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Abstract

Single-molecule force spectroscopy (SMFS) instruments (e.g., magnetic and optical

tweezers) often use video tracking to measure the three-dimensional position of micron-

scale beads under an applied force. The force in these experiments is calibrated by com-

paring the bead trajectory to a thermal motion-based model with the drag coefficient, γ,

and trap spring constant, κ, as parameters. Estimating accurate parameters is compli-

cated by systematic biases from spectral distortions, the camera exposure time, parasitic

noise, and least-squares fitting methods. However, while robust calibration methods exist

that correct for these biases, they are not always used because they can be complex to

implement computationally. To address this barrier, we present Tweezepy: a Python

package for calibrating forces in SMFS video-tracking experiments. Tweezepy uses maxi-

mum likelihood estimation (MLE) to estimate parameters and their uncertainties from a

single bead trajectory via the power spectral density (PSD) and Allan variance (AV). It is

well-documented, fast, easy to use, and accounts for most common sources of biases in

SMFS video-tracking experiments. Here, we provide a comprehensive overview of Twee-

zepy’s calibration scheme, including a review of the theory underlying thermal motion-

based parameter estimates, a discussion of the PSD, AV, and MLE, and an explanation of

their implementation.

1 Introduction

Single-molecule force spectroscopy (SMFS) instruments are powerful tools with a wide variety

of experimental applications. They can be used to study polymer elasticity [1, 2] and dynamics

[3], measure bond energies and lifetimes [4, 5], assess the activity of molecular motors [6, 7],

and characterize protein and nucleic acid folding [8].

To obtain accurate and reproducible results, an essential first step in any SMFS experiment

is force calibration. Typically, force calibration relies on comparing the thermal motion of a

trapped bead to a model derived from the Langevin equation [9]. These methods have limita-

tions; notably, at times, t≲ 10−4 s, the standard Langevin equation does not account for certain
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hydrodynamic effects between the bead and the surrounding fluid [10]. Nevertheless, for lon-

ger times, these hydrodynamic effects can be ignored and the bead motion is well-described by

the overdamped Langevin equation, which only depends on two parameters: the drag coeffi-

cient of the bead, γ, and the spring constant of the trap, κ, from which the force can be

calculated.

In practice, analyzing and fitting the bead trajectory must be done carefully. Several factors,

including spectral distortions, the exposure time of the detection system (e.g., video cameras),

parasitic noise (e.g., tracking errors and mechanical drift), and biased fitting, can all lead to

inaccurate parameter estimates [11–15]. Robust calibration methods that account for all of

these factors exist, yet they can be complex to implement computationally, leading some

researchers to opt for alternative strategies [16].

Existing force-calibration software packages [17–20] only account for some sources of

bias; most notably they do not account for the finite exposure time of the camera in video-

tracking experiments. Thus, it is often up to researchers to write with their own calibration

code, of which published examples are only available in proprietary programming lan-

guages (e.g., MatLab [21] and LabView [22]), hindering easy access. As has been argued

elsewhere [23], different computational implementations, even those based on the same

algorithms, can often lead to different numerical outcomes. This lack of standardized

calibration methods and computational implementations hinders reproducibility and

makes comparison across different research groups, instruments, and experiments difficult

[24].

To help improve and standardize SMFS force calibration, we present Tweezepy: a Python

package for calibrating forces in single-molecule video-tracking experiments. Tweezepy uses

maximum likelihood estimation (MLE) to estimate parameters, and their uncertainties, from a

user-provided bead trajectory via a thermal motion-based model of the power spectral density

(PSD) or Allan variance (AV). It accounts for the most common sources of biases and parasitic

noise in SMFS video-tracking experiments. Moreover, it is written in Python, a popular and

freely available programming language, and includes documentation (https://tweezepy.

readthedocs.io) with installation instructions and tutorials. It is designed for ease-of-use, only

requiring a few lines of simple code, yet it has a versatile object-oriented framework that can

be part of a larger scripted workflow or in a Jupyter notebook as a lab journal page [25, 26]. It

is developed on GitHub (https://github.com/ianlmorgan/tweezepy) and available through the

Python package index, making it easy to distribute and install. The latest stable versions are

also archived on the Zenodo database [27].

In this article, we provide a comprehensive overview of Tweezepy’s force calibration

scheme. In Section 2, we describe several common force calibration methods and motivate the

use of the PSD and AV. In Section 3, we give closed-form expressions that account for com-

mon sources of parameter biases and parasitic noise in video-tracking experiments, such as

the finite exposure time of the detection system and tracking errors. In Section 4, we review

how to compute the experimental PSD and AV from a bead trajectory. In Section 5, we

describe how to use MLE to reduce biased fitting and estimate parameters and their uncertain-

ties. We note here that estimating parameter uncertainties using MLE has received relatively

little attention in the SMFS literature. For experienced readers that are familiar with force cali-

bration theory, we recommend skipping ahead to Section 6, which covers the computational

implementation of the calibration methods in Tweezepy. In Section 7, we use Tweezepy to cali-

brate simulated bead trajectories, and show that it accurately estimates parameters and their

uncertainties, similar to previously published results [15].
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2 Background

In a typical SMFS experiment, a polymer is tethered between a surface and a trapped bead (Fig

1A), and the polymer extension is measured while force is applied to the bead. The force on

the bead is not known a priori and needs to be calibrated.

Most force calibration methods fall into two categories: methods that calibrate against

known forces, such as Stokes drag or sedimentation [29], and methods that calibrate based on

the thermal motion of the bead [9]. The first category generally relies on intrinsic parameters

of the system (e.g. the density and viscosity of the solution) that can be difficult to measure and

often vary within an experiment, leading to large uncertainties [30].

In comparison, thermal motion-based calibration methods are advantageous because they

only rely on the temperature of the system, which is much easier to measure and control in

most experiments. These methods model the trap as a harmonic potential in which the bead

undergoes random, diffusive motion (Fig 1B–1D). The applied force is determined from the

spring constant of the trap, κ, and displacement of the bead, x, via Hooke’s law (F = −κx) [13,

31]. By the equipartition theorem, the spring constant of the trap can be related to the standard

variance of the bead position, s2
x:

s2
x ¼

kBT
k
: ð1Þ

where kB is the Boltzmann constant and T is the absolute temperature of the system [32].

While Eq 1 can theoretically give an accurate estimate of κ when the time between measure-

ments, τs, is much faster than the relaxation time of the bead, τc� γ/κ, in practice, sources of

parasitic noise always increase the variance, leading to systematic underestimates of the appar-

ent spring constant [13].

Fig 1. (A) Illustration of a magnetic tweezer SMFS experiment in which a polymer is tethered between a glass surface

and a paramagnetic bead. Collisions with water molecules drive the bead away from its equilibrium position, creating a

restoring force κx from the magnetic trap and a drag force g _x from the solution. The polymer bead system is treated as

an inverted pendulum, such that the upward force, Fmag, is determined from the height of the bead above the surface,

L, and the spring constant, κ, in the x-direction: Fmag = κL [28]. (B) Simulated random, diffusive motion of the bead’s x
position over time, t, with a drag coefficient, γ = 8.38 × 10−6 pNs/nm, and three different spring constants: κ1 =

5.3 × 10−4 pN/nm (blue), κ2 = 1.1 × 10−3 pN/nm (green), and κ3 = 2.6 × 10−3 pN/nm (orange). (C) The bead positions

follow a Gaussian distribution due to the (D) harmonic potential generated by the applied magnetic trap. (E) The

power spectral density (PSD) and (F) Allan variance (AV) of the bead trajectories in (B).

https://doi.org/10.1371/journal.pone.0262028.g001
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A better approach to thermal motion-based calibration is the PSD, which permits sepa-

ration of thermal motion from parasitic noise [13, 33]. The PSD describes the distribution

of the variance (i.e., total power) across different frequency components in a signal (Fig

1E). Invariably, parasitic noise sources have spectral signatures that differ from those of the

bead’s thermal motion. As discussed in detail below, when using the PSD to calibrate

video-tracking experiments, one needs to account for several factors, including 1) distor-

tions from aliasing and spectral leakage [11, 34], 2) low-pass filtering from the exposure

time of the camera [12], and 3) biased parameter estimates from improperly using least

squares fitting routines with experimental PSD values that do not have Gaussian-distrib-

uted errors [14].

An alternative means of thermal motion-based calibration, that also distinguishes parasitic

from thermal noise, is the AV. The AV measures the noise in the bead position over different

observation times and was designed as a means of measuring drift in a system [35] (Fig 1F). It

was originally introduced into the SMFS literature to assess optimal measurement times [36]

and low-frequency noise [37, 38]; however, it was quickly realized that the AV could be

directly used for force calibration through fitting [15]. As discussed in detail below, the AV is

naturally suited to video-tracking experiments because it intrinsically accounts for low-pass fil-

tering from the exposure time of the camera. However, as with the PSD, improperly using

least-squares fitting routines on AV values that do not have Gaussian-distributed errors will

lead to biased parameter estimates [15].

When used properly, both the PSD and AV will give accurate parameter estimates under

optimal conditions. One of these conditions is that τs should be less than τc; further, τc should

be less than the total measurement time, τm: τs< τc< τm [28]. Hence, assuming τs and γ are

constant, it is possible to perform calibrations when κ< γ/τs, so long as the measurement time

is long enough. Thus, calibration will be easier when κ is small, corresponding to small forces

or measurements of longer (and thus, more flexible) polymers.

When identifying and accounting for various sources of parasitic noise, the PSD and AV

have complementary strengths [38]. The PSD is excellent at identifying high frequency coher-

ent noise sources, such as line frequencies from power sources, while the AV is ideal for identi-

fying low frequency noise sources, such as mechanical drift. In combination, the PSD and AV

can be used to identify most forms of parasitic noise. When working with a new or modified

instrument, both should be used to determine sources of parasitic noise, which can then be

removed, or accounted for in the final fitting procedure.

3 Modeling thermal motion in the PSD and AV

3.1 Langevin dynamics

Thermal motion-based calibration methods rely on Langevin dynamics, which model the

trapped bead in an SMFS experiment as randomly diffusing in a harmonic potential. Collisions

between the bead and water molecules create a stochastic (Langevin) force, FL, that obeys the

fluctuation-dissipation relation, hFL(t + t0)FL(t)i = 2γkB Tδ(t0), where δ(t) is the Dirac delta

function. In video-tracking SMFS experiments, the bead’s motion is well-described by the

overdamped Langevin equation [15]:

kxðtÞ þ g _xðtÞ ¼ FLðtÞ: ð2Þ
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3.2 A closed-form expression for the PSD

The predicted PSD, P, of the bead trajectory at each frequency, f, follows from Fourier analysis

of Eq 2:

Pðf Þ ¼
kBT

2p2g
k

2pg

� �2

þ f 2

" # :
ð3Þ

For frequencies above the corner frequency, fc� κ/2πγ, the bead motion is purely diffusive

and the PSD can be approximated as Pðf Þ � kBT
2p2gf 2. For frequencies below the corner frequency,

the bead is constrained by the trap, and the PSD can be approximated as Pðf Þ � 2kBTg
k2 .

Eq 3 does not account for the exposure time of the camera, τ0, which introduces a low-pass

filter to the experimental bead positions. The predicted PSD that accounts for the exposure

time, PA, includes a correction function, I [12]:

PAðf Þ ¼ Pðf ÞIðf Þ: ð4Þ

where

Iðf Þ ¼
sin2ðpf t0Þ

ðpf t0Þ
2
: ð5Þ

Eq 4 also needs to be adjusted for aliasing distortions: for an instrument with a sampling

rate, fs� 1/τs, the PSD at each positive frequency, f, (0 < f< fs/2) contains the summed power

of other frequencies, nfs, for all integers, n [11]. The predicted PSD, PA,B, that accounts for

both the exposure time of the camera and aliasing distortions is given by,

PA;Bðf Þ ¼
X1

n¼� 1

PAðjf þ nfsjÞ: ð6Þ

In the special case that τ0 = τs, the sum in Eq 6 can be performed analytically to give an

exact, closed-form expression for PA,B [15]:

PA;Bðf Þ ¼
2kBTg
k3

kþ

2gfs sin
2 pf

fs

� �

sinh
k

gfs

� �

cos
2pf
fs

� �

� cosh
k

gfs

� �

0

B
B
@

1

C
C
A: ð7Þ

Most modern video cameras are designed to maximize captured light, with a dead time

(* 10−6 s) that is much less than the sampling time (τs* 10−1 s to 10−4 s). This ensures that

the exposure time is about the same as the sampling time, τ0 = τs, i.e., zero dead-time, fitting

the criteria for applying Eq 7.

While sources of parasitic noise will vary among different SMFS instruments, most video-

tracking experiments have a frame-to-frame tracking error arising from the imprecision of the

bead localization algorithm. Assuming the tracking error is Gaussian-distributed with a stan-

dard deviation, �, this adds a frequency-independent white noise term to PA,B [39]:

PA;B;Cðf Þ ¼ PA;Bðf Þ þ
�2

fs
: ð8Þ

In the PSD, the effect of tracking errors is most apparent at high frequencies, where the ther-

mal motion is diminished (Fig 2A).
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3.3 A closed-form expression for the AV

For bead motion, the predicted AV, s2
AV , at each observation time, τ, is similarly derived

through analysis of Eq 2 [15]:

s2
AV;AðtÞ ¼

2kBTg
k2t

1þ
2g

kt
e� ktg �

g

2kt
e� 2kt

g �
3g

2kt

� �

: ð9Þ

For observation times that are shorter than the bead relaxation time, τ� τc� γ/κ, neighbor-

ing positions are highly correlated, and the AV increases as s2
AV;A � 2kBTt=3g. For observation

times that are longer than the bead relaxation time, neighboring positions become uncorre-

lated, and the AV decreases as s2
AV;A � 2kBTg=tk2 [37]. The peak of the transition between the

two regimes can be numerically calculated as τmax� 1.89τc [15].

In its definition, the AV implicitly accounts for the exposure time of the camera and

assumes zero dead-time, i.e., τ0 = τs. As discussed in the previous section, this is usually a rea-

sonable assumption for SMFS video-tracking systems. When this is not the case, the AV is

biased and requires an additional correction function [41]. However, conveniently, this bias is

negligible when the time between samples is shorter than the bead relaxation time, i.e., τs< τc
[37]. Hence, Eq 9 can often be applied without modification for SMFS experiments, regardless

of whether dead-time is present [42].

As with the PSD, tracking errors in video-tracking experiments can be accounted for by

adding a white-noise term to s2
AV;A:

s2
AV;A;BðtÞ ¼ s

2
AV;AðtÞ þ

�2ts
t
: ð10Þ

Fig 2. Example plots of PSDs with per-frame tracking errors. (A) Simulated bead trajectories with tracking errors lead to deviations in the PSD at

high frequencies. The data points correspond to bead trajectories with per-frame tracking errors, � = 0 (blue), 10 (green), and 20 (orange) nm. All

trajectories contained Nx = 20480 points and were simulated with fs = 1000 Hz, γ = 1.77 × 10−5 pNs/nm, and κ = 1.2 × 10−4 pN/nm. Dotted lines are

overlays of Eq 8 using known parameter values. (B) MLE fits of PA,B (Eq 8, orange dotted line) and PA,B,C (Eq 8, green dotted line) to experimentally

derived PSD values (blue points). The experimental data were collected on a bead tethered to double-stranded DNA (contour length� 2.8 um) at

400 Hz on a custom-built magnetic tweezer as described in Ref. [40]. PA,B,C Eq 8) is more consistent with the experimental data as judged by the

normalized residuals, Δ, and Akaike Information Criterion (AIC = 334 Eq 8 vs. 739 Eq 7). The best fit parameters for PA,B,C are κ = 1.8 ± 0.2 × 10−4

pN/nm, γ = 1.78 ± 0.04 × 10−5 pNs/nm, and � = 8.0 ± 0.3 nm. All PSD values were computed using Welch’s method (Sect. 4.1) with 35 half-

overlapping bins. Error bars represent one standard deviation.

https://doi.org/10.1371/journal.pone.0262028.g002
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The effect of tracking errors is most apparent at short observation times, when the bead

motion is mostly diffusive (Fig 3).

4 Computing the PSD and AV

The SMFS experiment generates an experimental bead trajectory containing Nx points. This

trajectory must be converted into a noise metric (the PSD or AV) containing Ny points, which

is then fit with the expressions in Section 3 so as to extract parameter estimates. The conver-

sion of the experimental trajectory to the noise metric has a few subtleties which are described

here.

4.1 Computing the experimental PSD with Welch’s method

The experimental PSD values are optimally computed using Welch’s method [43]. This

method consists of splitting the trajectory into half-overlapping bins, each containing m
points. The total number of PSD values and bins are thus Ny = m and M = 2Nx/m − 1, respec-

tively. A smaller m improves the signal-to-noise ratio of the final experimental PSD, at the cost

of reduced sensitivity at lower frequencies [14]. Each bin consists of bead positions, x̂j for j 2
(0, 1, 2, . . ., m − 1), and the discrete Fourier transform of each bin is calculated for the frequen-

cies, fk = kfs/2m for k 2 (1, 2, . . ., m), as

P̂nðfkÞ ¼
1

mfs

Xm� 1

j¼0

wjx̂j exp �
2pijk
m

� ��
�
�
�
�

�
�
�
�
�

2

: ð11Þ

Note that, in practice, most computational implementations compute the discrete Fourier

Fig 3. Example plots of AV values for data with per-frame tracking errors. (A) Simulated bead trajectories with tracking errors lead to deviations

in the AV at short observation times. The data points correspond to the simulated bead trajectories with � = 0 (blue), 10 (green), and 20 (orange) nm.

The simulated trajectories are the same as in Fig 2A. Dotted lines are overlays based on Eq 10 with the known parameter values. (B) MLE fits of

s2
AV;A;B (Eq 10, dotted orange line) and s2

AV;A (Eq 9, dotted green line) to experimentally derived AV values (blue points). The data are the same as in

Fig 3B. s2
AV;A;B (Eq 10) is more consistent with the experimental data as judged by the normalized residuals, Δ, and AIC (AIC = 161 Eq 10 vs. 198 Eq

9). The best fit parameters for s2
AV;A;B are κ = 1.7 ± 0.1 × 10−4 pN/nm, γ = 1.77 ± 0.04 × 10−5 pNs/nm, and � = 7.9 ± 0.9 nm. Error bars represent one

standard deviation.

https://doi.org/10.1371/journal.pone.0262028.g003
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transform using a fast Fourier transform algorithm (e.g., the Cooley-Tukey algorithm [44]).

The PSD values of each bin are then averaged together by frequency:

P̂ðfkÞ ¼
1

M

XM

n¼1

P̂nðfkÞ: ð12Þ

The windowing function, wj, accounts for the phenomenon of spectral leakage: the finite dura-

tion of the measurement causes power at one frequency to show up at other frequencies [45].

Most computational implementations of Welch’s method use the Hann windowing function

[46],

wj ¼

ffiffiffi
8

3

r

sin2 pj
b

� �

; ð13Þ

which reduces the total power of each experimental PSD value in a frequency-independent

manner, which is then corrected by the leading factor of
ffiffiffiffiffiffiffiffi
8=3

p
. The use of the Hann window,

in conjunction with half-overlapping bins, means that data near the termini of one bin is

diminished by the window, but that same data is near the center of the next bin, and thus cap-

tured by the window; this provides a reasonable trade-off between over- and under-utilizing

all of the data [43]. Occasionally, after performing Welch’s method, the calculated PSD values

are logarithmically binned to help visualize power-law behavior [11].

4.2 Computing the overlapping AV

The experimental AV is optimally computed from the bead trajectory by partitioning it into

octave-sampled, overlapping bins [35]. Octave sampling consists of using bin lengths, mk, in

powers of 2, i.e., mk = 2k for k 2 (1, . . ., Ny), where Ny = blog2(Nx/2)c. The bin lengths deter-

mine the number of overlapping bins, M = Nx − 2mk + 1, and the observation times, τ = mk τs,
where τs is the sampling time. For each τ, the experimental AV, ŝ2

AV , is calculated as one-half

the mean-squared difference of consecutive average bin positions:

ŝ2
AVðtÞ ¼

1

2ðM � 1Þ

XM� 1

n¼1

ð�xnþ1 � �xnÞ
2

ð14Þ

where �xn is the average of bead positions, x̂ j, j 2 (1, 2, . . ., mk):

�xn ¼
1

mk

Xmk

j¼1

x̂j: ð15Þ

In practice, computing all the average bin positions for each τ can be slow, so an equivalent,

but more computationally efficient, method is often used [41, 47].

5 Biased fitting

After computing the set of experimental AV or PSD values, ŷk, k 2 (1, 2, . . ., Ny), they are com-

pared to the Langevin model predictions, yk (Eqs 7–10), using maximum likelihood estimation

(MLE), to extract the best-fit parameter estimates for γ and κ. MLE accounts for the expected

probability distributions of each experimental value. For the AV and PSD, the probability, pk,
of measuring each experimental value is given by the Gamma probability distribution
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function:

pkðŷk; ykðg; kÞÞ ¼
ŷZk � 1

k e� ŷk=yk
y
Zk
k GðZkÞ

ð16Þ

where ηk is termed the shape parameter, θk = yk/ηk is termed the scale parameter, and Γ is the

gamma function.

For the PSD, the shape parameter is given by the number of bins, ηk = M, which is notably

the same for all values ŷk. For the AV, the shape parameter is generally ηk = νAV,k/2, where

νAV,k counts the degrees of freedom for each value. νAV,k depends on the number of differences

used to calculate the kth value, as well as the dominant type of noise at that value [41]. It is com-

mon to approximate νAV,k from the number of successive differences between non-overlap-

ping bins of length mk that are present in the trajectory, νAV,k = (Nx/mk) − 1 [15]; however, this

is an underestimate.

For both the PSD and AV, as ηk!1, the Gamma distribution approaches a normal

(Gaussian) distribution, and least-squares fitting can be used. However, for moderate values of

ηk, the distribution is not normal, and least-squares fitting routines lead to biased parameter

estimates. While it is possible to correct for these biases analytically, in general, MLE gives

more accurate parameter estimates [14].

5.1 Maximum likelihood estimation

MLE is based on estimating the parameters, ĝ and k̂, that maximize the likelihood function, L,

which is the joint probability of all pk:

Lðg; kÞ ¼
YNy

k¼1

pkðŷk; ykðg; kÞÞ: ð17Þ

In practice, rather than maximizing L, it is more convenient to minimize the cost function,

ℓ� −ln L. Given Eqs 16 and 17, the cost function is given by:

‘ðg; kÞ ¼
XNy

k¼1

Zk
ŷk

ykðg; kÞ
þ lnðykÞ

� �

þ const; ð18Þ

where the final term is a constant with respect to the parameters. Minimizing ℓ is a straightfor-

ward optimization problem that can be solved numerically with standard algorithms (e.g.,

Nelder-Mead [48]).

5.2 Parameter uncertainties

After finding the best-fit parameters, ĝ and k̂, an estimate of their uncertainties can be found

from standard approaches: In particular, the likelihood function, L, is assumed to have a

Gaussian form in the vicinity of its maximum. Then, the matrix of second partial derivatives of

L (i.e., the Hessian matrix) are calculated, and inverted to find the squared uncertainties (i.e.,

the covariance matrix). Details of this approach can be found in statistical references, e.g.

Ref. [49].

The applicability and robustness of Hessian-based estimates of parameter uncertainty rests

on whether L behaves as a Gaussian over a significant region near ðĝ; k̂Þ. This question is dis-

tinct from that of the proper distribution governing the AV or PSD estimates themselves (i.e,

the values ŷk)– the ŷk values, in certain cases, are calculated from a relatively small number of

samples, and so are distributed in a highly non-Gaussian manner (Eq 16), which drives the use
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of MLE rather than least-squares optimization methods. However, the MLE cost function is

based on a relatively larger number of points (Ny), and so, by the central limit theorem, is well-

modeled as Gaussian. Therefore, in practice, the Hessian approach typically results in robust

estimates of parameter uncertainty.

That said, in some cases, it may not be appropriate to approximate the likelihood function

as a Gaussian, e.g., when there are small sample sizes, outliers, or complex parameter correla-

tions. Such situations can be handled by an alternate, numerical approach in which a Monte

Carlo algorithm is used to sample the parameter space [49].

To carry out Monte Carlo sampling, several ‘walkers’ are initiated around the estimated

parameters. These ‘walkers’ take random steps in parameter space and evaluate the cost func-

tion, which determines whether each step is accepted or rejected. After a predetermined num-

ber of steps, a histogram of the accepted steps is used to generate an empirical probability

distribution for the parameters (Fig 4). From this distribution, the confidence intervals can be

Fig 4. Histograms of accepted steps from MCMC sampling of experimental data in Fig 2B. One-dimensional

histograms of (A) γ and κ values with best-fit parameters (blue line) and 15.8th and 84.2nd percentiles (black dotted lines).

The histograms follow a Gaussian distribution (black solid line) as assumed in the Hessian method. Two-dimensional

histogram of (B) γ and κ values with best-fit parameters (blue lines). The contour (black) lines are the one, two, and three

standard deviations. Points outside of three standard deviations are plotted individually.

https://doi.org/10.1371/journal.pone.0262028.g004
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evaluated. Typically, the standard errors are estimated as half the difference between the 15.8th

and 84.2nd percentiles, which corresponds to one standard deviation for a Gaussian

distribution.

5.3 Fit quality

After fitting, the quality of the fit needs to be judged. There are several means of judging the

quality of the fit, each with its own advantages and disadvantages. The simplest means is to

look at the normalized residuals, Δk, i.e., the deviations between the experimental and pre-

dicted values:

Dk ¼
ŷk � ykðĝ; k̂Þ

sy;k
; ð19Þ

where σy,k is the standard deviation of the kth experimental value. The normalized residuals

can be plotted to assess systematic deviations between the data and the fit.

If the normalized residuals follow a Gaussian distribution, their variance corresponds to the

reduced chi-squared value, w2
ny

:

w2
ny
¼
w2

ny
¼

1

ny

XNy

k¼1

D
2

k: ð20Þ

The degrees of freedom, νy, are estimated as νy = Ny − K, where K is the number of fit parame-

ters. A reduced chi-squared value of one is usually considered a ‘good’ fit [49]. A reduced chi-

squared value that is greater than one is generally considered a ‘poor’ fit, whereas a reduced

chi-squared value that is less than one is usually considered an overfit. However, the reduced

chi-squared value has a variance that scales as 2/νy, so values based on small sample sizes or

models with a large number of parameters can be misleading.

Instead, the cumulative distribution function of chi-squared-distributed values, F, is usually

a better measure of fit quality (also termed the support for the fit) [17]:

Fðw2; nÞ ¼
1

Gðny=2Þ

Z w2=2

0

zny=2� 1 expð� zÞdz: ð21Þ

The support evaluates the probability that repeating the experiment will give a larger w2
ny

value.

It is closely related to the p-value, i.e., 1 − F. For a ‘good’ fit, the support is expected to be close

to one.

While the support for the fit evaluates agreement between the experimental and predicted

values, other statistical metrics, such as the Akaike Information Criterion (AIC), are better at

comparing models with different numbers of parameters [50]. The AIC balances the quality of

fit with the number of parameters. It is calculated as

AIC ¼ 2K � 2 lnðL̂Þ: ð22Þ

Due to varying constants and sample sizes, individual AIC values are not informative. Instead,

the data are considered to be best described by the model with the lowest AIC value, AICmin,

regardless of the number of parameters, when the difference between two models’ AIC values

is ΔAIC = AIC − AICmin� 4 [50], as applied in Figs 2 and 3.
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6 Tweezepy

Tweezepy is a Python package for thermal motion-based force calibration in SMFS video-

tracking experiments that estimates parameters and their uncertainties from a user-provided

bead trajectory, using MLE, via the PSD or AV. For a detailed explanation of the package,

including expected inputs and outputs, the reader is referred to the docstrings and usage exam-

ples. In this section, we discuss specific implementation choices and practical considerations

for using the package.

To use Tweezepy, the user provides a bead trajectory and sampling frequency to either the

PSD or AV class objects. Given this information, Tweezepy computes the experimental values

and compares them to a user-selected predictive model using MLE. After fitting, it reports the

parameter estimates and uncertainties, as well as the fit quality. The experimental and pre-

dicted values, as well as the normalized residuals, can be visualized using the included plotting

functions.

To compute the experimental PSD, Tweezepy uses Welch’s method (Sec. 4.1). By default, it

uses a Hann windowing function with three half-overlapping bins. The signal-to-noise ratio of

the experimental PSD values can be improved by increasing the number of bins, which helps

to visualize the values and slightly reduces the parameter uncertainties. However, there is a

trade-off: as the number of bins increases, the low-frequency resolution decreases. For low cor-

ner frequencies, this can lead to a substantial bias in the parameter estimates (Fig 5). Unfortu-

nately, it is difficult, a priori, to know the optimal number of bins, so it is up to the user to

choose the appropriate number of bins. This is a drawback of the PSD method.

Tweezepy uses MLE to compare the experimental PSD values to, by default, Eq 7, which

accounts for both aliasing and the finite bandwidth of the detection system. This function

assumes the exposure time is the same as the time between measurements, i.e., zero dead-time.

As discussed in Section 3.2, this assumption is typically good for video-tracking experiments.

When dead-time is present in the measured bead trajectory, the user can also select an alterna-

tive function that uses a closed-form expression based on Eq 6 that assumes a negligible expo-

sure time [14, 15], i.e., it only accounts for aliasing. Additionally, the user can select to use a

modified version of either function that includes tracking errors from video-tracking bead

localization algorithms (e.g., Eq 8).

To compute the experimental AV, Tweezepy uses the octave-sampled, overlapping

approach as described in Sec. 4.2. It empirically determines the degrees of freedom for each

value using the Greenhall algorithm [51], based on the dominant type of power-law noise for

each experimental value. It estimates the dominant type of noise using the Lag1 autocorrela-

tion algorithm [52]. This algorithm has lower precision for AV values with fewer bins, i.e.,

for long observation times when Nx/mk< 32. Typically, this corresponds to the three or four

AV values with the longest observation times. For these points, Tweezepy assumes the domi-

nant noise type is the same as the last point that satisfies Nx/mk> 32. If the algorithm fails to

estimate any of the dominant types of noise, it warns the user and falls back on using the

approximate degrees of freedom based on nonoverlapping bins, i.e., νAV = Nx/mk − 1. The

user can choose to use only the approximate degrees of freedom by setting the keyword argu-

ment ‘edf ’ to ‘approx’. For visualization purposes, the user can select to plot all or decade-

spaced observation times. As discussed in Section 4.2, the approximate degrees of freedom

give nearly identical parameter estimates but underestimate the confidence for each AV

value, leading to slightly larger parameter errors. After computing the experimental AV val-

ues, Tweezepy compares them to Eq 9. Additionally, the user can select a predefined function

that accounts for tracking errors from the video-tracking bead localization algorithms

(Eq 10).
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In addition to its predefined functions, Tweezepy also accepts user-defined functions to

compare to the experimental values. If these functions include additional fitting parameters, it

is recommended that they are compared to a function without the additional parameters using

the AIC to avoid overfitting (Sec. 5.3). Additionally, the normalized residuals can be plotted

and visualized to detect deviations between the data and theoretical values. Typically, it is eas-

ier to visualize the residuals of the AV compared to the PSD because it has fewer values.

Evaluating the AIC can also be useful for determining whether one or more parameters is

poorly constrained during the fit. As discussed later (Sec. 7), in some cases, the sampling fre-

quency is not fast enough to resolve the purely diffusive motion of the bead, causing γ to be

poorly constrained during fitting. However, κ can usually still be reliably estimated by fixing γ
to a known value. Tweezepy contains keyword arguments for fixing any of the parameters for

its predefined functions during the fit. Ideally, the known γ value should be estimated from the

same bead at a lower force, and adjusted for surface effects using Faxen’s correction [53]. To

determine whether fixing a parameter is necessary, the AIC of the fits with and without fixing

are compared, and the fit with the lowest AIC value is used.

When sources of parasitic noise are present but cannot be properly described by the

selected model analytically, it is recommended that the user subtract a reference spectrum or

Fig 5. Bias and error for the AV and PSD methods in Tweezepy. (A and C) Bias in estimated parameters as compared to known parameter values for

(A) γ and (B) κ. (C and D) Error in estimated parameters using Hessian method for (C) γ and (D) κ. Fixing γ reduces the bias and error in κ at high

corner frequencies by removing parameter correlations. Each point represents the median of 1000 simulations; each simulation contained 4096 bead

positions with a constant drag coefficient, γ = 1 × 10−5 ps/N, and sampling frequency, fs = 100 Hz. The corner frequency was varied logarithmically

between 0.2 Hz to 100 Hz. The blue and green points represent two-parameter AV and PSD method fit results. The orange and red points represent

fixed gamma AV and PSD method fit results. In the bias plots, the magenta box represents the ±1% bias region.

https://doi.org/10.1371/journal.pone.0262028.g005
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bandpass filter the measured data. For example, mechanical drift in experiments often mani-

fests as 1/f power-law noise at low frequencies in the PSD or τ power-law noise at long obser-

vation times in the AV [38]. By excluding the regions of the spectrum where drift (or other

sources of noise) dominates during fitting, the parameters can still be accurately estimated. In

Tweezepy, the user can select upper and lower cutoff frequencies (or observation times) to

compare the function to a limited range of the spectrum using the keyword argument ‘cutoffs’.

To calculate parameter uncertainties, Tweezepy evaluates and inverts the expected Hessian

(Sec. 5.2). To evaluate the Hessian, it uses the Autograd Python package. Autograd uses auto-

matic differentiation to evaluate derivatives by repeatedly applying the chain rule to elemen-

tary operations. This speeds up code and reduces numerical precision errors that can occur

with numerical and symbolic differentiation [54, 55]. In addition to calculating and inverting

the Hessian, Tweezepy contains an optional method for robust uncertainty estimates via

Monte Carlo sampling (Sec. 5.1). This method uses the Emcee Python package [56] to carry

out Monte Carlo sampling. In our hands, this more robust method, but slower (with computa-

tion time on the order of 10s), produces Gaussian parameter distributions (Fig 4) and near-

identical uncertainty estimates to the faster method (�10 ms) that inverts the Hessian. For

example, for the data in Fig 4, using the Hessian method gives γ = 1.43 ± 0.02 × 10−5 pNs/nm

and κ = 1.6 ± 0.1 × 10−4 pN/nm, while the MCMC method gives γ = 1.43 ± 0.01 × 10−5 pNs/

nm and κ = 1.6 ± 0.1 × 10−4 pN/nm.

In addition to the packages mentioned above, Tweezepy makes use of the standard python

library [57], including NumPy [58], SciPy [59], and Numba [60]. All the package dependencies

are noted in the requirements and setup files for easy installation.

7 Results

To evaluate Tweezepy, we sought to benchmark its fit results against known parameter values.

Following the example of Ref. [15], we simulated bead trajectories using Nx = 4096, fs = 100

Hz, and γ = 1.0 × 10−5 pNs/nm (a typical drag coefficient for a one micron spherical bead in

water), and varied the corner frequency, fc, logarithmically from 0.2 Hz to 100 Hz, giving

spring constants κ that ranged from 1.4 × 10−4 pN/nm to 6.8 × 10−3 pN/nm. To carry out the

simulations, we iteratively generated successive bead positions, without tracking errors, from

Eq 2 [61] (Fig 1B). To mimic the effects of the camera exposure time, we used a time step of

δt = 1/(1000fs), split the trajectory into bins of 1000 points, and took the average of each bin to

generate a downsampled trajectory. For each corner frequency, we simulated 1000 trajectories.

For each trajectory, we computed and fit the PSD to Eq 7 (Fig 2B) and the AV to Eq 9 (Fig 3B)

using Tweezepy to estimate the parameters and their uncertainties. To estimate bias, we calcu-

lated the ratio of the median parameter estimates and true values. To estimate the error, we cal-

culated the ratio of the median parameter uncertainties and true values.

For nearly all corner frequencies, the bias for γ and κ estimates is within ±1% (Fig 5A and

5C magenta box). There is an increase in the bias and error for κ estimates at lower corner fre-

quencies because, for the simulated length of the trajectory, the bead motion is mostly uncon-

strained by the trap. As a result, the κ estimate is poorly constrained during fitting. This effect

is slightly worse for the PSD because binning decreases its low frequency resolution more than

the AV. In practice, this bias can usually be reduced by increasing the length of the trajectory

[62].

At high corner frequencies, fc ⪆ fs/8, there is an increase in the error and a slight bias in

both parameters (Fig 5C and 5D), consistent with previous findings [14, 15]. This is because

the sampling frequency is not fast enough to resolve the unconstrained diffusive bead motion,

which leads to poorly constrained γ estimate. The correlations between the γ and κ parameters
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lead to a poorer κ estimate. This is why it is advantageous to collect bead trajectories for force

calibration in SMFS video-tracking experiments at the highest available sampling frequency.

It is worth noting that the authors in Ref. [21] recommend using a low-pass-corrected stan-

dard variance calibration method [12] to avoid the small bias at high corner frequencies with

the PSD and AV. However, we note that their implementation of this alternative method fixes

γ to a known value during fitting, removing the parameter correlations. We find that fixing γ
with the PSD and AV similarly removes the increase in the error and slight bias for κ at high

corner frequencies (Fig 5C and 5D). This suggests that, under optimal conditions, all three

methods can accurately estimate parameters.

8 Conclusions

In this article, we have reviewed robust thermal motion-based force calibration in SMFS exper-

iments using the PSD and AV, and discussed implementing them computationally into a

Python package, Tweezepy, that is freely available on Github and the Python package index.

In designing Tweezepy, our goal was to make it as robust, versatile, and user-friendly as pos-

sible. It uses MLE to estimate parameters via the PSD or AV, and goes beyond previous compu-

tational implementations by calculating the empirical degrees of freedom for the overlapping

AV and determining parameter uncertainties from MLE, either by inverting the Hessian or,

optionally, via Monte Carlo sampling. It includes several predefined closed-form expressions

that account for the most common biases and parasitic noise in SMFS video-tracking experi-

ments. Yet, it also accepts user-defined functions, so it can be adapted to account for additional

sources of noise or applied to other problems that rely on fitting the PSD or AV of a bead tra-

jectory, e.g., torque calibration [42]. Lastly, Tweezepy uses sensible default options to make it

easy-to-use, only requiring a few straightforward lines of code, with computation times on the

order of 10 ms. Our hope is that Tweezepy can serve as a useful tool to improve and standardize

force calibration across different SMFS research groups, instruments, and experiments.
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