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Abstract

Mean plane measurements of the Kuiper Belt from observational data are of interest for their potential to test
dynamical models of the solar system. Recent measurements have yielded inconsistent results. Here we report a
measurement of the Kuiper Belt’s mean plane with a sample size more than twice as large as in previous
measurements. The sample of interest is the nonresonant Kuiper Belt objects, which we identify by using machine
learning on the observed Kuiper Belt population whose orbits are well determined. We estimate the measurement
error with a Monte Carlo procedure. We find that the overall mean plane of the nonresonant Kuiper Belt
(semimajor axis range of 35–150 au) and also that of the classical Kuiper Belt (semimajor axis range of 42–48 au)
are both close to (within ∼0°.7) but distinguishable from the invariable plane of the solar system to greater than
99.7% confidence. When binning the sample into smaller semimajor axis bins, we find the measured mean plane is
mostly consistent with both the invariable plane and the theoretically expected Laplace surface forced by the
known planets. Statistically significant discrepancies are found only in the semimajor axis ranges 40.3–42 au and
45–50 au; these ranges are in proximity to the ν8 secular resonance and Neptune’s 2:1 mean motion resonance
where the theory for the Laplace surface is likely to be inaccurate. These results do not support a previously
reported anomalous warp at semimajor axes above 50 au.

Unified Astronomy Thesaurus concepts: Classical Kuiper belt objects (250); Kuiper belt (893); Orbital theory
(1182); Celestial mechanics (211)

Supporting material: machine-readable table

1. Introduction

Chiang & Choi (2008) posed the question:“If we could map,
at fixed time, the instantaneous locations in three-dimensional
space of all Kuiper Belt objects [KBOs], on what two-
dimensional surface would the density of KBOs be greatest?”
The authors demonstrated that this surface, also known as the
Laplace surface, is given by the Laplace–Lagrange linear
secular theory (Murray & Dermott 1999). This theory is based
on the time-variable forcing arising from the planets’ secular
variations; consequently, the local normal on the Laplace
surface varies only slowly with time; secular timescales for
KBOs are much longer than ∼104 yr. The Laplace surface for
particles within the Kuiper Belt is not a flat plane because it has
warps owing to secular resonances in certain localized regions
of semimajor axes within the belt where the rate of orbit pole
precession coincides with one of the inclination secular mode
frequencies of the planets; at large semimajor axes the Laplace
surface converges to the solar system’s invariable plane. The
invariable plane is the flat plane normal to the total orbital
angular momentum of the solar system; this plane has an
inclination of 1°.58 and a longitude of ascending node of
107°.58 with respect to the J2000 ecliptic/equinox frame
(Souami & Souchay 2012).

As a foil to the Laplace surface, previous studies have also
considered the solar system’s invariable plane as a candidate

for the mean plane of the Kuiper Belt. The mean plane
measured from observational data of KBOs is of interest for its
potential to test dynamical models of the solar system and to
reveal unmodeled perturbations when compared with theor-
etical predictions.
Previous measurements of the Kuiper Belt mean plane have

produced inconsistent results. Brown & Pan (2004) reported a
mean plane of (i0, Ω0)= (1°.86, 81°.6), where i0 and Ω0 are,
respectively, the inclination and longitude of the ascending
node of the plane in J2000 coordinates. With a measurement
error of 0°.37 in the pole position of the mean plane, this is
consistent with the Laplace surface at semimajor axis a= 44 au
(the median semimajor axis of their sample) but inconsistent (at
more than 99.7% confidence) with the invariable plane of the
solar system as well as the orbital planes of Neptune and
Jupiter. Elliot et al. (2005) used five separate methods to
measure the mean plane of the Kuiper Belt; they reported i0 in
the range 1°.65–2°.49 and Ω0 in the range 97°.4–104°.0, with a
preferred value of (i0, Ω0)= (1°.51± 0°.26, 100°.0± 8°.8). They
rejected the Laplace surface at 99.7% confidence as the Kuiper
Belt mean plane, but did not reject the invariable plane. Chiang
& Choi (2008) measured the mean plane for two small samples
of KBOs near a= 38 au and a= 43 au and concluded that they
could not reject either the Laplace surface or the invariable
plane for either sample. After a gap of more than a decade, the
next measurement of the Kuiper Belt’s mean plane was
reported in Volk & Malhotra (2017; hereafter VM17) when the
observed sample of KBOs with well-determined orbits (<5%
semimajor axis uncertainty, observed over three or more
oppositions) had grown to 931. These authors carefully
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identified resonant KBOs and discarded them from the mean
plane measurement sample (because the assumptions of
Laplace theory are violated for particles in mean motion
resonances). VM17 reported an overall mean plane of (i0,
Ω0)= (1°.8, 77°) for the classical Kuiper Belt, i.e., the sample
of nonresonant KBOs in the semimajor axis range 42–48 au.
For smaller semimajor axis bins, their mean plane measure-
ments in the semimajor axis range of 35–45 au were consistent
with the Laplace surface, notably including the detection of the
theoretically predicted warp near a= 40 au; save for that warp,
the mean plane in this range was also consistent with the
invariable plane. However, beyond a= 50 au, VM17 measured
mean planes that were strongly warped away from the
predicted Laplace surface and inconsistent with both the
Laplace surface and the invariable plane at the 97%–99%
confidence level. The most recent measurement of the Kuiper
Belt’s mean plane, by Van Laerhoven et al. (2019), was based
on a sample of KBOs discovered in two specific observational
surveys with well-characterized selection biases. These authors
rejected the invariable plane and did not reject the Laplace
surface for semimajor axes below 44.4 au; at larger semimajor
axes both planes were accepted. The significant warp of the
mean plane of the distant Kuiper Belt, beyond a≈ 50,
measured by VM17 but not detected by Van Laerhoven et al.
(2019) is an open puzzle in the literature.

Since VM17 published their work, the sample of known
nonresonant KBOs with well-determined orbits, semimajor
axes between 35 and 150 au, and perihelia above the semimajor
axis of Neptune has nearly doubled, growing from 931 to 1812.
Figure 1 shows a scatter plot of the semimajor axes and ecliptic
inclinations of these samples. In the present work, we revisit
the measurement of the Kuiper Belt’s mean plane with this
larger sample with the goal to test the reproducibility of VM17ʼs
results. In Section 2, we briefly describe the theoretical
background for the Laplace surface. In the next two sections,
we describe the method for measuring the mean plane from
observations with generally unknown biases (Section 3), and a
Monte Carlo method for estimating the uncertainty of this
measurement (Section 4). In Section 5, we describe the
machine-learning tool used for identifying the sample of
nonresonant KBOs. Our results are presented and discussed in
Section 6.

2. Laplace Surface

Though their measurements of the mean plane differ,
researchers including VM17, Chiang & Choi (2008), and
Brown & Pan (2004) all start with the premise that for KBOs
with perihelia outside the orbit of Neptune, the theoretically
expected mean plane is adequately described by Laplace
theory, i.e., the linear secular perturbation theory as set forth in
Murray & Dermott (1999). In this approximation, the planetary
perturbations on a test particle are orbit-averaged and the
perturbing potential (called the “disturbing function”) is
truncated to the first order in the planetary masses and to the
second order in eccentricities and inclinations. It then follows
from Lagrange’s equations for the variation of the orbital
elements that the test particle’s semimajor axis is constant,
while its orbital eccentricity and the orientation of its orbit vary
quasiperiodically with time over secular timescales. Our
interest here is in the orbit plane, which is described by two
angular elements, the inclination, i, and the longitude of
ascending node, Ω. The unit vector, ĥ, normal to the orbit plane

can be expressed in terms of these elements (Equation (5)). The
Laplace theory expositions in the literature use the more
convenient two-component vector, the so-called “inclination
vector” defined as

q p i, sin cos , sin . 1( ) ( ) ( )= W W

Laplace theory yields the solution of the linear secular
equations for the test particle in which (q, p) can be written as a
sum of two parts

q p q p q p, , , . 20 0 1 1( ) ( ) ( ) ( )= +

The first part, q p i, sin cos , sin0 0 0 0 0( ) ( )= W W , is called the
“forced inclination vector” and defines the Laplace surface; it is
determined by the masses and semimajor axes of the planets
and their instantaneous orbital planes, as well as the semimajor
axis of the test particle. The second part,
q p i, sin cos , sin1 1 1 1 1( ) ( )= W W , called the “free inclination
vector,” is the remaining part of the total inclination vector; it
is determined by the initial conditions. The Laplace surface
changes over secular time, and its time variation is given by a
superposition of the secular modes of the inclination vectors of
the planets. The free inclination vector precesses around the
Laplace surface at a constant angular rate: the free inclination i1
remains constant and the free longitude of node Ω1 circulates.
As the orbit plane of a KBO precesses around its local Laplace
surface, it follows that the mean plane of a large population of
test particles in a small semimajor axis range (with dispersed
orbit planes) is described by the local Laplace surface, as
shown in simulations by Murray & Dermott (1999) and Chiang
& Choi (2008).
For later reference, we note that the unit vector, n0ˆ , normal to

the local Laplace surface is related to the forced inclination
vector as

n p q p q, , 1 . 30 0 0 0
2

0
2ˆ ( ) ( )= - - -

We briefly make a note about heliocentric versus barycentric
orbital elements. The Laplace surface on 2023 February 20 for
semimajor axes outside Neptune’s orbit, shown in Figure 4, is
computed according to the theory described in Murray &
Dermott (1999), and using data for the J2000 ecliptic/equinox
barycentric planetary elements retrieved from JPL Horizons
and planetary masses from Standish (1995). Laplace theory as
set forth in Murray & Dermott (1999) and other sources
describes the Laplace surface in heliocentric coordinates, rather
than barycentric coordinates. The portion of the disturbing
function used to develop the theory depends on the eccentricity,
inclination, longitude of node, longitude of pericenter, and
semimajor axis. Only the semimajor axis is affected by the
heliocentric-to-barycentric conversion. The heliocentric semi-
major axis has short-period oscillations caused by the motions
of planets interior to the Kuiper Belt; these average to zero over
secular timescales. Barycentric elements, which lack those
semimajor axis oscillations, are therefore more convenient and
no less accurate than heliocentric coordinates for high-a
Laplace surface calculations. As a practical matter, the Laplace
surface for orbits outside Neptune’s is nearly identical in
heliocentric and barycentric coordinates, except in close
proximity to the secular resonance locations near (barycentric)
semimajor axis values of 35 and 40.3 au.
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3. Mean Plane Measurement

At first sight, it would seem reasonable simply to average the
total inclination vectors of a group of KBOs to find their mean
plane. Stated more carefully, one could average the unit vectors
normal to the orbit planes of the KBOs to find the unit vector
normal to their mean plane. However, without a complete or
fair sample, the result of such a calculation will reflect the
biases of the observational surveys that produced the sample
(Brown & Pan 2004; Elliot et al. 2005; VM17). Observational
surveys not only have brightness limits, but surveys of the
outer solar system for KBOs also have limited and nonuniform
coverage in ecliptic latitude and ecliptic longitude. The
resulting KBO samples will yield average planes biased toward
the observed regions, whatever the true population mean plane
may be (VM17).

To mitigate the observational biases in catalogs of KBOs,
Brown & Pan (2004) proposed that the unbiased mean plane of
the Kuiper Belt could be identified with the plane of symmetry
of the vectors, vt, of KBOs’ space velocities projected on the
heliocentric celestial sphere; vt can be called the sky-plane
velocity vector. The instantaneous unit vector, vt̂, along the
direction of a KBO’s sky-plane velocity vector can be
computed from the KBO’s observational data pertaining to

its orbital plane and its position in the sky at some epoch, as
follows. Denoting with ĥ the unit vector normal to the orbit
plane, and with r̂ the unit vector along the radial direction to
the KBO’s heliocentric position, then

v h r. 4t̂
ˆ ˆ ( )= ´

The unit vector, ĥ is found from a KBO’s inclination and
longitude of ascending node, i and Ω, and the unit vector r̂ is
found from its J2000 ecliptic latitude and ecliptic longitude, β
and λ, as

h i i isin sin , sin cos , cos , 5ˆ ( ) ( )= W - W

r cos cos , cos sin , sin . 6ˆ ( ) ( )b l b l b=

VM17 described a simpler implementation of the method of
Brown & Pan (2004) for computing the mean plane of a KBO
sample from the sky-plane velocity vectors. The sky-plane
velocity of a KBO orbiting exactly on the mean plane will
always be normal to the unit vector n̂ defining the normal to the
mean plane, so that

n v 0. 7tˆ · ˆ ( )=

The mean plane can then be computed as the plane whose orbit
normal is most normal to most of the KBO sky-plane

Figure 1. Semimajor axis, inclination, and eccentricity of the 931 nonresonant KBOs with well-determined orbits from 35 < a < 150 au from VM17 (red +), and the
sample of 1812 nonresonant KBOs with well-determined orbits from 35 < a < 150 au, with q > 30.34 au, in this study (blue dots). Orbital elements for the 1812
nonresonant KBOs are from JPL Solar System Dynamics Group (2022) as explained in Section 5.
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velocities, i.e., the plane that minimizes

n vS . 8
i

N

t i
1

,∣ ˆ · ˆ ∣ ( )å=
=

The function S may be minimized by a grid search in the (q, p)
parameter space for a computationally simple, though grid-
dependent, method of finding the mean plane. That is, we
search on a 700× 700 grid with q p 0.35min min= =- and
q p 0.35max max= =+ . The precision of the mean plane
identification is limited by the grid spacing. With our choice
of grid, the precision of the pole position of the computed mean
plane is 0°.1. This is small compared to the confidence
intervals that are computed later. The mean plane (q0, p0) is
trivially converted to an inclination and longitude of node (i0,
Ω0).

Brown & Pan (2004) and VM17 showed, with simulations of
biased synthetic samples, that this method of estimating the
midplane by using sky-plane velocity vectors substantially
mitigates the systematic error and recovers the true mean pole
more reliably than simply averaging the orbit pole unit vectors.
For example, when this method is applied to a synthetic sample
confined to only a small patch of the sky, it recovers the true
mean pole whereas the average of the unit pole vectors is
systematically offset from the true mean pole (see, e.g., Figure
8 in VM17). A present disadvantage of this method is that the
confidence limits of the measured mean plane are not
straightforward to compute (discussed in the next section).
The performance of this method and its limitations and
reliability with different survey designs merit further
exploration.

4. Mean Plane Measurement Uncertainty

The method of measuring the mean plane as the plane of
symmetry of the sky-plane motion vectors does not render itself
to a straightforward method for computing the measurement
uncertainty. We follow the method of Brown & Pan (2004) and
VM17, who adopted a heuristic approach which assumes a
statistical model of the intrinsic inclination distribution rather
than fitting for it, and constructs Monte Carlo simulations to
generate synthetic samples which approximately account for
the biases in the observed sample. In brief, this approach is as
follows. For a given observational sample of NK nonresonant
KBOs, we generate a new list of NK simulated objects. The
simulated objects are assigned orbital elements drawn
randomly from a statistical model of their intrinsic distribution.
Each random draw is accepted or rejected by subjecting it to a
comparison with the properties of the observed sample; this
approximately accounts for the selection biases in the
observational data. With a simulated sample in hand, we
compute its mean plane, and repeat NR times with additional
simulated samples. In this way, we generate the statistics of the
mean plane. We use the distribution of these NR Monte-Carlo-
sampled mean planes to estimate the 68.2%, 95.4%, and 99.7%
confidence error bars on the measured mean plane. A more
detailed description of these Monte Carlo simulations is given
below.

In each of the NR simulated samples, the ith simulated object
is found by first randomly selecting the jth real object from the
observational KBO sample, where j is an integer randomly
selected from the discrete uniform distribution on [1, NK].
(How the objects are ordered, 1−NK, does not matter.) We

then choose its semimajor axis ai randomly from the
continuous uniform distribution on [0.99aj, 1.01aj), and we
choose its eccentricity ei randomly from the continuous
uniform distribution on [0.95ej, 1.05ej), so that the model
population has approximately the same semimajor axis and
eccentricity distribution as the observed population.
The most important assumption is a model for the intrinsic

distribution of free inclinations. Our current best understanding
of the intrinsic inclination distribution in the Kuiper Belt is
found in estimates obtained from a few well-characterized
observational campaigns, such as the Canada-France Ecliptic
Plane Survey (CFEPS; Petit et al. 2011, 2017) and the Outer
solar systems Origins Survey (OSSOS; Bannister et al. 2018).
The data from these surveys are more effectively debiased with
the use of survey simulators. They are then fit to physically
motivated models for the intrinsic inclination distribution
function. These models use the Rayleigh distribution function,
or a combination of two Rayleigh distributions, one with a
narrow width and one with a wider width, to accommodate
models for different dynamical classes of KBOs (e.g.,
Brown 2001; Petit et al. 2011). VM17 adopted these models
for the intrinsic distribution of free inclinations; we refer the
reader to this paper for a detailed description. Van Laerhoven
et al. (2019) obtained debiased estimates with slightly updated
data and reported very similar results for the intrinsic
inclination distribution models.
For the purposes of our goal to test and update the results of

VM17 with the larger current observational sample of cataloged
KBOs, we follow the choices made in that work for the
functional form and parameters of the model distribution of
free inclinations. Thus, as in VM17, for semimajor axis bins
above 50 au we draw free inclinations from a Rayleigh
distribution with scale parameter sin 18 ;s =  below 50 au,
the free inclinations are drawn from a mixture of two Rayleigh
distributions with scale parameters sin 31s =  and

sin 132s = . If the selected jth real object has an inclination
below 5° and a random number drawn from the continuous
uniform distribution on [0,1) is less than 0.9, we set σ= σ1;
otherwise σ= σ2. VM17 used this rule to generate simulated
objects approximately evenly split between the low-inclination
and high-inclination Rayleigh distributions. The longitude of
ascending node of the free inclination vector is drawn randomly
from the continuous uniform distribution on [0, 2π). The total
inclination vector of the simulated object is then computed as
the sum of this randomly generated free inclination vector and
the inclination vector of the mean plane of the NK objects in the
observational sample, as computed in Section 3; that is

q p q p q p, , , , 9i i i i0 0 1, 1,( ) ( ) ( ) ( )= +

where (q0, p0) is the inclination vector of the mean plane of the
NK observed objects and (q1,i, p1,i) is the randomly generated
free inclination vector. The remaining angular orbital elements
—the mean anomaly and the argument of pericenter—are each
drawn randomly and independently from the continuous
uniform distribution on [0, 2π). With all the orbital elements
of the simulated object in hand, we then compute its ecliptic
latitude βi and ecliptic longitude λi. Simulated objects are
generated until there is exactly one simulated (βi, λi) pair for
each (β, λ) pair in the observational sample, where, as in VM17,
an acceptable match is within one degree in β and within five
degrees in λ. Unfortunately, some objects (typically one or two
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per semimajor axis bin) are difficult to match in this manner. If
an object has not been matched after 107 random draws, we
accept the following draw and move on to the next object. As
explained in VM17 and Brown & Pan (2004), this procedure of
generating the synthetic samples by matching their sky
locations to those of the real observational sample approxi-
mately accounts for the selection biases present in the real
observational sample, subject to the key assumption that each
patch of sky in ecliptic coordinates (where a real object is
found) has been thoroughly observed. It follows from this
assumption that a true population will have the same number of
objects in each patch of sky as the observed catalog, and we
roughly control for the brightness and magnitude biases of the
many surveys that comprise the entire KBO catalog by
requiring the semimajor axis and eccentricity of each synthetic
object to be close to that of a real object.

Having generated NK simulated objects, we compute the
mean plane of the simulated sample as described in Section 3.
We repeat this procedure NR times, producing a set of
simulated mean planes (q0,r, p0,r), where r is an integer from
1 to NR. We use the R command DATAELLIPSE to compute the
68.2%, 95.4%, and 99.7% covariance ellipses of the set of
simulated mean planes. We are now ready to produce
uncertainty intervals for the inclination and longitude of
ascending node of the mean plane of the observational sample,
i0 and Ω0. If these were independent quantities defined on
infinite domains, we would simply report low and high
percentiles from the inclinations and longitudes of ascending
node of the NR synthetic mean planes, but both i0 and Ω0 have
finite angular domains. Instead, we use the 68.2% (95.4%,
99.7%) covariance ellipse from the simulated mean planes (q0,r,
p0,r) and take the maximum and minimum values of i0 and Ω0

on the ellipse as the 68.2% (95.4%, 99.7%) confidence
intervals for the inclination and longitude of node of the mean
plane of the observational sample. If the covariance ellipse
surrounds the origin in the (q, p) plane, the confidence interval
for Ω0 spans the entire circle, [0, 2π), and the confidence
interval for i0 has its lower endpoint at zero inclination. We
also report a single number, σi, to describe the uncertainty of
the pole position, in degrees, on the celestial sphere, computed
as

a barcsin
1

2
, 10i ( ) ( )s = +

where a and b are, respectively, the semimajor and semiminor
axes of the 68.2% covariance ellipse of the simulated mean
planes.

For each semimajor axis bin, NR= 40,000 synthetic mean
planes are computed, which is sufficient to get convergence of
the confidence intervals. Note that our grid search computes i0
and Ω0 to a precision of ∼0°.1 and ∼1°, respectively, but our
Monte Carlo procedure produces 68.2% confidence intervals of
these parameters that are an order of magnitude larger; the latter
is the 1σ uncertainty of the measured mean plane.

5. Sample Selection

Laplace theory has been developed with the assumption that
no two planets in the system are in mean motion resonances
with each other, and no test particle is in a mean motion
resonance with any planet. Before the mean plane of any

observational population of KBOs can be computed for
comparison with the Laplace surface, all resonant KBOs must
be identified and removed.
To identify a suitable sample of KBOs with which we could

calculate the mean plane, we first used the JPL Solar System
Dynamics Group’s Small Body Database query to retrieve all
asteroid-type (as opposed to comet-type) objects with e< 1 and
a heliocentric semimajor axis constrained to 30< a< 200 au.
On 2023 February 20, this returned heliocentric elements for
4149 objects. We eliminated all objects with a fractional
semimajor axis uncertainty σa/a> 5%, as well as 11
noncometary objects where the semimajor axis uncertainty
was unstated. Next, we downloaded the MPCORB.DAT
database from the Minor Planet Center (MPC) on 2023
February 20 and cross-referenced it against the Small Body
Database to eliminate all objects that have been observed for
fewer than the three oppositions recommended by Gladman
et al. (2008) and eliminated all objects with cometary
designations. For each of the remaining objects, we retrieved
barycentric elements on 2023 February 20 from JPL Horizons
using the Python package ASTROQUERY (Ginsburg et al.
2019). We then eliminated any remaining comets according to
the criteria in Gladman et al. (2008), i.e., objects with a
Tisserand parameter of TJ< 3.05 and a perihelion of
q< 7.35 au. Next, we enforced barycentric semimajor axis
limits of a< 150 au. We introduced a perihelion cutoff of
q> 30.34 au (which is equal to the barycentric aphelion
distance of Neptune on 2023 February 20) to eliminate any
remaining planet-crossing objects. We then eliminated objects
with barycentric a> 150 au. After the initial stages of sample
selection, 2810 objects remained. We classified the remaining
objects as resonant or nonresonant as described below, and
eliminated the resonant objects from the sample.
The defining property of a resonant object is the libration of

its critical resonance angle. The generally accepted method for
identifying resonant KBOs in a sample population is to
integrate the orbit of each KBO in an accurate n-body
integrator, including perturbations from all the planets,
recording all the resonant angles of interest, and then examine
plots of the time series of the resonant angles by eye to look for
persistent librations. The orbits must be integrated long enough
to detect the libration of the longest-period resonant angles.
Standard resonance identification methods, most notably that of
Gladman et al. (2008), integrate for 10Myr. For the longest-
period angles, for angles that librate over large fractions of the
circle, or for objects that alternate between libration and
circulation, it may be difficult to distinguish resonant objects
from nonresonant objects. Uncertainties in KBO orbital
elements can also complicate resonant classification.
The current count of KBOs with well-determined orbits to

classify (2810 objects) is rather large for efficient classification
by eye. When assigning resonant classification by eye, it is
important to maintain mental consistency so that objects at the
beginning, middle, and end of the list receive the same scrutiny.
Consistency of resonant evaluations across the sample may be
improved by repeatedly shuffling the sample and reclassifying
the objects, then accepting the most common classification for
each object, or by deliberately evaluating each object according
to a checklist of features that can be seen by eye. If a checklist
is to be used, however, it is faster, more reliable, and more
reproducible to automate the process by encoding those
features in a classification algorithm (one example is Yu
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et al. 2018). The machine-classified objects may then be
reexamined by eye to check for errors, if desired. Because new
generations of telescopes are expected to increase dramatically
the number of known KBOs in the upcoming decade, it is
desirable to have an automated method to classify KBOs.

Smullen & Volk (2020) used the criteria of Gladman et al.
(2008) to classify 2305 KBOs from the MPC as of 2016
October 20 after fitting new orbits to each object and
integrating them for 10Myr. They then used the Python
machine-learning package SCIKIT-LEARN (Pedregosa et al.
2011) to develop a gradient boosting classifier for the
classification of KBOs as either resonant, classical, detached,
or scattering, training the said classifier upon the orbits newly
classified using the Gladman et al. (2008) criteria. Their code
integrates a KBO orbit from initial barycentric elements in the
n-body integrator REBOUND (Rein & Liu 2012) for 100 kyr and
records 55 features of the orbit for use by the machine-learning
algorithm. Full details of the settings used for the machine-
learning algorithm, and a full explanation and justification of
the 55 recorded features, are given in their paper. This
machine-learning classifier was demonstrated to reproduce with
97% accuracy the classifications of their testing sample of 542
objects while using orbit integrations of only 1% the length of
the 10Myr standard. Smullen & Volk (2020) posted user-
friendly PYTHON sample code and training data to GitHub to
allow other researchers to use their gradient boosting classifier
to classify KBOs by simply providing the barycentric orbital
elements as inputs.

We downloaded the PYTHON sample code and training data
(KBO_features.csv) from the Smullen & Volk (2020) GitHub
repository. We used their gradient boosting classifier without
modification, trained it on the same training set they provided,
exactly as in the sample code, and used it to classify our sample
of 2810 KBOs remaining after the down-selection procedure
described above.

To account for orbital uncertainties, we used the JPL Small
Body Database API (JPL Solar System Dynamics Group 2022)
to download a JSON file for each object to be classified. The
JSON file contained a nominal heliocentric orbital state, a
6 × 6 covariance matrix for the heliocentric orbit, and an epoch
for the nominal orbit and the covariance matrix. The
heliocentric orbital elements and their covariance were given
as e, q, tp, Ω, ω, and i, i.e., the eccentricity, perihelion distance
in au, time of perihelion passage (Julian date), longitude of the
ascending node, argument of perihelion, and inclination, where
all angles are in degrees and referenced to the J2000 plane, and
the epoch is a Julian date. JSON covariances for two of the
2810 objects were unavailable, so we could only classify 2808
objects.

We generated 301 heliocentric orbital element sets for each
object: the nominal orbit and 300 clones from a Gaussian
distribution centered at the nominal orbit, from the given
covariance. The mean anomaly for each orbital element set was
computed as the mean motion for the semimajor axis, times the
elapsed time between the time of perihelion passage and the
epoch. We used Horizons to download heliocentric orbital
elements for the giant planets at each epoch. For each of the
2808 objects, we then built 301 REBOUND simulations
consisting of the outer planets at the appropriate epoch and
the orbital element set of the nominal orbit or the clone at the
same epoch, treating the planets as massive particles and the
KBO or the clone as a massless test particle.
Each REBOUND simulation was then classified as classical,

scattering, detached, or resonant using the unmodified Smullen
& Volk (2020) gradient boosting classifier. Of the 2808 cloned
objects, 1812 had zero clones classified as resonant, 304 had
1–300 clones classified as resonant, and 692 had all 301 clones
classified as resonant. To be absolutely sure no resonant objects
contaminated our sample, we only accepted the 1812 objects
for which no clones were resonant. Had we selected a different
cutoff (50% resonant clones), our sample size would have been
150 objects larger. A further classification of the nonresonant
objects as classical, detached, or scattering was not needed for
our mean plane computations, so we did not further examine
the classifications of the clones. Mean plane calculations then
proceeded using the nominal orbits of the remaining objects.
The complete set of 1812 nonresonant KBOs is provided
online. A small sample is shown in Table 1. Nonresonant KBO
counts are given by the semimajor axis bin in Table 2. This
table also contains KBO counts by bin for VM17, for
comparison. The online supplementary material for this paper
includes a ZIP archive with the JSON files that contain the JPL
covariance matrix for each object.
Note that Table 1 is given for illustration only. Neither the

low precision of the orbital elements in the printed table nor the
high precision of the elements in the electronic table represents
the true statistical precision of the JPL Horizons orbits. This is
because the uncertainties reported in the JSON covariance
matrix are not straightforwardly related to the uncertainties of
the orbital elements reported in Table 1. The JPL covariance
matrix is given in a different set of orbital elements that must be
transformed to the standard set (q to a, tp to M). Table 1 also
contains elements (r, λ, β) that are not linearly related to the
standard set. Also, the JPL covariance matrix is given at a
different epoch for each object, and Table 1 reports the
elements of each object at a common epoch. It is well known
that Gaussian uncertainty regions around a nominal orbit do not
stay Gaussian as the nominal orbit is integrated forward or

Table 1
Sample Table of Nonresonant KBOs

MPC ID a (au) e i Ω ω M r (au) β λ

15760 43.9 0.07 2 359 3 36 41.5 2 43
15807 43.7 0.06 1 177 305 82 43.6 0 211
15874 83.4 0.58 24 218 185 10 39.1 −18 84
15883 47.0 0.21 19 127 301 76 46.6 12 166
16684 44.1 0.05 4 26 252 333 42.1 −2 247

Note. Nonresonant KBOs from 34 to 150 au, from the JPL and MPC databases as of 2023 February 20, in barycentric elements at the epoch of 2023 February 20. All
angles are given in degrees. a, e, i, ω, M, and r are provided by JPL Horizons, and β and λ are calculated from Equation (6). The complete table is available online.

(This table is available in its entirety in machine-readable form.)
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backwards in time, although the deviation from Gaussianity is
small for small elapsed times.

6. Results and Discussion

With the nonresonant objects identified as in Section 5, and
following the mean plane calculation method described in
Section 3, and its confidence interval calculation method
described in Section 4, the mean planes and confidence
intervals we found are shown in graphical form in Figures 2–4,
and tabulated in Table 2.

In Figure 2, the left panel shows the results for the classical
Kuiper Belt (42–48 au, 1242 objects), the center panel shows
the results for the entire Kuiper Belt (35–150 au, 1812 objects),
and the right panel shows the results for the entire Kuiper Belt
with the classical region excluded (570 objects). The best-fit
mean plane is shown as a dark green +, and the 68.2%, 95.4%,
and 99.7% confidence ellipses are also indicated in dark green.
For comparison, the semimajor-axis-dependent Laplace surface
(from linear secular theory as developed in Murray &
Dermott 1999, recomputed with updated planetary parameters

for the epoch 2023 February 20) is indicated in blue. For
context, we also indicate the location of the invariable plane
with a black x. The J2000 ecliptic/equinox pole is located at
the origin. We observe that the classical region dominates the
results: when it is removed, i0 is nearly unchanged, but Ω0

shifts by +67°, and the dispersion σi of the synthetic mean
planes more than doubles.
In Figure 3, we plot the results for the mean planes computed

at higher resolution in semimajor axis: each panel shows the
results for a single semimajor axis bin from Table 2. As in
Figure 2, we plot the measured mean plane and its uncertainty
distribution, and indicate the invariable plane and the Laplace
surface. In these panels, we also indicate the best-fit mean plane
from VM17 as a magenta +, with the 68.2% confidence ellipses
from VM17 in magenta and with estimated 95.4% and 99.7%
confidence ellipses scaled from the 68.2% ellipses. Note that
the Laplace surface appears as a very concentrated set of dots in
most panels, but in panels (a) and (b) it is an extended quasi-
linear set of dots owing to the warps caused by the ν17 and the
ν18 secular resonances, respectively. As a increases from the
lower boundary of each semimajor axis bin to its upper
boundary, the Laplace surface traces these paths: in panel (a),
the trace begins from the left, at high i and Ω≈ 120°, passes
near the origin with i≈ 1°.8, and exits to the lower right; in
panel (b), the trace begins at the upper right and approaches the
invariable plane.
Our results for the mean plane inclination and longitude of

node, and their 68.2% confidence intervals for each semimajor
axis bin are tabulated in Table 2. These are also plotted in
Figure 4 as a function of semimajor axis. The best-fit mean
plane results are in green, where the horizontal error bars
indicate the width of the semimajor axis bin and the vertical
error bars indicate the 68.2% confidence interval. For
comparison, we plot the Laplace surface (varying with
semimajor axis) in blue and the invariable plane is indicated
by the black horizontal line. We also indicate the results of
VM17 in magenta (with a small horizontal offset, for legibility).
Is the measured mean plane consistent with the Laplace

surface or with the invariable plane? For the classical Kuiper
Belt from 42 to 48 au, we find the mean plane of 1242 objects
as i 1 . 60 0.4

0.3( )=  -
+ , 820 14

8( )W =  -
+ . For the entire belt from 35 to

150 au, we find the mean plane of 1812 objects as

Table 2
Measured Kuiper Belt Mean Plane

Semimajor Axis
Bin (au) Count

Count
(VM17) i0 (deg) Ω0 (deg) σi (deg)

35–40.3 92 43 3.0 2.3
1.8

-
+ 121 37

25
-
+ 1.59

40.3–42 164 82 4.1 0.9
2.3

-
+ 272 12

17
-
+ 1.40

42–43 207 100 1.6 0.7
0.8

-
+ 64 46

24
-
+ 0.81

43–44 360 186 2.1 0.6
0.6

-
+ 96 15

11
-
+ 0.54

44–45 273 141 1.8 0.7
0.6

-
+ 85 22

15
-
+ 0.59

45–48 402 194 1.3 0.4
0.7

-
+ 3 31

25
-
+ 0.60

45–50 440 217 1.4 0.4
0.8

-
+ 355 26

22
-
+ 0.59

50–80 221 125 2.0 2.0
3.2

-
+ 114 114

246
-
+ 4.02

50–150 276 162 4.1 4.1
3.1

-
+ 138 138

222
-
+ 3.66

Total (35–150) 1812 931 1.6 0.4
0.2

-
+ 82 15

6
-
+ 0.28

Classical (42–48) 1242 617 1.6 0.4
0.3

-
+ 82 14

8
-
+ 0.31

Total – classical 570 314 1.7 1.0
0.4

-
+ 149 15

39
-
+ 0.65

Note. The best fit and 68.2% confidence intervals of the measured mean
plane’s ecliptic inclination, i0, longitude of ascending node, Ω0, and the
uncertainty of the pole position, σi.

Figure 2. Kuiper Belt mean plane and its confidence ellipses in the (q, p) plane, by semimajor axis bin. Semimajor axis bins are (a) the classical belt from 42 to 48 au,
(b) the entire belt from 35–150 au, and (c) the entire belt minus the classical region. The best-fit mean plane is the dark green +. The mean planes of 40,000 Monte
Carlo samples are in light green, and the 68.2%, 95.4%, and 99.7% covariance ellipses for them are in dark green. The J2000 ecliptic/equinox pole is at the origin. The
invariable plane is the black x. The theoretical prediction (from linear secular theory) for the Laplace surface as a function of semimajor axis is plotted in blue. More
details are given in the main text.
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i 1 . 60 0.4
0.2( )=  -

+ , 820 14
8( )W =  -

+ . When we exclude the classical
region, we find the mean plane of 570 objects as
i 1 . 70 1.0

0.4( )=  -
+ , 1490 15

39( )W =  -
+ . In all three cases, this is close

to the invariable plane (respectively within 0°.7, 0°.6, and 1°.2),
but distinguishable from it at greater than 99.7% confidence, as
evident in Figure 2.

We do not comment on any distinction between the
measured mean plane and the Laplace surface for these broad
ranges, as the changing location of the Laplace surface renders
the question ill formed, but we can answer this question for the

smaller semimajor axis bins. In Table 3, we tabulate simple
acceptance/rejection decisions with respect to the invariable
plane and the Laplace surface for each semimajor axis bin. At
the 99.7% confidence level, we can only reject the invariable
plane or the Laplace surface for the bins 40.3–42, 45–48, and
45–50 au. In each of those bins, we reject both planes.
Elsewhere, both planes are consistent with the sample
population.
The discrepancy between the theoretically expected Laplace

surface and the measured mean plane in the 40.3–42 au bin

Figure 3. Kuiper Belt mean plane and its confidence ellipses in the (q, p) plane, by semimajor axis bin. Semimajor axis bins are (a) 35–40.3 au, (b) 40.3–42 au, (c)
42–43 au, (d) 43–44 au, (e) 44–45 au, (f) 45–48 au, (g) 45–50 au, (h) 50–80 au, and (i) 50–150 au. The best-fit mean plane is the dark green +. The mean planes of
40,000 Monte Carlo samples are in light green, and the 68.2%, 95.4%, and 99.7% covariance ellipses for them are in dark green. The J2000 ecliptic/equinox pole is at
the origin. The invariable plane is the black x. The best-fit mean plane from VM17 is the magenta +. The theoretical prediction (from linear secular theory) for the
Laplace surface as a function of semimajor axis is plotted in blue. More details are given in the main text. The 68.2%, 95.4%, and 99.7% covariance ellipses from
VM17 are plotted in magenta. Each subplot has the same scale, showing that an increased sample size does reduce mean plane uncertainty; in each semimajor axis bin,
we have more objects and smaller covariance ellipses than VM17, and the more heavily populated semimajor axis bins on the second row have smaller covariance
ellipses than the less heavily populated bins on the first row. The larger covariance ellipses on the third row, above 50 au, reflect the wider model inclination
distribution used for those bins.
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may arise from inaccuracies of the linear theory for the
theoretical estimate of the strong warp in proximity to the ν8
secular resonance. In the case of the 45–48 au and 45–50 au
bins, we note that both these bins are in proximity to Neptune’s
2:1 mean motion resonance but the theoretical Laplace surface
does not account for the effects of mean motion resonances.

Because our methodology closely follows that of VM17 and
our main motivation was to test the reproducibility of their
results with the updated sample of KBOs, we comment in some
detail on the comparisons between those results and ours. In

general, the results reported here have smaller measurement
uncertainties of the mean pole positions than those in VM17,
due to the larger sample sizes now available.

1. In the 35–40.3 au bin (Figure 3(a)), almost our entire
99.7% confidence ellipse falls within their 68.2%
confidence ellipse. While our 68.2% confidence ellipse
is small enough to identify Ω0 uniquely at that level of
confidence, our 99.7% ellipse surrounds the origin so we
cannot report a unique Ω0 at the higher confidence level.

Figure 4. Kuiper Belt mean plane and 68.2% confidence intervals by semimajor axis bin. The mean planes and confidence intervals from this work are in green, and
those from VM17 are in magenta. For the sake of readability, the vertical magenta and green lines have been slightly offset from each other in semimajor axis when
they would otherwise overlap. The theoretical prediction for the Laplace surface as a function of semimajor axis is plotted in blue. The invariable plane is indicated by
the horizontal black line.

Table 3
Statistical Significance of the Measured Mean Plane Compared to the Invariable Plane and Laplace Surface

Semimajor Axis Bin (au) IP (68.2%) IP (95.4%) IP (99.7%) LS (68.2%) LS (95.4%) LS (99.7%)

35–40.3 ✓ ✓ ✓ ✓ ✓ ✓

40.3–42 ... ... ... ... ... ...
42–43 ... ... ✓ ✓ ✓ ✓

43–44 ... ✓ ✓ ✓ ✓ ✓

44–45 ... ✓ ✓ ✓ ✓ ✓

45–48 ... ... ... ... ... ...
45–50 ... ... ... ... ... ...
50–80 ✓ ✓ ✓ ✓ ✓ ✓

50–150 ✓ ✓ ✓ ✓ ✓ ✓

Total (35–150) ... ... ... ✓ ✓ ✓

Classical (42–48) ... ... ... ✓ ✓ ✓

Total – classical ... ... ... ✓ ✓ ✓

Note. Acceptance/rejection decisions for invariable plane (IP) and Laplace surface (LS) compared to the measured mean plane in each semimajor axis bin. Checks are
accepted, ellipses are rejected. A check indicates that the 68.2% (95.4%, 99.7%) confidence ellipse of the measured mean plane pole for the semimajor axis bin
contains the pole of the invariable plane, or it contains the pole of the Laplace surface for any semimajor axis within the boundaries of the bin. An ellipsis indicates the
contrary.
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2. In the 40.3–42 au bin (Figure 3(b)), our 68.2% confidence
ellipse falls mostly outside theirs and is closer to the
origin, resulting in a similar 68.2% confidence interval for
Ω0 but a distinctly different (and lower) estimate and
interval for i0. Our results are closer to the Laplace
surface than theirs, but still differ from the Laplace and
invariable planes by more than 99.7% confidence. With
future increases in the size of KBO samples, splitting this
bin into two or more narrower semimajor axis ranges
could enable higher precision comparisons of the
measured and predicted Laplace surface within the
constraints of the existing theory. Without splitting the
bin, the ν18 secular resonance warps the Laplace surface
so strongly with semimajor axis that a second-order
theory is necessary for accurate predictions.

3. In the 42–43, 43–44, and 44–45 au bins (Figures 3(c), (d),
and (e), respectively), our measured mean planes fall
within their 68.2% covariance ellipses, and we produce
overlapping, though smaller, 68.2% confidence intervals.

4. In the 45–48 and 45–50 au bins (Figures 3(f) and (g),
respectively), our measured mean planes again fall within
their 68.2% covariance ellipses, but our 95.4% and 99.7%
covariance ellipses are small enough that, unlike VM17,
we reject the Laplace surface and invariable plane at all
three confidence levels. These bins are close to Neptune’s
2:1 outer mean motion resonance.

5. Most strikingly, we do not detect the strong warp VM17
reported for the distant Kuiper Belt near a> 50 au
(Figures 3(h) and (i)). In the 50–80 and 50–150 au bins,
the Laplace surface and invariable plane are both within
2°.9 of our measured mean planes, and fall within our
68.2% covariance ellipses, while for VM17 they are more
than 6° away from the measured mean planes and fall
near the 99.7% covariance ellipses.

We cannot currently rule out the invariable plane, the
Laplace surface, or even the ecliptic plane as the mean
plane of the Kuiper Belt in this region at even the 68.2%
confidence level. We note that our sample size in this
region is 272, which is 70% larger than VM17ʼs sample.
Although the best estimate of the mean plane of the
distant Kuiper Belt differs by more than 2σ in the two
studies, there is significant overlap of the 3σ confidence
ellipses of our and their measurements. Larger sample
sizes in the future would help to understand this region
better by reducing the measurement uncertainties. If we
assume, as a rule of thumb, that the size of the uncertainty
ellipse varies with the sample size as ∼N−1/2, then
reducing the measurement uncertainty by a factor of 2–3
will require a sample size 4–9 times as large. This is
likely to be achieved over the next decade as the Vera C.
Rubin Observatory carries out the Legacy Survey of
Space and Time (LSST; Ivezić et al. 2019).

We briefly comment on comparisons of our results with
those of other previous studies.

1. Chiang & Choi (2008) computed the Kuiper Belt mean
plane and its uncertainty for 10 objects with
38.09< a< 39.10 au, e< 0.1, and ecliptic inclination
i< 10°, and for 80 objects with 42.49< a< 43.50 au and
the same eccentricity and inclination cutoffs. They did
not rule out either the Laplace surface or the invariable
plane as the true Kuiper Belt plane for those two specific

semimajor axis ranges with greater than 3σ (99.7%)
confidence.

When we impose the same eccentricity and inclina-
tion restrictions on our sample, we respectively obtain 47
and 347 objects in these semimajor axis ranges. When we
compute the mean plane and its uncertainty for these
samples, we do not rule out the Laplace surface at any
confidence level for either sample, and we do not rule out
the invariable plane for either sample at a confidence
level above 68.2%. Removing the eccentricity and
semimajor axis cutoffs adds no objects to either
semimajor axis range, and does not change the outcome.

2. Van Laerhoven et al. (2019) computed the plane of the
cold classical Kuiper Belt, with uncertainties, for 107
objects in the 42.4–43.8 au bin, 82 objects in the
43.8–44.4 au bin, and 67 objects in the 44.4–47 au bin,
where a cold object was defined as having an inclination
of 4° or less relative to the Laplace surface at the center of
the semimajor axis bin (i.e., 43.1 au for the 42.4–43.8 au
bin). They computed the Kuiper Belt plane and its
uncertainties for an unspecified number of hot classical
objects between 42.4 and 47 au, where a hot object has an
inclination of 9° or more relative to the Laplace surface at
44.7 au. They repeated the computations, without inclina-
tion restrictions, for 57 objects in the 50–80 au bin and for
83 objects in the 48–150 au bin. In the 42.4–43.8 au and
43.8–44.4 au bins of cold objects, they rejected the
invariable plane but not the Laplace surface at 99%
confidence. In the 44.4–47 au bin of cold objects, the
42.4–47 au bin of hot objects and the higher-a bins
(a> 47 au), they rejected neither the invariable plane nor
the Laplace surface at 99% confidence.

When we impose the same semimajor axis and
inclination restrictions on our sample, we find 450 cold
objects in the 42.4–43.8 au range, 284 cold objects in the
43.8–44.4 au range, and 444 cold objects in the
44.4–47 au range. We find 1178 hot objects in the
42.4–47 au range, and 314 total objects in the 48–150 au
range. In each case, our sample sizes are larger than Van
Laerhoven et al. (2019)ʼs by factors of three or more. In
the 42.4–43.8 au bin of cold objects, we reject the
invariable plane at 95.4% confidence but do not reject the
Laplace surface at any confidence level. In the
43.8–44.4 au bin of cold objects, we reject the invariable
plane at 68.2% confidence but do not reject the Laplace
surface at any confidence level. These results are similar
to those shown for nearby semimajor axis bins in
Figure 3. In the 44.4–47 au bin of cold objects, we reject
neither the invariable plane nor the Laplace surface at any
confidence level. In the 42.4–47 au bin of hot objects, we
reject both the invariable plane and the Laplace surface
(for 44.7 au, the center of the bin) at well above 99.7%
confidence. As previously noted, for the higher-a bins we
reject neither the invariable plane nor the Laplace surface
at 95.4% confidence.

Our results for the cold population agree with those
of Van Laerhoven et al. (2019), but we reject at high
confidence both the invariable plane and the Laplace
surface for the hot objects in the 42.4–47 au range where
they rejected neither. Our simulated mean planes in that
bin are tightly clustered around our observed mean plane,
while theirs were tightly clustered around the invariable
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plane. We suspect that this discrepancy is explainable by
our much larger sample size; perhaps the mean plane of
their much smaller sample was located much closer to the
invariable plane.

3. Brown & Pan (2004) rejected the invariable plane at the
3σ (99.7%) confidence level for the Kuiper Belt as a
whole. We also reject it for the entire belt between
35–150 au.

4. Elliot et al. (2005) rejected the Laplace surface at the 1σ
(68.2%) confidence level for 85 “classical” objects in the
range 37.9< a< 47.0 au. In their definition, a classical
object is a nonresonant object with e� 0.2 and a
Tisserand parameter relative to Neptune of TN> 3.

When we impose the same eccentricity and Tisser-
and restrictions on this semimajor axis range, we obtain
1507 objects. When we compute the mean plane and its
uncertainty for these 1451 objects, we reject the
invariable plane at 99.7% confidence but do not reject
the Laplace surface at any confidence level. Removing
the eccentricity and Tisserand cutoffs adds no objects to
the semimajor axis range, and does not change the
outcome.

We close with the observation that future increases in the
sample sizes of outer solar system minor planets will enable
higher confidence results in measurements of the Kuiper Belt
mean plane, and should be examined for their potential to
detect the effects of unseen distant planets or other unmodeled
perturbations.
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