
Citation: Aung, K.H.H.; Kok, C.L.;

Koh, Y.Y.; Teo, T.H. An Embedded

Machine Learning Fault Detection

System for Electric Fan Drive.

Electronics 2024, 13, 493. https://

doi.org/10.3390/electronics13030493

Academic Editor: Ricardo Martins

Received: 11 December 2023

Revised: 16 January 2024

Accepted: 19 January 2024

Published: 24 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Embedded Machine Learning Fault Detection System for
Electric Fan Drive
Khin Htet Htet Aung 1, Chiang Liang Kok 1,* , Yit Yan Koh 1 and Tee Hui Teo 2,*

1 College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia;
khinhtethtetaung@uon.edu.au (K.H.H.A.); yityan.koh@newcastle.edu.au (Y.Y.K.)

2 Engineering Product Development, Science, Mathematics and Technology,
Singapore University of Technology and Design, Singapore 487372, Singapore

* Correspondence: chiangliang.kok@newcastle.edu.au (C.L.K.); tthui@sutd.edu.sg (T.H.T.)

Abstract: Industrial fans are critical components in industrial production, where unexpected damage
of important fans can cause serious disruptions and economic costs. One trending market segment in
this area is where companies are trying to add value to their products to detect faults and prevent
breakdowns, hence saving repair costs before the main product is damaged. This research developed
a methodology for early fault detection in a fan system utilizing machine learning techniques to
monitor the operational states of the fan. The proposed system monitors the vibration of the fan using
an accelerometer and utilizes a machine learning model to assess anomalies. Several of the most
widely used algorithms for fault detection were evaluated and their results benchmarked for the
vibration monitoring data. It was found that a simple Convolutional Neural Network (CNN) model
demonstrated notable accuracy without the need for feature extraction, unlike conventional machine
learning (ML)-based models. Additionally, the CNN model achieved optimal accuracy within
30 epochs, demonstrating its efficiency. Evaluating the CNN model performance on a validation
dataset, the hyperparameters were updated until the optimal result was achieved. The trained model
was then deployed on an embedded system to make real-time predictions. The deployed model
demonstrated accuracy rates of 99.8%, 99.9% and 100.0% for Fan-Fault state, Fan-Off state, and Fan-
On state, respectively, on the validation data set. Real-time testing further confirmed high accuracy
scores ranging from 90% to 100% across all operational states. Challenges addressed in this research
include algorithm selection, real-time deployment onto an embedded system, hyperparameter tuning,
sensor integration, energy efficiency implementation and practical application considerations. The
presented methodology showcases a promising approach for efficient and accurate fan fault detection
with implications for broader applications in industrial and smart sensing applications.

Keywords: predictive maintenance; machine learning; vibration analysis; convolutional neural
network (CNN)

1. Introduction

Industrial fans are critical components in industrial production, and unexpected
damage of important fans can cause serious disruptions. These kinds of fans in general
operate non-stop for long hours, and losing their functionality can have a high impact on
the main equipment for which they provide ventilation. Incorrect or wrong assembly can
cause breakdowns such as vibration, heating and making audible noise. Therefore, one of
the trending markets segments is where companies are trying to add value to their product
by introducing machine learning in such fan systems for early fault detection. This can
help prevent major breakdowns resulting in long down times and save repair costs before
the main product is damaged.

Machine learning techniques have been used in health monitoring of machines to
assess anomaly fault detection [1] for more than a decade. These techniques can be sim-
ply explained as the process of learning historical data and making predictions about

Electronics 2024, 13, 493. https://doi.org/10.3390/electronics13030493 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13030493
https://doi.org/10.3390/electronics13030493
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0007-7368-1280
https://orcid.org/0000-0003-2123-9347
https://doi.org/10.3390/electronics13030493
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13030493?type=check_update&version=1

Electronics 2024, 13, 493 2 of 22

new sensor data. Artificial Intelligence (AI) and machine learning techniques have been
researched for several decades, and their importance in Machine Health Monitoring appli-
cations has been increasing for the last 20 years [1]. Typically, these techniques have been
implemented on powerful computers and/or microprocessors. However, implementing
neural network (NN) solutions on low-power edge devices, namely the Arm Cortex-M
microcontroller systems, has now became popular [1,2]. Microcontrollers, being compact
embedded computing devices with minimal power requirements, offer a promising plat-
form for introducing machine learning capabilities. Embedding machine learning on these
microcontrollers enhances the performance of various daily-use devices, eliminating the
need for expensive hardware installations or reliance on stable internet connections, which
are often constrained by bandwidth, power limitations, and high latency [3].

This paper introduces an embedded machine learning approach for real-time fan
fault detection. Leveraging the Application Software Pack from NXP, developers can
implement neural networks on Microcontroller Unit (MCU)-based systems. This approach
facilitates low-cost, low power consumption using smaller edge devices to empower
smarter applications, decrease delay time, and save bandwidth. The following points
encapsulate the key novelties that distinguish this work.

• Introduction of an Embedded Machine Learning Approach: Establishing the applica-
tion of embedded machine learning for real-time anomalies detection.

• Development and Evaluation of Multiple ML Algorithms: Developed diverse ML
algorithms (CNN, SVM, RF, GB, K-NN) and evaluated their effectiveness for fan
state classification.

• Optimization of a CNN model for Vibration Signal Monitoring: Developed a CNN
model specifically tailored for vibration signals with automatic feature extraction and
simplified data pre-processing.

• Cost-Effective Design: Designing the project to be cost-effective, making it accessible
to a wide range of people and businesses.

• Versality Across Industries: Demonstrated the potential applicability of the devel-
oped model in various industries if they produce vibration signals recordable by
an accelerometer.

2. Materials and Methods
2.1. Overall Block Diagram of the Project

Figure 1 provides the overall workflow diagram delineating the two distinct phases of
the project, namely training and inference.

The initial phase, enclosed within the yellow box in Figure 1, is dedicated to the
training of Machine Learning Models on a host machine (PC). During this phase, the
Integrated Development Environment (IDE) on the host machine is used to develop and
deploy an application onto an edge device. This application facilitates the acquisition of
vibration data from an FXOS8700CQ—3-axis 14 bit-accelerometer. The acquired vibration
data then serve as the input dataset for machine learning algorithms, facilitating the training
of multiple models. These models, employing diverse algorithms, are iteratively developed
as candidate models and benchmarks until an optimized model is achieved. A thorough
evaluation of widely used fault detection algorithms (described in Table 1), such as Support
Vector Machines (SVM), K-Nearest Neighbors (K-NN), Random Forest Classifier (RF),
Gradient Boosting Classifier (GB) and Convolutional Neural Network (CNN), is conducted
to select the best candidate model. The chosen model is subsequently converted to a
TensorFlow framework for deployment on the edge device.

Electronics 2024, 13, 493 3 of 22

Electronics 2024, 13, x FOR PEER REVIEW 3 of 25

from the initial training is deployed onto the edge device. This model operates in real time,
providing predictions as new data are introduced to the device. The device, in turn, as-
sesses the state of the fan and produces a corresponding output.

Figure 1. Overall block diagram of the project [4].

Table 1. Commonly Used Machine Learning Methods.

Authors ML Methods Equipment Description of the Data Results

Praveenkumar [5] Support Vector Machine
Automobile gear-

box Vibration signals
90%

accuracy

Su and Huang [6] Random Forest Hard disk drive
Vibration, temperature,

and other variables
85%

accuracy

Vives [7] K- Nearest Neighbors Wind turbine Vibration signals
95%

accuracy

Hoang and Kang [8] Neural Network
Rolling element

Bearings Vibration signals
100.0%

accuracy

Qin, Li and Liu [9] Gradient Boosting Diesel engine Vibration signals
99.9%

accuracy

2.2. Overview: Machine Learning Methods
Table 1 provides an overview of the most commonly used ML methods for Predictive

Maintenance. The first column represents the paper reference; the second column lists the
ML method; the third column lists the type of equipment on which maintenance predic-
tion is performed; the fourth column lists the type of data; and the fifth column provides
the accuracy of the machine learning model.

For the task of supervised machine learning, a “Classification” model is selected over
a “Regression” model because the desired output (label) is discrete. Furthermore, neural
network algorithms are preferred due to their high accuracy as compared to other algo-
rithms. However, traditional ML models are also evaluated in this paper to compare the

Figure 1. Overall block diagram of the project [4].

Table 1. Commonly Used Machine Learning Methods.

Authors ML Methods Equipment Description of the Data Results

Praveenkumar [5] Support Vector Machine Automobile gearbox Vibration signals 90%
accuracy

Su and Huang [6] Random Forest Hard disk drive Vibration, temperature, and
other variables

85%
accuracy

Vives [7] K-Nearest Neighbors Wind turbine Vibration signals 95%
accuracy

Hoang and Kang [8] Neural Network Rolling element
Bearings Vibration signals 100.0%

accuracy

Qin, Li and Liu [9] Gradient Boosting Diesel engine Vibration signals 99.9%
accuracy

Upon the completion of the first phase in Figure 1, the project seamlessly progresses
to the second phase, denoted by the green box. In this phase, the optimal model derived
from the initial training is deployed onto the edge device. This model operates in real
time, providing predictions as new data are introduced to the device. The device, in turn,
assesses the state of the fan and produces a corresponding output.

2.2. Overview: Machine Learning Methods

Table 1 provides an overview of the most commonly used ML methods for Predictive
Maintenance. The first column represents the paper reference; the second column lists the
ML method; the third column lists the type of equipment on which maintenance prediction
is performed; the fourth column lists the type of data; and the fifth column provides the
accuracy of the machine learning model.

For the task of supervised machine learning, a “Classification” model is selected
over a “Regression” model because the desired output (label) is discrete. Furthermore,
neural network algorithms are preferred due to their high accuracy as compared to other
algorithms. However, traditional ML models are also evaluated in this paper to compare

Electronics 2024, 13, 493 4 of 22

the performance of different types of models, including the commonly used traditional
ML models, listed in Table 1, to determine the best model for the task at hand, i.e., fault
detection in an electric fan drive.

2.3. Advantages of CNNs for Vibration Signal Analysis

Convolutional neural networks (CNNs) are preferred over artificial neural networks
(ANNs) due to their ability to reduce the number of network parameters using filters
or “kernels”. ANNs become computationally expensive when increasing the number of
hidden layers and neurons due to their fully connected nature, whereas CNNs have sparse
connections between layers. CNNs also consider both node strength and spatial positions,
improving accuracy and reducing overfitting. They are specifically suited for data with
spatial structures like images, videos, and sensor data such as accelerometers. Vibration
signals exhibit short-term patterns captured by local receptive fields and global patterns
captured by deeper CNN layers. Recurrent neural networks (RNNs) [10], designed for
temporal data, may not be optimal, as vibration signals lack long-term dependencies.

In addition, CNNs require fewer pre-processing steps and can learn filters automati-
cally, eliminating the need for manual feature engineering in primitive methods. Therefore,
given that the input data are derived from accelerometer sensor readings, CNNs are the
preferred approach for this project. In the later part of this paper, it is shown that the CNN
model is indeed the best choice when compared to other ML models.

2.3.1. Convolutional Neutral Network

(1) Convolutional layer

Typically, CNNs consists of an input layer, output layer, and hidden layers [11]. The
following formula can be used to represent the mathematical model of a convolutional
layer [11,12]:

xl
j = f

 ∑
i∈Mj

xi
l−1 ∗ kij

l + bj
l

 (1)

The (∗) denotes the dot products of the convolutional operation; Mj denotes the
number of input maps; l denotes the network’s lth layer; k denotes the kernel matrix, which
has the dimensions S × S (for example, a kernel size of 3 × 3), and f is the non-linear
activation function. There is a multiplicative bias β and an additive bias b assigned to each
output map, but its exact form depends on the specific pooling method used [8,12].

(2) Non-linear activation function

Non-linear activation functions are needed to transform the output of a neuron from a
linear combination of inputs to a non-linear function of those inputs. The linear operation
output, such as convolution, from the previous layer is passed through these activation
functions. Common non-linear activation functions used in neural networks include the
Rectified Linear Unit (ReLu), Tanh and Leaky ReLu. The mathematical equations, [13,14] for
the activation functions, are given by:

ReLu : g(z) = max(0, z) (2)

Tanh : g(z) =
ez − e−z

ez + e−z (3)

Leaky ReLu : g(z) = max(∈ z, z) with ∈≪ 1 (4)

(3) Pooling layer

Pooling layers are used to reduce the dimensionality of the input and extract dominant
features which can be defined by:

xl
j = f

(
β j

ldown
(

xj
l−1 + bj

l
))

(5)

Electronics 2024, 13, 493 5 of 22

The sub-sampling function is expressed by down(.). The output is often n times smaller
along both spatial dimensions, because this function sums over each distinct n-by-n block
in the input [8]. The most common pooling method is max pooling [11], which divides the
input image into non-overlapping rectangles and outputs the maximum value for each
sub-region.

(4) Fully connected layer

In the final fully connected layer, a SoftMax function [13] is often selected which
normalizes the output values from the last fully connected layer to perform multi-class
classification [11]. The mathematical definition of the SoftMax function is

σ(z)j =
ez

j

∑K
k=1 ezk

, f or j = 1, . . . , K (6)

The multi-class classifier has K classes in total. Zj values are the input vector’s
components and can have any real value. The normalization term, which lies at the
denominator of the equation, ensures that the function’s output values will all add up to 1,
creating a valid probability distribution.

2.3.2. Design and Development

(1) Data Collection

A new dataset of time series sensor data is required for this work due to variations
in sensor type and positioning. For demonstration purposes in this project, a small DC
5V, 0.20A server cooling fan is utilized. However, it should be noted that in real-world
applications, industrial size fans would be considered instead of the small test fan we are
using here.

A dataset of time-series sensor data is collected using the development board (FDRM-
STBC-AGM01) with an FXOS8700CQ accelerometer (3-Axis Sensor). The embedded ap-
plication reads the vibration data from the accelerometer and logs them onto an SD card.
Data collection is conducted for 10 min for each class (Fan-Fault, Fan-On and Fan-Off),
resulting in a total of 120,000 samples for each class (recording at 200 Hz). To elaborate on
the specific states:

• Fan-On State: no external vibration source was introduced. The data solely represent
the vibration patterns collected from a normally operating fan.

• Fan-Off State: the fan was turned off during data collection.
• Fan-Fault State: devices were used to interfere with the fan blades and hence induce

vibration and disturb the normal operation of the fan. These devices were placed on
different locations of the fan, each with varying levels of vibration. This approach
aimed to cover a diverse range of vibration scenarios, ensuring the robustness and
generality of the data.

The collected data, encompassing fan states, sample time and accelerometer readings,
are saved as CSV files on the SD card, with subsequent transfer to the host machine for
ML model training. Figure 2 shows the time-domain plot of the input signal obtained
from the data collection stored on the SD card. The x-axis of the plot represents the time
sequence, while the y-axis represents the amplitude of each point in that sequence, ranging
from −8192 to +8192 units (corresponding to a range of ±2 g). For enhanced visualization,
Figure 3 offers a zoomed-in view within the scale of −2000 to +2000.

Electronics 2024, 13, 493 6 of 22Electronics 2024, 13, x FOR PEER REVIEW 6 of 25

Figure 2. Time sequence plot of the input signal.

Figure 3. Zoomed-in view of Figure 2.

Figure 2. Time sequence plot of the input signal.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 25

Figure 2. Time sequence plot of the input signal.

Figure 3. Zoomed-in view of Figure 2. Figure 3. Zoomed-in view of Figure 2.

Electronics 2024, 13, 493 7 of 22

The vibration signals of the fan in different states exhibit distinct characteristics:

1. Fan-On (Blue): The signal is smooth, continuous waveform with only small amplitude
variation over time.

2. Fan-Off (Red): The signal is flat with minimal variation, indicating little to no vibration
due to the absence of fan rotation.

3. Fan-Fault (Yellow): The signal has an irregular waveform with significant amplitude
variation, resulting from the higher frequency vibrations caused by friction.

It is important to use the same size of training dataset for each class to avoid any biased
predictions on unseen data. Figure 4 shows that the dataset is balanced and distributed
equally for each class.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 25

The vibration signals of the fan in different states exhibit distinct characteristics:
1. Fan-On (Blue): The signal is smooth, continuous waveform with only small ampli-

tude variation over time.
2. Fan-Off (Red): The signal is flat with minimal variation, indicating little to no vibra-

tion due to the absence of fan rotation.
3. Fan-Fault (Yellow): The signal has an irregular waveform with significant amplitude

variation, resulting from the higher frequency vibrations caused by friction.
It is important to use the same size of training dataset for each class to avoid any

biased predictions on unseen data. Figure 4 shows that the dataset is balanced and dis-
tributed equally for each class.

Figure 4. Imported dataset for training.

(2) Data pre-processing
The data pre-processing step is crucial for reducing processing time and improving

the quality of the data. We conducted the following pre-processing procedures, adapted
from “The Ten-Step machine learning methodology” [15]:
1. Data checking and cleaning: Duplicated or irrelevant data were removed to ensure

accurate and reliable analysis.
2. Data normalization: Scaling the features to a common range improves the perfor-

mance of ML models and prevents over-reliance on certain features. The signal is
scaled to a new range of [−1,1] instead of [0,1], because the sign of the signal can be
preserved for vibration signals which contain both positive and negative values. An
approach was adopted to normalize the data from 0 to 1; however, this resulted in a
model with poorer accuracy. The normalization equation [16] that is used in this pro-
ject is given by:

 (7)

3. Feature Selection: Only the most relevant features (X, Y, Z axes of vibration signals)
were selected for the classification task of fan states, reducing dimensionality and
improving model performance.

4. Train–Test Split: Separating the entire data set into a training set and a test set is an-
other pre-processing step. The separation of the data prevents information from the
test set from leaking into the training set. This method is typically used to assess the
model�s overall performance during training and then cross-validate it against the

Figure 4. Imported dataset for training.

(2) Data pre-processing

The data pre-processing step is crucial for reducing processing time and improving
the quality of the data. We conducted the following pre-processing procedures, adapted
from “The Ten-Step machine learning methodology” [15]:

1. Data checking and cleaning: Duplicated or irrelevant data were removed to ensure
accurate and reliable analysis.

2. Data normalization: Scaling the features to a common range improves the performance
of ML models and prevents over-reliance on certain features. The signal is scaled to a
new range of [−1, 1] instead of [0, 1], because the sign of the signal can be preserved
for vibration signals which contain both positive and negative values. An approach
was adopted to normalize the data from 0 to 1; however, this resulted in a model
with poorer accuracy. The normalization equation [16] that is used in this project is
given by:

Xnormalized =
(X − Xminimum)

(Xmaximum − Xminimum)
(7)

3. Feature Selection: Only the most relevant features (X, Y, Z axes of vibration signals)
were selected for the classification task of fan states, reducing dimensionality and
improving model performance.

4. Train–Test Split: Separating the entire data set into a training set and a test set is
another pre-processing step. The separation of the data prevents information from
the test set from leaking into the training set. This method is typically used to assess
the model’s overall performance during training and then cross-validate it against the
test set. The true purpose of data splitting is to allow the network to forecast vibration
characteristics from previously unseen data (i.e., data not used during training).

Electronics 2024, 13, 493 8 of 22

In this project, the data were divided at random into 80% and 20% for training and
testing. Figure 5 depicts the dataset split into the training and test datasets.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 25

test set. The true purpose of data splitting is to allow the network to forecast vibration
characteristics from previously unseen data (i.e., data not used during training).
In this project, the data were divided at random into 80% and 20% for training and

testing. Figure 5 depicts the dataset split into the training and test datasets.

Figure 5. Train-Test Split.

5. Data Reshaping: This step is crucial to ensure the model can handle the inputs. The
vibration signals are reshaped into 2D tensors instead of 1D tensors to capture corre-
lations and patterns across multiple dimensions. The three axes (X, Y, Z) in the vibra-
tion signal represent different correlations and patterns that can be observed in these
dimensions. This enables a more comprehensive analysis of the signal, making it eas-
ier to identify complex patterns and features that may not be evident in a 1D tensor.
In addition, CNNs are well-suited for handling 2D tensors, as they excel in capturing
correlations and patterns in image-like data.

(3) Network Architecture
Hyperparameters such as network architecture, learning rate, and activation func-

tions were tuned in the training stage to achieve the best performance on the test dataset
[17]. Figure 6 presents the process of model training and parameter tuning. The blue
blocks (historical data, train data and test data) are the fixed input whereas the black
blocks (hyperparameters, model training and model) are the volatile parameters, and the
green blocks (train evaluation matrices and test evaluation matrices) are evaluated out-
puts. The output of the test data is passed back to the hyperparameter to obtain the most
optimal hyperparameters [17,18].

Figure 6. Model training and parameter tuning.

The process involved manual adjustment of each parameter. To compare different
models, nine experimental test groups were considered. The number of convolutional lay-
ers and activation functions in each layer were varied individually in the group. The ac-
curacy of each combination was recorded in Table 2.

From Table 2, Experimental Group 1 and Group 9 achieved the highest accuracy
scores (Please refer to Figure A1 in Appendix A for the training history for Experimental
Group 1). The model based on Experimental Group 1 was chosen due to its lower

Figure 5. Train-Test Split.

5. Data Reshaping: This step is crucial to ensure the model can handle the inputs.
The vibration signals are reshaped into 2D tensors instead of 1D tensors to capture
correlations and patterns across multiple dimensions. The three axes (X, Y, Z) in the
vibration signal represent different correlations and patterns that can be observed in
these dimensions. This enables a more comprehensive analysis of the signal, making
it easier to identify complex patterns and features that may not be evident in a 1D
tensor. In addition, CNNs are well-suited for handling 2D tensors, as they excel in
capturing correlations and patterns in image-like data.

(3) Network Architecture

Hyperparameters such as network architecture, learning rate, and activation functions
were tuned in the training stage to achieve the best performance on the test dataset [17].
Figure 6 presents the process of model training and parameter tuning. The blue blocks
(historical data, train data and test data) are the fixed input whereas the black blocks
(hyperparameters, model training and model) are the volatile parameters, and the green
blocks (train evaluation matrices and test evaluation matrices) are evaluated outputs. The
output of the test data is passed back to the hyperparameter to obtain the most optimal
hyperparameters [17,18].

Electronics 2024, 13, x FOR PEER REVIEW 8 of 25

test set. The true purpose of data splitting is to allow the network to forecast vibration
characteristics from previously unseen data (i.e., data not used during training).
In this project, the data were divided at random into 80% and 20% for training and

testing. Figure 5 depicts the dataset split into the training and test datasets.

Figure 5. Train-Test Split.

5. Data Reshaping: This step is crucial to ensure the model can handle the inputs. The
vibration signals are reshaped into 2D tensors instead of 1D tensors to capture corre-
lations and patterns across multiple dimensions. The three axes (X, Y, Z) in the vibra-
tion signal represent different correlations and patterns that can be observed in these
dimensions. This enables a more comprehensive analysis of the signal, making it eas-
ier to identify complex patterns and features that may not be evident in a 1D tensor.
In addition, CNNs are well-suited for handling 2D tensors, as they excel in capturing
correlations and patterns in image-like data.

(3) Network Architecture
Hyperparameters such as network architecture, learning rate, and activation func-

tions were tuned in the training stage to achieve the best performance on the test dataset
[17]. Figure 6 presents the process of model training and parameter tuning. The blue
blocks (historical data, train data and test data) are the fixed input whereas the black
blocks (hyperparameters, model training and model) are the volatile parameters, and the
green blocks (train evaluation matrices and test evaluation matrices) are evaluated out-
puts. The output of the test data is passed back to the hyperparameter to obtain the most
optimal hyperparameters [17,18].

Figure 6. Model training and parameter tuning.

The process involved manual adjustment of each parameter. To compare different
models, nine experimental test groups were considered. The number of convolutional lay-
ers and activation functions in each layer were varied individually in the group. The ac-
curacy of each combination was recorded in Table 2.

From Table 2, Experimental Group 1 and Group 9 achieved the highest accuracy
scores (Please refer to Figure A1 in Appendix A for the training history for Experimental
Group 1). The model based on Experimental Group 1 was chosen due to its lower

Figure 6. Model training and parameter tuning.

The process involved manual adjustment of each parameter. To compare different
models, nine experimental test groups were considered. The number of convolutional
layers and activation functions in each layer were varied individually in the group. The
accuracy of each combination was recorded in Table 2.

From Table 2, Experimental Group 1 and Group 9 achieved the highest accuracy scores
(Please refer to Figure A1 in Appendix A for the training history for Experimental Group 1).
The model based on Experimental Group 1 was chosen due to its lower computational cost
and faster training process. This was because Group 1 had fewer convolutional kernels and
overall parameters compared to Group 9.

Electronics 2024, 13, 493 9 of 22

Table 2. Results of the nine experimental groups.

The Number of Convolution Layers

Experimental
Group Each Convolution Layer Activation

Function Accuracy

1st 2nd 3rd Training
Dataset

Testing
Dataset

1 8 16 32 ReLu 0.99 0.99
2 16 32 64 ReLu 0.99 0.98
3 32 64 128 ReLu 1.00 0.94
4 8 16 32 Leaky ReLu 0.94 0.94
5 16 32 64 Leaky ReLu 0.97 0.96
6 32 64 128 Leaky ReLu 0.97 0.98
7 8 16 32 Tanh 0.98 0.98
8 16 32 64 Tanh 0.89 0.96
9 32 64 128 Tanh 0.63 0.99

The CNN architecture used in this study, which was achieved through hyperparameter
tuning in Experimental Group 1, is shown in Figure 7. It comprises three convolution layers
with filter counts of 8, 16, and 32, each with a 3 × 3 size. These layers are followed by
MaxPooling [12] and dropout layers with dropout rates of 50%, 20% and 20%, respectively.
The selection of a 3 × 3 kernel is based on the need to classify vibration signals with
three axes, allowing the capture of spatial information along all three axes for precise
classification. A 3 × 1 or 1 × 3 kernel would only capture information along one or two
axes, respectively, which may not be enough for signals that have three axes.

Electronics 2024, 13, x FOR PEER REVIEW 9 of 25

computational cost and faster training process. This was because Group 1 had fewer con-
volutional kernels and overall parameters compared to Group 9.

Table 2. Results of the nine experimental groups.

The Number of Convolution Layers

Experimental Group Each Convolution Layer
Activation
Function Accuracy

 1st 2nd 3rd
Training
Dataset

Testing
Dataset

1 8 16 32 ReLu 0.99 0.99
2 16 32 64 ReLu 0.99 0.98
3 32 64 128 ReLu 1.00 0.94
4 8 16 32 Leaky ReLu 0.94 0.94
5 16 32 64 Leaky ReLu 0.97 0.96
6 32 64 128 Leaky ReLu 0.97 0.98
7 8 16 32 Tanh 0.98 0.98
8 16 32 64 Tanh 0.89 0.96
9 32 64 128 Tanh 0.63 0.99

The CNN architecture used in this study, which was achieved through hyperparam-
eter tuning in Experimental Group 1, is shown in Figure 7. It comprises three convolution
layers with filter counts of 8, 16, and 32, each with a 3 × 3 size. These layers are followed
by MaxPooling [12] and dropout layers with dropout rates of 50%, 20% and 20%, respec-
tively. The selection of a 3 × 3 kernel is based on the need to classify vibration signals with
three axes, allowing the capture of spatial information along all three axes for precise clas-
sification. A 3 × 1 or 1 × 3 kernel would only capture information along one or two axes,
respectively, which may not be enough for signals that have three axes.

The use of pooling and dropout layers greatly reduces the number of parameters in
the fully linked layers and hence decreases training time.

Figure 7. Modified CNN Architecture.

The architecture is a sequential model in Keras, which is a linear stack of layers. It
consists of several types of layers: Conv2D, MaxPooling2D, Dropout, Flatten, and Dense.
The model starts with an input layer of shape (batch_size, 128, 1, 3) and the number of
parameters for this layer is not shown since it does not have any trainable parameters.

The details of each layer are explained as follows:

Figure 7. Modified CNN Architecture.

The use of pooling and dropout layers greatly reduces the number of parameters in
the fully linked layers and hence decreases training time.

The architecture is a sequential model in Keras, which is a linear stack of layers. It
consists of several types of layers: Conv2D, MaxPooling2D, Dropout, Flatten, and Dense.
The model starts with an input layer of shape (batch_size, 128, 1, 3) and the number of
parameters for this layer is not shown since it does not have any trainable parameters.

The details of each layer are explained as follows:

- The first layer is a Conv2D layer that executes 2D convolution on the input data. The
layer employs the ReLu activation function and has eight filters of size (3 × 3), which
means that it will produce eight feature maps, each of size (128, 1). ‘Same’ padding is
used to ensure the output size is the same as the input size. The layer’s output shape
is (None, 128, 1, 8), where None can be considered as a placeholder for the batch size
of the input.

Electronics 2024, 13, 493 10 of 22

- The second layer is a MaxPooling2D layer that maximizes pooling over the output
results of the previous layer. The pool size is (2, 2), has strides of (2, 2) and “same”
padding, so the output shape of this layer is (None, 64, 1, 8), which is half the dimen-
sions of the output features.

- In the third layer, a dropout layer with a rate of 0.5 is used which applies dropout
regularization to the output of the previous layer, randomly dropping out 50% of the
units. This layer has no output shape, as it only affects the training process and has no
trainable parameters.

- The fourth layer is another Conv2D layer using 16 filters of a size of 3 × 3 with the
ReLu activation function. This layer’s final output form is (None, 64, 1, 16).

- Similarly, in the fifth layer, another MaxPooling2D layer with pool size (2, 2), strides of
(2, 2) and “same” padding is applied. The output shape of this layer is reduced by half
to (None, 32, 1, 16). This layer is again followed by a dropout layer with a rate of 0.2 to
avoid overfitting. A relatively low dropout rate, like 0.2, implies that during training,
20% of the neurons in the layer are randomly “dropped out” at each update. The lower
dropout rate in the initial layers allows the network to retain more information in the
low-level features, providing a smoother learning curve at the beginning of training.

- The seventh layer is the third convolutional layer, with 32 filters of size (3 × 3) and the
ReLu activation function. This layer’s final output form is (None, 32, 1, 32).

- The eighth layer is another MaxPooling2D layer that performs max pooling over the
output of the previous layer. The pool size is (2, 2), which means that the output shape
of this layer is (None, 16, 1, 32).

- The ninth layer is another dropout layer with a rate of 0.2.
- The tenth layer is a Flatten layer that flattens the output of the previous layer into a

1D vector. The output shape of this layer is (None, 512).
- The eleventh layer is a fully connected layer with 128 units and uses the ReLu activation

function. The output shape of this layer is (None, 128).
- The twelfth and final layer is another dropout layer with a rate of 0.5 followed by a

Dense layer with three units, which represents the number of classes in the output. This
layer uses the SoftMax activation function, which outputs a probability distribution
over the classes. The output shape of this layer is (None, 3).

- The model complies with categorical cross-entropy loss function and Adam opti-
mizer [19]—an upgraded version of the stochastic gradient descent to train the net-
work and revise the weights iteratively according to training data, since they are
commonly used for multi-class classification problems. An accuracy metric is used to
assess the performance of the model because all classes in the dataset are balanced,
and each class is equally important.

Once the CNN architecture has been defined, the training process is initialized. From
the training data set, the model parameters (such as weights, biases) are automatically
configured by the network itself through the training process.

The model has a total of 72,083 parameters, all of which are trainable. This archi-
tecture is commonly used for image classification tasks, with the convolutional layers
extracting features from the input image and the fully connected layers performing the
final classification.

Table 3 provides a detailed summary of the CNN model. The trainable parameters are
the weights and biases of the model that are updated during the training. In the proposed
model architecture, there are a total of 72,083 trainable parameters, which are defined by
Equation (8) for convolution layers and Equation (9) for dense layers, respectively:

No. of Parameters for conv2d = ((m × n × d) + 1)× k (8)

where:
m = f ilterheight,

n = f ilterwidth,

Electronics 2024, 13, 493 11 of 22

d = no. o f inputchannels,

k = no. o f outputchannels,

added 1 due to the bias term for each filter.

No. of Parameters for dense layer = (d × k) + k (9)

Table 3. Detailed description of the CNN model architecture used in this research.

Model: “sequential”

Layer (Type) Output Shape Param #

conv2d (Conv2D) (None, 128, 1, 8) 224

max_pooling2d (MaxPooling2D) (None, 64, 1, 8) 0

dropout (Dropout) (None, 64, 1, 8) 0

conv2d_1 (Conv2D) (None, 64, 1, 16) 1168

max_pooling2d_1 (MaxPooling2 (None, 32, 1, 16) 0

dropout_1 (Dropout) (None, 32, 1, 16) 0

conv2d_2 (Conv2D) (None, 32, 1, 32) 4640

max_pooling2d_2 (MaxPooling2) (None, 16, 1, 32) 0

dropout_2 (Dropout) (None, 16, 1, 32) 0

flatten (Flatten) (None, 512) 0

dense (Dense) (None, 128) 65,664

dropout_3 (Dropout) (None, 128) 0

dense_1 (Dense) (None, 3) 387

Total params: 72,083

Trainable params: 72,083

Non-trainable params: 0

There are eight filters in the first convolution layers, each of size 3 × 3, with three
channels per filter as input number of filters, giving rise to a total of 224 trainable parameters,
calculated as follows:

3 × 3 kernel −→ 9 weights

3 channels → 3 × 9 = 27 weights

8 f ilters → 27 × 8 = 216 weights

8 f ilters → 8 biases

Summarizing using Equations (8) and (9), we have:

No. of param of first Conv2d,

Conv2d → ((3 × 3 × 3) + 1)× 8 = 224

Similarly, the number of parameters is calculated for the remaining convolution layers as:

Conv2d_1 −→ ((3 × 3 × 8) + 1)× 16 = 1168

Conv2d_2 −→ ((3 × 3 × 16) + 1)× 32 = 4640

Dense −→ (512 × 128) + 128 = 65,664

Dense_1 −→ (128 × 3) + 3 = 387

Electronics 2024, 13, 493 12 of 22

Total trainable params −→ 224 + 1168 + 4640 + 65,664 + 387 = 72,083

3. Results
3.1. CNN Model Accuracy and Loss

Figure 8 shows the training and validation accuracy plotted against epoch. The
training dataset is used to train the generated CNN model, while the test dataset is used
to assess the performance. As the number of epochs increases, accuracy increases and
loss decreases. At epoch 25, there is no appreciable gain in accuracy or loss; hence, a total
of 30 epochs were used for training and testing. Using the categorical cross-entropy loss
function, the test accuracy is 99.82% and the training accuracy is 99.80%, indicating that the
model is not overfitting. Moreover, the loss for the training dataset and the test dataset is
0.0048 and 0.0152, respectively. This indicates that the model can generalize effectively to
the unseen vibration data.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 25

Table 3. Detailed description of the CNN model architecture used in this research.

Model: “sequential”
Layer (Type) Output Shape Param #
conv2d (Conv2D) (None, 128, 1, 8) 224
max_pooling2d (MaxPooling2D) (None, 64, 1, 8) 0
dropout (Dropout) (None, 64, 1, 8) 0
conv2d_1 (Conv2D) (None, 64, 1, 16) 1168
max_pooling2d_1 (MaxPooling2 (None, 32, 1, 16) 0
dropout_1 (Dropout) (None, 32, 1, 16) 0
conv2d_2 (Conv2D) (None, 32, 1, 32) 4640
max_pooling2d_2 (MaxPooling2) (None, 16, 1, 32) 0
dropout_2 (Dropout) (None, 16, 1, 32) 0
flatten (Flatten) (None, 512) 0
dense (Dense) (None, 128) 65,64
dropout_3 (Dropout) (None, 128) 0
dense_1 (Dense) (None, 3) 387
Total params: 72,083
Trainable params: 72,083
Non-trainable params: 0

3. Results
3.1. CNN Model Accuracy and Loss

Figure 8 shows the training and validation accuracy plotted against epoch. The train-
ing dataset is used to train the generated CNN model, while the test dataset is used to
assess the performance. As the number of epochs increases, accuracy increases and loss
decreases. At epoch 25, there is no appreciable gain in accuracy or loss; hence, a total of 30
epochs were used for training and testing. Using the categorical cross-entropy loss func-
tion, the test accuracy is 99.82% and the training accuracy is 99.80%, indicating that the
model is not overfitting. Moreover, the loss for the training dataset and the test dataset is
0.0048 and 0.0152, respectively. This indicates that the model can generalize effectively to
the unseen vibration data.

Figure 8. Training and Validation Accuracy vs. Epoch.

To analyze the performance of the machine learning model or algorithms in more
detail, it is essential to use evaluation metrics. The confusion matrix is one metric that
measures how accurate a classification model is. It is an N × N matrix that compares the
actual example data with those calculated by the ML model, where N is the number of
target classes [18].

The classification problem in this project has three classes. Therefore, the confusion
matrix used to evaluate the performance of the model has three rows and three columns,
with a total of nine values. The confusion matrices for the full dataset, training dataset,
and validation dataset are shown in Figure 9, Figure 10 and Figure 11, respectively. The
columns represent the actual values of the fan classification, while the rows in the matrix
represent the predicted values of the fan class. Note that the input dataset used in this
project is balanced, meaning that it contains an equal number of samples for each class of a
fan state. Hence, equal percentages are distributed to each class of the fan state.

Electronics 2024, 13, 493 13 of 22

Electronics 2024, 13, x FOR PEER REVIEW 13 of 25

Figure 8. Training and Validation Accuracy vs. Epoch.

To analyze the performance of the machine learning model or algorithms in more
detail, it is essential to use evaluation metrics. The confusion matrix is one metric that
measures how accurate a classification model is. It is an N × N matrix that compares the
actual example data with those calculated by the ML model, where N is the number of
target classes [18].

The classification problem in this project has three classes. Therefore, the confusion
matrix used to evaluate the performance of the model has three rows and three columns,
with a total of nine values. The confusion matrices for the full dataset, training dataset,
and validation dataset are shown in Figure 9, Figure 10, and Figure 11, respectively. The
columns represent the actual values of the fan classification, while the rows in the matrix
represent the predicted values of the fan class. Note that the input dataset used in this
project is balanced, meaning that it contains an equal number of samples for each class of
a fan state. Hence, equal percentages are distributed to each class of the fan state.

Figure 9. Confusion matrix for the full dataset.

Figure 10. Confusion matrix for the train dataset.

Figure 9. Confusion matrix for the full dataset.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 25

Figure 8. Training and Validation Accuracy vs. Epoch.

To analyze the performance of the machine learning model or algorithms in more
detail, it is essential to use evaluation metrics. The confusion matrix is one metric that
measures how accurate a classification model is. It is an N × N matrix that compares the
actual example data with those calculated by the ML model, where N is the number of
target classes [18].

The classification problem in this project has three classes. Therefore, the confusion
matrix used to evaluate the performance of the model has three rows and three columns,
with a total of nine values. The confusion matrices for the full dataset, training dataset,
and validation dataset are shown in Figure 9, Figure 10, and Figure 11, respectively. The
columns represent the actual values of the fan classification, while the rows in the matrix
represent the predicted values of the fan class. Note that the input dataset used in this
project is balanced, meaning that it contains an equal number of samples for each class of
a fan state. Hence, equal percentages are distributed to each class of the fan state.

Figure 9. Confusion matrix for the full dataset.

Figure 10. Confusion matrix for the train dataset. Figure 10. Confusion matrix for the train dataset.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 25

Figure 11. Confusion matrix for the test dataset.

In addition, the model�s performance can be evaluated using performance evaluation
indices such as the accuracy, precision, recall, and F1-score, which are provided by Equa-
tions (10)–(13):

 (10)

 (11)

 (12)

 (13)

where TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative
[20,21].

Table 4 shows that the model has high accuracy and performs well for all three fan
states. The fan-off state has the highest scores, indicating that the model can classify this
state with high accuracy. This may be because the features from the Fan-Off state were
more informative and distinctive compared to the other two states.

Table 4. Proposed CNN�s performance metrics of the fault labels.

Label Fan-Fault (%) Fan-Off (%) Fan-On (%)
Accuracy 99.822 100 99.822

 100 100 99.469
 99.469 100 100
 99.734 100 99.734

3.2. ML-Based Models Validation
To verify that the CNN model is best suited for the problem of fault detection in a

fan drive, several other ML techniques were evaluated. We considered SVM, K-Nearest
Neighbor, Random Forest, and Gradient Boosting. These ML-based models were further
evaluated in two distinct groups. The first group was trained using raw input signals,
while the second group utilized time-domain and frequency-domain features extracted
from these raw signals. This is done to compare the performance of the models trained on
the two different types of input data and to identify the most effective strategy.

In the development of the second group of ML-based models, the statistical features
in the time domain were used. Python code was developed that can extract time-domain
features such as mean, variance, crest, skewness, root mean square, and shape factor.

It was found that the sets of models using the extracted time and frequency domain
features outperformed the models solely trained on raw input signals. This could be due

Figure 11. Confusion matrix for the test dataset.

Electronics 2024, 13, 493 14 of 22

In addition, the model’s performance can be evaluated using performance evalua-
tion indices such as the accuracy, precision, recall, and F1-score, which are provided by
Equations (10)–(13):

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Precision → ρ =
TP

TP + FP
(11)

Recall → r =
TP

TP + FN
(12)

F1 Score → F 1 =
2ρ × r
p + r

(13)

where TP = True Positive, TN = True Negative, FP = False Positive, and FN = False
Negative [20,21].

Table 4 shows that the model has high accuracy and performs well for all three fan
states. The fan-off state has the highest scores, indicating that the model can classify this
state with high accuracy. This may be because the features from the Fan-Off state were
more informative and distinctive compared to the other two states.

Table 4. Proposed CNN’s performance metrics of the fault labels.

Label Fan-Fault (%) Fan-Off (%) Fan-On (%)

Accuracy 99.822 100 99.822
ρ 100 100 99.469
r 99.469 100 100
F1 99.734 100 99.734

3.2. ML-Based Models Validation

To verify that the CNN model is best suited for the problem of fault detection in a
fan drive, several other ML techniques were evaluated. We considered SVM, K-Nearest
Neighbor, Random Forest, and Gradient Boosting. These ML-based models were further
evaluated in two distinct groups. The first group was trained using raw input signals,
while the second group utilized time-domain and frequency-domain features extracted
from these raw signals. This is done to compare the performance of the models trained on
the two different types of input data and to identify the most effective strategy.

In the development of the second group of ML-based models, the statistical features
in the time domain were used. Python code was developed that can extract time-domain
features such as mean, variance, crest, skewness, root mean square, and shape factor.

It was found that the sets of models using the extracted time and frequency domain
features outperformed the models solely trained on raw input signals. This could be due
to the model receiving more relevant and discriminative information when time-domain
characteristics are extracted from the raw input signals.

Figure 12 shows the confusion matrix for the ML-based model trained on raw input
signals in the first group. In addition, Figure 13 shows the confusion matrix for the
ML-based model trained on statistical features in the second group. These confusion
matrices provide a visual representation of the performance of each model, in terms of
correctly and incorrectly classified samples for each class.

The calculated values of accuracy, precision, recall, and F1-score for each class of the
fan can be observed in Table 5 for both sets of ML-models. The table compares the obtained
performance metrics of different states of the fan using four ML-based models (SVM, RF,
K-NN and GB).

Electronics 2024, 13, 493 15 of 22

Electronics 2024, 13, x FOR PEER REVIEW 15 of 25

to the model receiving more relevant and discriminative information when time-domain
characteristics are extracted from the raw input signals.

Figure 12 shows the confusion matrix for the ML-based model trained on raw input
signals in the first group. In addition, Figure 13 shows the confusion matrix for the ML-
based model trained on statistical features in the second group. These confusion matrices
provide a visual representation of the performance of each model, in terms of correctly
and incorrectly classified samples for each class.

Figure 12. Confusion matrix for the first group.

Figure 13. Confusion matrix for the second group.

Figure 12. Confusion matrix for the first group.

Electronics 2024, 13, x FOR PEER REVIEW 15 of 25

to the model receiving more relevant and discriminative information when time-domain
characteristics are extracted from the raw input signals.

Figure 12 shows the confusion matrix for the ML-based model trained on raw input
signals in the first group. In addition, Figure 13 shows the confusion matrix for the ML-
based model trained on statistical features in the second group. These confusion matrices
provide a visual representation of the performance of each model, in terms of correctly
and incorrectly classified samples for each class.

Figure 12. Confusion matrix for the first group.

Figure 13. Confusion matrix for the second group. Figure 13. Confusion matrix for the second group.

In addition, the overall performance metrics of the models are summarized in Table 6.
Note that the accuracy of the Support Vector Machine (SVM), Random Forest (RF), K-Nearest
Neighbors (k-NN), and Gradient Boosting (GB)-based classifiers using raw signals is
91.167%, 91.333%, 90.000%, and 92.500%, respectively. Meanwhile, the accuracy of the
models using statistical features is 94.667%, 96.500%, 91.333%, and 96.167%. The traditional
ML approach requires feature extraction and selection, which is a difficult operation that
calls for prior knowledge and skill.

Electronics 2024, 13, 493 16 of 22

Table 5. Comparison of the performance metrics of different states of the fan.

Label Fan-Fault (%) Fan-Off (%) Fan-On (%)

Raw Signal
(1st Group)

Using
Statistical
Features

(2nd Group)

Raw Signal
(1st Group)

Using
Statistical
Features

(2nd Group)

Raw Signal
(1st Group)

Using
Statistical
Features

(2nd Group)

SVM:

Accuracy 97.833 97.333 90.333 93.677 90.167 91.167
Accuracy 92.473 95.699 96.954 98.477 84.793 90.323

ρ 98.851 98.343 86.036 90.233 90.796 96.078
r 92.473 95.699 96.954 98.477 84.793 90.323
F1 95.556 97.003 91.169 94.175 87.411 93.112

Random Forest:

Accuracy 94.624 96.774 92.893 97.970 86.175 94.931
ρ 96.175 97.826 90.196 95.567 89.202 96.244
r 94.624 96.774 93.401 98.477 87.558 94.470
F1 95.393 97.297 91.771 97.000 88.372 95.349

K-Nearest Neighbors:

Accuracy 91.935 90.323 95.431 97.970 83.410 86.175
ρ 98.276 97.110 85.068 86.547 88.293 91.667
r 91.935 90.323 95.431 97.970 83.410 86.175
F1 95.000 93.593 89.952 91.905 85.782 88.836

Gradient Boosting:

Accuracy 83.011 96.774 97.462 97.462 87.558 94.931
ρ 97.191 98.448 89.720 94.581 91.346 95.370
r 93.011 96.774 97.462 97.462 87.558 94.931
F1 95.055 98.093 93.431 96.000 89.412 95.150

Table 6. Comparison of overall performance metrics.

Label Support Vector Machine Random Forest K-Nearest Neighbors Gradient
Boosting

Raw Signal
Using

Statistical
Features

Raw Signal
Using

Statistical
Features

Raw Signal
Using

Statistical
Features

Raw Signal
Using

Statistical
Features

Accuracy 91.167 94.667 91.333 96.500 90.000 91.333 92.500 96.167
ρ 91.694 94.885 91.494 96.205 90.545 91.673 92.752 96.311
r 91.407 94.833 91.564 96.235 90.259 91.333 92.677 96.220
F1 91.379 94.763 91.513 96.215 90.245 91.333 92.632 96.254

It is observed that the models using statistical features have higher accuracy than the
models using raw signal inputs. In addition, bar plots are created to visually compare the
performance of each model (please refer to Figure A2 in Appendix A).

3.3. Model Comparison with Traditional ML-Based Models

The results of these ML-based (SVM, RF, K-NN, GB) models are compared against
the results of the CNN model, as shown in Figures 14 and 15 for group 1 and group 2,
respectively. The bar plots in Figure 15 show that CNN still achieved the highest accuracy,
even higher than that of models using statistical features.

Electronics 2024, 13, 493 17 of 22

Electronics 2024, 13, x FOR PEER REVIEW 17 of 25

It is observed that the models using statistical features have higher accuracy than the
models using raw signal inputs. In addition, bar plots are created to visually compare the
performance of each model (please refer to Figure A2 in Appendix A).

3.3. Model Comparison with Traditional ML-Based Models
The results of these ML-based (SVM, RF, K-NN, GB) models are compared against

the results of the CNN model, as shown in Figure 14 and Figure 15 for group 1 and group
2, respectively. The bar plots in Figure 15 show that CNN still achieved the highest accu-
racy, even higher than that of models using statistical features.

Figure 14. Performance of CNN model vs. ML-based models (group 1).

Figure 15. Performance of CNN model vs. ML-based models (group 2).

In summary, these results suggest that the developed CNN model is the most suita-
ble model for this specific classification task, outperforming the ML-based models using
raw input signals and those using statistical features. It achieved the highest accuracy
among all ML-based models without requiring any feature extractions. The CNN model
proved to be more effective and efficient, as it supports automatic feature extraction, giv-
ing it an advantage over traditional machine learning methods. Therefore, this CNN
model is selected, exported, and deployed on an embedded device to make real-time pre-
dictions.

3.4. Model Deployment on Edge Device
After the optimized model was developed, as described in the previous section, the

model was then deployed on the embedded device. To integrate the proposed ML model
with a real-time application for end-users, the following steps were meticulously under-
taken:
1. Model Deployment: The trained ML model was deployed on an embedded machine

for real-time predictions. This deployment leveraged the LPCXpresso55S69 embed-
ded microcontroller and the FXOS8700CQ three-axis accelerometer from NXP, en-
suring seamless compatibility with the target environment.

2. Utilization of NXP�s Repository: NXP�s repository played a pivotal role in this inte-
gration. Specifically, it housed the ML-Based System State Monitor App Software
Pack, streamlining the deployment process. This software pack, designed for MCU-
based systems, aligns seamlessly with the overall system architecture.

Figure 14. Performance of CNN model vs. ML-based models (group 1).

Electronics 2024, 13, x FOR PEER REVIEW 17 of 25

It is observed that the models using statistical features have higher accuracy than the
models using raw signal inputs. In addition, bar plots are created to visually compare the
performance of each model (please refer to Figure A2 in Appendix A).

3.3. Model Comparison with Traditional ML-Based Models
The results of these ML-based (SVM, RF, K-NN, GB) models are compared against

the results of the CNN model, as shown in Figure 14 and Figure 15 for group 1 and group
2, respectively. The bar plots in Figure 15 show that CNN still achieved the highest accu-
racy, even higher than that of models using statistical features.

Figure 14. Performance of CNN model vs. ML-based models (group 1).

Figure 15. Performance of CNN model vs. ML-based models (group 2).

In summary, these results suggest that the developed CNN model is the most suita-
ble model for this specific classification task, outperforming the ML-based models using
raw input signals and those using statistical features. It achieved the highest accuracy
among all ML-based models without requiring any feature extractions. The CNN model
proved to be more effective and efficient, as it supports automatic feature extraction, giv-
ing it an advantage over traditional machine learning methods. Therefore, this CNN
model is selected, exported, and deployed on an embedded device to make real-time pre-
dictions.

3.4. Model Deployment on Edge Device
After the optimized model was developed, as described in the previous section, the

model was then deployed on the embedded device. To integrate the proposed ML model
with a real-time application for end-users, the following steps were meticulously under-
taken:
1. Model Deployment: The trained ML model was deployed on an embedded machine

for real-time predictions. This deployment leveraged the LPCXpresso55S69 embed-
ded microcontroller and the FXOS8700CQ three-axis accelerometer from NXP, en-
suring seamless compatibility with the target environment.

2. Utilization of NXP�s Repository: NXP�s repository played a pivotal role in this inte-
gration. Specifically, it housed the ML-Based System State Monitor App Software
Pack, streamlining the deployment process. This software pack, designed for MCU-
based systems, aligns seamlessly with the overall system architecture.

Figure 15. Performance of CNN model vs. ML-based models (group 2).

In summary, these results suggest that the developed CNN model is the most suitable
model for this specific classification task, outperforming the ML-based models using raw
input signals and those using statistical features. It achieved the highest accuracy among
all ML-based models without requiring any feature extractions. The CNN model proved
to be more effective and efficient, as it supports automatic feature extraction, giving it
an advantage over traditional machine learning methods. Therefore, this CNN model is
selected, exported, and deployed on an embedded device to make real-time predictions.

3.4. Model Deployment on Edge Device

After the optimized model was developed, as described in the previous section,
the model was then deployed on the embedded device. To integrate the proposed ML
model with a real-time application for end-users, the following steps were meticulously
undertaken:

1. Model Deployment: The trained ML model was deployed on an embedded machine
for real-time predictions. This deployment leveraged the LPCXpresso55S69 embedded
microcontroller and the FXOS8700CQ three-axis accelerometer from NXP, ensuring
seamless compatibility with the target environment.

2. Utilization of NXP’s Repository: NXP’s repository played a pivotal role in this integra-
tion. Specifically, it housed the ML-Based System State Monitor App Software Pack,
streamlining the deployment process. This software pack, designed for MCU-based
systems, aligns seamlessly with the overall system architecture.

3. MCUXpresso SDK Integration: The integration was further facilitated by utilizing
the MCUXpresso SDK as the Integrated Development Environment (IDE) on the host
machine. This SDK ensured the smooth delivery of the overall system.

4. Consideration of Variations: It is important to note that for different types of fan
applications, the collection of a new data set is essential to train the model. Vari-
ation in the positioning of sensors necessitates tailored datasets to ensure optimal
model performance.

4. Discussion

The following points can be made when discussing the outcomes on a broader scale:

1. Despite the availability of several common convolutional models like Google Net,
AlexNet, or Mobile Net, using a simpler model has the benefits of creating a small but
highly efficient model that is straightforward to install on low-power edge devices. A

Electronics 2024, 13, 493 18 of 22

simple model guarantees quick calculations, little memory usage, and preserves the
device’s capability for real-time classification.

2. Although it works with a small dataset which is collected for only 30 min, the CNN
can be trained properly with enough training samples.

3. This project has been tested on data from a real-world scenario, which would poten-
tially perform well when implemented on a large industrial fan drive. The model
can be applied to other types of machinery if they produce vibration signals that can
be recorded by an accelerometer and analyzed using the same methodology. For
instance, the model can find applications in smart door systems. Anomalies, such
as attempted break-ins or hacking attempts, manifest as distinct vibration patterns
during unauthorized door access. This triggers anomaly detection, notifying users of
potential security breaches. However, the training data would need to be collected
and labeled specifically for each type of machinery.

4. The use of window slicing allows CNN models to extract more meaningful features
from the signal and improve the accuracy of the algorithms, similar to how convolu-
tional layers in CNNs extract features from images. The overlap ratio is also used to
ensure that the windows are not completely independent of each other, allowing the
model to capture the temporal relationship between adjacent windows.

5. Accuracy, precision, recall, and F1-score were used as performance metrics to assess
the performance of the developed models. It was found that the CNN model achieved
the highest performance results even though it was trained using the raw input signals.

6. Although it is well known that deeper networks frequently have more accuracy than
shallow networks, they also have a high computational cost. They also have large
computational footprints, which can delay the prediction time in a real-time classifica-
tion problem. This study demonstrates that the CNN architecture developed in this
project will yield the ideal model (considering both accuracy and low computational
costs) that needs to be deployed on low-power edge devices like microcontrollers.

7. It is noteworthy that the current model is trained for specific fan positioning. To
extend the applicability of the algorithm to different machinery or alternative fan
positions, the acquisition of tailored training data will be necessary.

5. Conclusions

In conclusion, this project sought to establish a robust framework for real-time fault
detection in vibration signals through an embedded device. The investigation encompassed
a comprehensive review of prevalent machine learning algorithms. Additionally, a stream-
lined Convolutional Neural Network (CNN) model was meticulously crafted, emerging as
the optimal choice due to its innate ability for automatic feature extraction. Key Novelties:

• Embedded Machine Learning Approach: Successfully introduced an embedded ma-
chine learning approach, laying the foundation for real-time anomaly detection in the
context of fan motor health monitoring.

• Diverse Algorithm Exploration: Conducted an in-depth analysis and development
of commonly used ML algorithms, encompassing SVM, K-NN, Random Forest, and
Gradient Boosting Classifiers.

• Optimization of CNN Model: Tailored a CNN model specifically for vibration sig-
nals, incorporating automatic feature extraction and simplified data pre-processing
techniques to enhance fault detection accuracy.

• Cost-Effective Design: Strategically designed to be cost-effective, ensuring accessibility
for a broad audience, including individuals and businesses.

• Versality Across Industries: Demonstrated the versatility of the developed model,
showcasing its potential applications across various industries, if vibration signals are
recordable by an accelerometer.

These key novelties collectively position this study at the forefront of advancing
machine learning applications in the realm of industrial fan health monitoring. This project
has been tested on data from a real-world scenario, which would potentially perform well

Electronics 2024, 13, 493 19 of 22

when implemented in an industrial setting. The model can be applied to other types of
machinery if they produce vibration signals that can be recorded by an accelerometer and
analyzed using the same methodology. For instance, the model can find applications in
smart door systems. Anomalies, such as attempted break-ins or hacking attempts, manifest
as distinct vibration patterns during unauthorized door access. This triggers anomaly
detection, notifying users of potential security breaches. However, the training data would
need to be collected and labeled specifically for each type of machinery. The successful
integration of these innovations not only contributes to the academic understanding of fault
detection methodologies but also holds promise for practical, real-world implementations
with widespread accessibility.

6. Future Work

The limitation of the current system is the model is that the model is currently trained
for a specific fan and its specific positioning of both the fan and the accelerometer. To
address this limitation, further research and development are needed to enhance the
algorithm’s capability to detect different types of machinery and various positions of the
fan and the accelerometer. In addition, exploring the intersection of quantum computing
with artificial intelligence, particularly quantum convolutional neural networks [20], could
offer novel approaches to machine learning tasks. Our future work includes incorporating
quantum algorithms and computing methods which may lead to advancements in the
efficiency and computational capabilities of fault detection systems.

Author Contributions: Conceptualization, Data Curation and Investigation, K.H.H.A.; Methodology,
Resources and Software, Supervision, Funding Acquisition, C.L.K.; Project administration, Visual-
ization, Supervision and Formal analysis, Y.Y.K.; Supervision and Funding Acquisition, T.H.T. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. Unavailable due to privacy.

Acknowledgments: The authors would like to extend their appreciation to the University of Newcas-
tle, Australia, for financing the project possible.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A
Electronics 2024, 13, x FOR PEER REVIEW 20 of 25

Figure A1. Cont.

Electronics 2024, 13, 493 20 of 22
Electronics 2024, 13, x FOR PEER REVIEW 21 of 25

Electronics 2024, 13, x FOR PEER REVIEW 22 of 25

Figure A1. Training history for Experimental Group 1. Figure A1. Training history for Experimental Group 1.

Electronics 2024, 13, 493 21 of 22Electronics 2024, 13, x FOR PEER REVIEW 23 of 25

Electronics 2024, 13, x FOR PEER REVIEW 24 of 25

Figure A2. Comparison of the performance matrix between models using raw signals (left) and
models using statistical features (right).

References
1. Kay, S.; Kosmas, D.; Jens, W. Machine Learning Techniques for structural health monitoring. In Proceedings of the 8th European

Workshop on Structural Health Monitoring (EWSHM) held in Bilbao, Spain, July 2016; p. 1. Available online: https://www.re-
searchgate.net/publication/303933051_Machine_learning_techniques_for_structural_health_monitoring (accessed on 21 October
2022).

2. Suda, N.; Loh, D. Machine Learning on Arm Cortex-M Microcontrollers. White Paper, 2019. Available online:
https://www.arm.com/resources/guide/machine-learning-on-cortex-m (accessed on 12 March 2023).

3. Tensor Flow. Tensor Flow Lite for Microcontroller. Tensor Flow, 2022. Available online: https://www.tensorflow.org/lite/microcon-
trollers (accessed on 11 November 2022).

4. NXP Semiconductors. Image from NXP Catalogue. In NXP Catalogue; NXP Semiconductors: Eindhoven, The Netherlands, 2018.
5. Praveenkumar, T.; Saimurugan, M.; Krishnakuma, P.; Ramachandran, K.I. Fault Diagnosis of Automobile Gearbox Based on Ma-

chine Learning Techniques. Procedia Eng. 2014, 97, 2092–2098. Available online: https://www.sciencedirect.com/science/arti-
cle/pii/S187770581403522X (accessed on 15 November 2022).

6. Su, C.J.; Huang, S.F. Real-time big data analytics for hard disk drive predictive maintenance. Comput. Electr. Eng. 2018, 71, 93–101.
7. Vives, J. Monitoring and Detection of Wind Turbine Vibration with KNN-Algorithm. J. Comput. Commun. 2022, 10, 1–12.

https://doi.org/10.4236/jcc.2022.107001.
8. Hoang, D.-T.; Kang, H.-J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cogn.

Syst. Res. 2019, 53, 43–50. https://doi.org/10.1016/j.cogsys.2018.03.002.
9. Qin, J.T.C.; Li, W.; Liu, C. Intelligent Fault Diagnosis of Diesel Engines via Extreme Gradient Boosting and High-Accuracy Time-

Frequency Information of Vibration Signals. Sensors 2019, 19, 3280. https://doi.org/10.3390/s19153280.

Figure A2. Comparison of the performance matrix between models using raw signals (left) and
models using statistical features (right).

Electronics 2024, 13, 493 22 of 22

References
1. Kay, S.; Kosmas, D.; Jens, W. Machine Learning Techniques for structural health monitoring. In Proceedings of the 8th Eu-

ropean Workshop on Structural Health Monitoring (EWSHM), Bilbao, Spain, 5–8 July 2016; p. 1. Available online: https:
//www.researchgate.net/publication/303933051_Machine_learning_techniques_for_structural_health_monitoring (accessed on
21 October 2022).

2. Suda, N.; Loh, D. Machine Learning on Arm Cortex-M Microcontrollers. White Paper, 2019. Available online: https://www.arm.
com/resources/guide/machine-learning-on-cortex-m (accessed on 12 March 2023).

3. Tensor Flow. Tensor Flow Lite for Microcontroller. Tensor Flow, 2022. Available online: https://www.tensorflow.org/lite/
microcontrollers (accessed on 11 November 2022).

4. NXP Semiconductors. Image from NXP Catalogue. In NXP Catalogue; NXP Semiconductors: Eindhoven, The Netherlands, 2018.
5. Praveenkumar, T.; Saimurugan, M.; Krishnakuma, P.; Ramachandran, K.I. Fault Diagnosis of Automobile Gearbox Based on

Machine Learning Techniques. Procedia Eng. 2014, 97, 2092–2098. Available online: https://www.sciencedirect.com/science/
article/pii/S187770581403522X (accessed on 15 November 2022). [CrossRef]

6. Su, C.J.; Huang, S.F. Real-time big data analytics for hard disk drive predictive maintenance. Comput. Electr. Eng. 2018, 71, 93–101.
[CrossRef]

7. Vives, J. Monitoring and Detection of Wind Turbine Vibration with KNN-Algorithm. J. Comput. Commun. 2022, 10, 1–12.
[CrossRef]

8. Hoang, D.-T.; Kang, H.-J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image. Cogn.
Syst. Res. 2019, 53, 43–50. [CrossRef]

9. Qin, J.T.C.; Li, W.; Liu, C. Intelligent Fault Diagnosis of Diesel Engines via Extreme Gradient Boosting and High-Accuracy
Time-Frequency Information of Vibration Signals. Sensors 2019, 19, 3280. [CrossRef]

10. Saeed, M. An Introduction to Recurrent Neural Networks and the Math That Powers Them. September 2022. Available
online: https://machinelearningmastery.com/an-introduction-to-recurrent-neural-networks-and-the-math-that-powers-them/
#:~:text=A%20recurrent%20neural%20network%20 (accessed on 11 November 2022).

11. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology.
Insights Imaging 2018, 9, 611–629. [CrossRef] [PubMed]

12. Yani, M.; Irawan, S.; Setianingsih, C. Application of Transfer Learning Using Convolutional Neural Network Method by Early
Detection of Terry’s Nail. J. Phys. Conf. Ser. 2019, 1201, 12052. [CrossRef]

13. Miranda, L.J. Understanding Softmax and the Negative Log-Likelihood. ljvmiranda921.github.io, 2017. Available online:
https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/ (accessed on 10 March 2023).

14. Paoletti, M.E.; Huat, J.M.; Plaza, J.; Plaza, A. Deep Learning Classifiers for Hyperspectral Imaging: A Review; Hyperspectral Computing
Laboratory (HyperComp), Department of Computer Technology and Communications, Escuela Politecnica de Caceres, University
of Extremadura, Avenida de la Universidad s/n: Caceres, Spain, 2019.

15. Giannelos, S.; Moreira, A.; Papadaskalopoulos, D.; Borozan, S.; Pudjianto, D.; Konstantelos, I.; Sun, M.; Strbac, G. A Machine
Learning Approach for Generating and Evaluating Forecasts on the Environmental Impact of the Buildings Sector. Energies 2023,
16, 2915. [CrossRef]

16. Ashish, K.S. Normalization Formulat. WallStreetMojo, 2023. Available online: https://www.wallstreetmojo.com/normalization-
formula/ (accessed on 2 February 2023).

17. F2005636. Evaluating Machine Learning Models Using Hyperparameter Tuning. Available online: https://www.analyticsvidhya.
com/blog/2021/04/evaluating-machine-learning-models-hyperparameter-tuning/ (accessed on 12 April 2021).

18. Bhandari, A. Everything you should know about Confusion Matrix for Machine Learning. Anal. Vidya 2022, 3, 10.
19. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014. Available online: https://arxiv.org/pdf/1412.6980.pdf

(accessed on 11 November 2022).
20. Herrmann, J.; Llima, S.M.; Remm, A.; Zapletal, P.; McMahon, N.A.; Scarato, C.; Swiadek, F.; Andersen, C.K.; Hellings, C.; Krinner,

S.; et al. Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum
phases. Nat. Commun. 2022, 13, 4144. [CrossRef] [PubMed]

21. Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45,
427–437. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.researchgate.net/publication/303933051_Machine_learning_techniques_for_structural_health_monitoring
https://www.researchgate.net/publication/303933051_Machine_learning_techniques_for_structural_health_monitoring
https://www.arm.com/resources/guide/machine-learning-on-cortex-m
https://www.arm.com/resources/guide/machine-learning-on-cortex-m
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://www.sciencedirect.com/science/article/pii/S187770581403522X
https://www.sciencedirect.com/science/article/pii/S187770581403522X
https://doi.org/10.1016/j.proeng.2014.12.452
https://doi.org/10.1016/j.compeleceng.2018.07.025
https://doi.org/10.4236/jcc.2022.107001
https://doi.org/10.1016/j.cogsys.2018.03.002
https://doi.org/10.3390/s19153280
https://machinelearningmastery.com/an-introduction-to-recurrent-neural-networks-and-the-math-that-powers-them/#:~:text=A%20recurrent%20neural%20network%20
https://machinelearningmastery.com/an-introduction-to-recurrent-neural-networks-and-the-math-that-powers-them/#:~:text=A%20recurrent%20neural%20network%20
https://doi.org/10.1007/s13244-018-0639-9
https://www.ncbi.nlm.nih.gov/pubmed/29934920
https://doi.org/10.1088/1742-6596/1201/1/012052
https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/
https://doi.org/10.3390/en16062915
https://www.wallstreetmojo.com/normalization-formula/
https://www.wallstreetmojo.com/normalization-formula/
https://www.analyticsvidhya.com/blog/2021/04/evaluating-machine-learning-models-hyperparameter-tuning/
https://www.analyticsvidhya.com/blog/2021/04/evaluating-machine-learning-models-hyperparameter-tuning/
https://arxiv.org/pdf/1412.6980.pdf
https://doi.org/10.1038/s41467-022-31679-5
https://www.ncbi.nlm.nih.gov/pubmed/35842418
https://doi.org/10.1016/j.ipm.2009.03.002

	Introduction
	Materials and Methods
	Overall Block Diagram of the Project
	Overview: Machine Learning Methods
	Advantages of CNNs for Vibration Signal Analysis
	Convolutional Neutral Network
	Design and Development

	Results
	CNN Model Accuracy and Loss
	ML-Based Models Validation
	Model Comparison with Traditional ML-Based Models
	Model Deployment on Edge Device

	Discussion
	Conclusions
	Future Work
	Appendix A
	References

