonstrated a strong correlation 
between VIs and water stress indicators during the late reproductive and maturation 
stages of the crops. Similarly, Ref. [39] found that the TCARI/OSAVI improved from R2 of 
0.58 to 0.84 during the late vegetative and maturation stages, respectively. Their results 
demonstrated that as water stress accumulates, VIs become more sensitive. Our results 
are supported by those of [25], which also demonstrated relatively low-performance VI-
only data in predicting the maize CWSI. 

Meanwhile, bands only demonstrated a significant relationship with the maize 
CWSI. In particular, the TIR band was the most optimal in the RF model. This could be 
attributed to the fact that there was full vegetation cover, and the lack of soil background 
disturbance allowed the measurement of canopy temperature and stomatal conductance 
resulting from water utilisation [55,89]. This shows that the bands were able to capture the 
changes in canopy temperature. This is supported by the literature where water stress in 
agricultural plants was detected using remote canopy temperature measurements on a 
TIR basis [12,90]. 
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4.4. The Performance of Machine Learning Algorithms in Predicting the Maize Crop Water 
Stress Index (CWSI) 

The findings of this study demonstrated that RF optimally outperformed SVM and 
PLSR at single analysis stages (Table 4) and across all stages when findings were pooled 
(Figure 7). Specifically, RF optimally predicted the CWSI to an RMSE of 0.05, an MAE of 
0.04, and an R2 equivalent to 0.85 across all datasets. The optimal performance of RF could 
be attributed to its ease of optimisation and execution compared to other algorithms. Ad-
ditionally, RF can tolerate highly correlated variables, such as bands combined with veg-
etation indices [49,91–94]. RF, being a non-linear method, offers high simulation accuracy 
and a very flexible model-building process, making it robust in comparison to other algo-
rithms [95]. 

Furthermore, the RF excels in modelling non-linear dimensional relationships while 
preventing overfitting. Importantly, RF demonstrates relative robustness regarding noise 
detection in data, the establishment of an impartial estimate of error rate, and the capacity 
to determine the relevance of optimal predictor variables for modelling [78,89]. Similarly, 
the algorithm has been proven optimal in predicting crop water stress for crops such as 
rice [96] and wheat [97]. Consistent with these studies, RF outperformed SVM and PLS. 

SVM produced the second best results in the prediction of the CWSI (RMSE = 0.067, 
MAE = 0.07). Its strength lies in handling outliers, showcasing substantial generalization 
capability when dealing with unseen patterns [98]. This model is reliable for the regression 
of small linear and high-dimensional samples [99], which may explain its superior perfor-
mance compared to PLS. Another advantage of SVM is its effective processing of data 
acquired with few samples, as demonstrated in this study, without compromising result-
ant accuracies [98]. In contrast, PLS performed least well in effectively estimating the 
CWSI across all dataset scenarios (RMSE = 0.086, MAE = 0.073). 

PLS cannot handle data conditions such as high dimensionality and the correlation 
of predictor variables, which may explain its poor performance [91]. In addition, due to 
PLS’s tendency to struggle with collinear variables, as observed in this study, non-linear 
relationships between predictor variables and certain crop parameters could have contrib-
uted to poor performance [99]. Moreover, the literature notes that PLS is best suited for 
large training datasets [100]. Future considerations may involve exploring a larger sample 
size to enhance the accuracy of PLS prediction for maize crop water stress in smallholder 
farms. Furthermore, exploring other machine learning algorithms could be beneficial in 
finding an optimal model to substitute PLS. 

5. Conclusions 
This study sought to assess the performance of PLSR, SVM, and RF in estimating the 

maize CWSI using UAV-acquired remotely sensed data in smallholder croplands typically 
found in southern Africa. To address this objective, the relative contribution of bands, 
vegetation indices, and both datasets combined was evaluated. Grounded on the results 
of this study, the following conclusions can be drawn: 
• RF proved to be the most suitable algorithm for predicting the maize CWSI in small-

holder croplands, utilising NDRE, MTCI, CCCI, GNDVI, and TIR, as important pre-
dictor variables, listed in order of importance. Specifically, RF was optimal compared 
to PLS and SVM, resulting in the highest R2 (0.79) and the lowest MAE (0.06) and 
RMSE (0.05) on average in three different data groups (bands only, VI only, and com-
bined data). 

• Combining bands and vegetation indices resulted in the best prediction of the maize 
CWSI compared to using these variables separately. Specifically, the two models, 
SVM and RF, improved when the analysis was performed with the combined data 
compared to when performed with bands only or indices only, resulting in the lowest 
RMSE of 0.07 and 0.05 for SVM and RF, respectively. 
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In conclusion, these results demonstrate that the UAV data could be used optimally 
to forecast the water stress of maize crops on a smaller scale. These results indicate that 
the UAV multispectral camera could capture the spatial variation of maize crop water 
stress at a field scale. This further concurs with the notion that adopting cutting-edge tech-
nologies, e.g., machine learning, remote sensing, and UAVs, plays a crucial role in the fu-
ture of smallholder agricultural systems. The findings from this study indicate that using 
UAV technologies in smallholder farms in conjunction with machine learning algorithms 
such as the RF model holds promise for improving the management of agricultural crops 
for improved production. Moreover, UAV technology provides near-real-time infor-
mation beneficial to farmers for early preparedness and response to improve crop produc-
tivity. These findings contribute to precision agriculture, involving advanced technologies 
and analytical methods for the near-real-time monitoring and mapping of crop water 
stress in staple crops such as maize. This is particularly relevant in developing regions 
where food and nutrition insecurity have been reported. The implications extend to sus-
tainable agriculture and food security in regions facing water-related issues. 
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