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ABSTRACT 
 

Aim: To determine physicochemical properties and age of rice by non-destructive technique. 
Place and Duration of Study: Study was conducted at Division of Food Science and Postharvest 
Technology, Indian Agricultural Research Institute, New Delhi during 2020 to 2021.   
Methodology: Rice were kept for accelerated aging at 42.6°C temperature & 71% RH for a 
duration of 30 days. Changes in four physicochemical properties namely amylose content, volume 
expansion ratio (VER), water absorption ratio (WAR), and kernel elongation ratio (KER) were 
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evaluated destructively (by spectrophotometer and cooking method) and non-destructively (by 
spectroradiometer) at every alternate day, during 30 days storage.  
Results: The physicochemical parameters of rice showed a good correlation with spectral 
signatures.  Subsequently, Principal component Analysis (PCA), Partial Least Square Regression 
(PLSR), and Multiple Linear Regression (MLR) were used to model the physicochemical changes 
occurring during the process of accelerated aging using spectral reflectance values. Based on 
values of Coefficient of determination (R²) and Root mean square error (RMSE) accuracy of models 
was determined. Predictions with the MLR model resulted in a coefficient of determination (R2) of 
0.82, 0.87, 0.9,7, 0.83 and 0.82 with root mean square error (RMSE) of 0.18, 0.13, 0.21, 0.124 and 
4.2 for amylose content, VER, WAR, KER, and ageing process respectively for calibration. 
Conclusion: The study demonstrated the potential of NIRS in non-destructively predicting the 
physiochemical parameters of rice. 
 

 
Keywords: Accelerated ageing; basmati rice; non-destructive; reflectance; robust; spectroradiometer. 
 

ABBREVIATIONS 
 
MLR : Multiple Linear Regression  
PSLR : Partial Least Square Regression 
WAR : Water Absorption Ratio 
VAR : Volume Expansion Ratio 
KER : Kernel Elongation Ratio 
PB : Pusa Basmati 
PCA : Principal Component Analysis 

 
1. INTRODUCTION 

 
Rice (Oryza sativa L.) is a global staple food, 
especially in South Asia, with India as a major 
producer after China. It is primarily grown during 
the kharif season (June to September) but 
produced year-round in select regions. Rice 
consumption is significant in Arabian and South 
Asian countries, comprising carbohydrates, 
starch, and various nutrients. Basmati, a fragrant 
rice variety, is crucial in India, leading in 
production and export, serving as a significant 
crop for the country's economy [1]. 
 
Rice undergoes beneficial aging after harvesting, 
resulting in changes in physicochemical 
properties. Aging criteria are established based 
on physical and chemical properties, but the 
exact mechanism remains partly understood. 
Natural aging involves storing rice at room 
temperature for 3-6 months, a time-consuming 
process. Accelerated aging, where rice is stored 
at elevated temperatures for minutes to days, 
offers a more efficient alternative. Temperature, 
humidity, and storage duration are key factors 
impacting rice quality during aging [2]. 
 
Aged rice is preferred by Indian and Arabian 
consumers for its improved texture and premium 
qualities, especially in the case of basmati rice 
known for its aroma, long grains, and excellent 

cooking properties. Accurate assessment of rice 
aging is crucial to maintain quality and prevent 
fraudulent practices. Traditional methods for 
assessing rice aging are complex, time-
consuming, and labor-intensive, requiring 
expensive equipment. Modern food industries 
demand quick, portable, and non-destructive 
techniques for quality determination [3]. 
 
Visible near-infrared (VNIR) spectroscopy is a 
valuable non-destructive technique widely used 
across industries like agriculture, cosmetics, 
food, polymers, pharmaceuticals, and textiles 
due to its speed, cost-efficiency, and minimal 
labor requirements [4]. VNIR spectroscopy can 
assess commodity quality in the field and during 
processing, relying on the scattering and 
absorption of light. Scattering reflects external 
properties like particle size and density, while 
absorption reveals the chemical composition [5]. 
 
VNIR spectroscopy is most successfully used for 
variety discrimination, determination of moisture 
content, pH, acidity, Various sugars, various 
diseases/rots, and evaluation of internal quality 
[6]. VNIR spectroscopy works in the wavelength 
range between 350- 2500 nm. VNIR 
spectrometer takes signature in terms of 
reflectance, absorbance, and transmittance [7]. 
VNIR spectroscopy is used for non-destructive 
evaluation of rice i.e amylose content of milled 
rice [8,9] quality of rice starch [10] textural 
properties of rice [11] quality characteristics of 
rice [12] evaluation of rice wine in terms of 
soluble solid and pH [13]. 
 
This experiment utilized VNIR spectroscopy in 
reflectance mode to assess the aging of various 
basmati rice varieties. The spectroradiometer's 
advantages include easy monitoring of the aging 
process and improved rice grading based on 
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age, potentially increasing market value. The 
study aims to non-destructively analyze rice age 
using a VNIR spectroradiometer, with objectives 
to characterize artificially aged rice grains 
through spectroscopy and physical parameters 
and to develop models for discriminating and 
estimating aging in different rice grains. 
 

2. MATERIALS AND METHODS 
 

2.1 Procurement of Paddy 
 

Freshly harvested four varieties of basmati rice 
[Pusa Basmati (PB)- 1121, PB-1509, PB- 1637, 
PB- 1718] and one non-basmati variety [Pusa 
Sugandh (PS)] were procured from Seed 
Production Unit, ICAR- Indian Agricultural 
Research Institute, New Delhi. Which was grown 
in the kharif season (June to October). 
 

 2.2 Sample Preparation 
 

All five varieties of paddy namely PB- 1121, PB-
1509, PB- 1637, PB- 1718, and PS were hulled 
in Satake rice huller (Satake Japan). After hulling 
brown is rice fed to a Satake rice polisher for 
polishing up to 6%. Brokens were separated and 
only head rice was used for further work. 
 

 2.3 Accelerated Ageing of Rice 
 

For accelerated ageing freshly harvested milled 
rice of varieties PB 1121, PB 1509, PB 1718, PB 
1637, and Pusa Sugandh were kept in a 
controlled chamber maintained at Relative 
humidity (RH) of 71 %, Temperature of 42.6 ⁰C 
for a period of 30 days as suggested by Rayguru 
et. al. [14] at National Phytotron Facility, IARI 
New Delhi. 
 

 2.4 Visible Near-Infrared Spectroscopy 
Analysis 

 
Spectral signatures of fresh and accelerated 
aged samples (kept in a petri dish up to 1 cm 
thickness) were acquired before the destructive 
analysis in the wavelength range between 350- 
2500 nm at 1 nm intervals using a handheld 
spectroradiometer [Analytical Spectral Devise 
(ASD) Fieldspec® Spectroradiometer (350 to 
2500 nm), Boulder, USA] at Hyperspectral 
Remote Sensing Laboratory, IARI, New Delhi. 
Care was taken to calibrate the device with a 
standard white plate before acquiring the spectral 
signatures. The precaution was also taken to 
ensure no gaps between grains to avoid signal 

losses. For each variety and accelerated storage 
period, six spectra were acquired to ensure the 
repeatability of the spectral signatures. A device 
was calibrated after every six spectra. 
 

2.5 Determination of Physicochemical 
Properties of Rice 

 

2.5.1 Amylose content 
 

Amylose content in fresh and accelerated aged 
rice was determined using the 
spectrophotometric method suggested by Juliano 
(1971). 100 mg rice grains were grounded using 
mortar and pestle and transferred into the 100 ml 
volumetric flask. To it, 1 ml of ethanol and 10 ml 
of NaOH were added. The mixture was heated in 
a boiling water bath for 10 min. Distilled water 
was subsequently added to make the volume up 
to 100 ml. Out of 100 ml only 2.5 ml of the 
solution was then transferred into the 100 ml 
flask and 20 ml distilled water was added to it 
along with 3-4 drops of phenolphthalein indicator 
till it turns pink. Then 0.1 N HCl was added drop 
by drop until the pink color disappears. At last, 1 
ml of iodine was added to it and the volume was 
made up to 50 ml using distilled water. The 
absorbance of the solution was measured at 510 
nm and the amylose content was determined 
using a standard curve. 
 

2.5.2 Volume expansion ratio 
 

Volume expansion ratio (VER) was measured by 
using the toluene displacement method [15]. A 
specific volume of toluene was added to 250 ml 
of measuring cylinder then put 10 grains of 
uncooked rice and the initial reading was noted. 
Similarly, a change in the volume of 10 grains 
after cooking was also recorded. 
 

VER =  
Vc

Vuc
 

 

Where, 
 

Vc= Volume cooked rice 
 

Vuc= Volume of uncooked rice 
 
2.5.3 Water absorption ratio 
 
Take 10 g of milled head rice and put it into 30 g 
of distilled water. Then beaker was kept in a 
boiling water bath (97 ± 2 ⁰C) for cooking.               
After cooking take the final weight of the rice  
[16]. 
 

WAR = 
Wc−Wuc

Wuc
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Where, 
 

Wc= Weight of cooked rice 
 

Wuc= Weight of uncooked rice 
 
2.5.4 Kernel elongation ratio 
 
It is the ratio of the average length of grain after 
cooking to them before cooking. 10 grains of 
head rice were randomly selected from the 
sample and measured the length using a 
micrometer. Then grains were kept for cooking 
and measured for the final length [17]. 
 

KER = 
Xc

Xuc
 

 
Where, 
 

Xc= Length of cooked rice 
 

Xuc= Length of uncooked rice 
 

 2.6 Chemometric Analysis and Selection 
of Wavelength 

 
For performing chemometric analysis different 
mathematical calculations and statistical 
methods were used. In chemometric analysis 
operations such as correlation, regression, 
calculation of the first derivative, differentiation of 
wavelength, development of model, and 
evaluation of model were done as described in 
the research work of various researchers [18]. 
 
The data available after the chemometrics was 
too large. The next step is to reduce the huge 
data in a particular manner and process only into 
selected data. Visible near-infrared (VNIR) 
spectroscopy wavelength ranges from 350 to 
2500 nm were used in this study. The Visible 
Near-infrared reflectance spectra of rice samples 
shown in Fig. 1. In this huge range of 
wavelengths for each parameter, it is essential to 
select particular ranges of wavelengths because 
there are close relationships that can occur 
between wavelength and parameters. For the 
selection of wavelengths, correlation of 
physicochemical parameters namely amylose 
content, volume expansion ratio, water 
absorption ratio, and kernel elongation ratio with 
raw spectra as well as with the first derivative of 
reflectance were performed. These correlations 

were done by correlating four parameters with 
spectral reflectance data ranging from (351 to 
2500 nm). As the correlation value ranges 
between -1 to 1, wavelengths showing high 
values of correlation were used for further 
analysis. 
 

2.7 Multivariate Analysis 
 

Multivariate analysis of the data was conducted 
to develop robust models for predicting the 
physicochemical parameters at different levels of 
accelerated aging and to predict the level of 
accelerated aging of rice. Spectral reflectance 
values acquired at all identified promising 
wavelengths were subjected to different available 
multivariate analyses like Partial least square 
regression (PLSR), principal component analysis 
(PCA), and multiple linear regression (MLR). Of 
the data used for multivariate analysis, 70% were 
utilized for model calibration, and the rest 30% 
for model validation. Maximum R² and               
minimum RMSE were considered for model 
selection. 
 

3. RESULTS AND DISCUSSION 
 

 3.1 Amylose Content 
 

The initial amylose content of rice varieties 
varied, with Pusa Sugandh at 22.21%, and 
among basmati types, PB 1718 had the highest 
at 23.19%, followed by PB 1509 (23.12%), PB 
1121 (22.79%), and PB 1637 (22.60%). During 
30 days of accelerated storage at 42.6°C, all 
varieties showed an increase in amylose content, 
with PB 1509 having the least change. This 
increase was most significant during the first 14 
days, equivalent to 7 months of ambient storage. 
The elevated temperature likely caused 
amylopectin to convert into amylose, as 
observed in previous studies [19]. 
 
Amylose content significantly influences rice 
cooking quality. Higher amylose levels in aged 
rice improve cooking quality and processing 
efficiency by reducing stickiness and increasing 
grain firmness [20]. This is due to lower leaching 
of solids during cooking [21] and its positive 
correlation with water absorption, volume 
expansion, fluffiness, and grain separation. In the 
presence of lipids, amylose acts as both a diluent 
and a swelling inhibitor [22]. 
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Fig. 1. Spectral signature of pusa basmati 1121 (PB 1121) after different periods of accelerated 

storage 
 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

 
Fig. 2. Physiochemical changes in rice during ageing a) amylose content, b) VER, c) WAR, d) 

KER 
 

3.2 Volume Expansion Ratio (VER) 
 

Volume expansion ratio (VER) is crucial for rice 
cooking quality. During accelerated storage, all 
varieties showed increased VER. Pusa Sugandh 
had the lowest initial VER at 3.15, while basmati 
varieties ranged from 3.51 to 3.77. After 30 days, 
VER increased the most for PB 1509 (4.69), 
followed by PB 1718 (4.65), PB 1637 (4.46), PB 
1121 (4.41), and Pusa Sugandh (4.20). This 
trend aligns with previous findings regarding rice 
aging and amylopectin content reduction, 
affecting pasting properties and increasing VER 
[20]. 
 
Accelerated storage induces structural changes 
in amylose chains, resulting in harder grains and 
higher Volume Expansion Ratio (VER). 

Consequently, cooked rice becomes firmer and 
less sticky due to increased water absorption and 
VER. Study by Indiarto & Nurannisa [23] also 
support the observed increase in VER during rice 
aging. 
 

3.3 Water Absorption Ratio (WAR) 
 

Water Absorption Ratio (WAR), an important 
cooking characteristic, mirrored the VER trend, 
as both are positively correlated due to increased 
water absorption contributing to higher volume 
expansion during cooking. Initial WAR values 
varied: PB 1121 (3.44), PB 1509 (3.33), PB 1637 
(3.39), PB 1718 (3.52), and Pusa Sugandh 
(3.33). After 30 days of accelerated storage, 
WAR increased for all varieties, with PB 1121 at 
3.75, PB 1509 at 3.67, PB 1637 at 3.66, PB 1718 
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at 3.75, and Pusa Sugandh at 3.59. Pusa 
Sugandh exhibited the least increase. Similar 
trends were reported by Zhou et al. [24] where 
aging led to increased water absorption due to 
rice hardness and amylose-lipid complex 
formation. 
 

3.4 Kernel Elongation Ratio (KER) 
 

Kernel Elongation Ratio (KER) is vital for 
understanding rice cooking and eating quality. 
PB 1121 had the highest KER at 1.62, 
significantly surpassing all other varieties, while 
Pusa Sugandh had the lowest at 1.39. Among 
basmati types, PB 1509, PB 1637, and PB 1718 
had KER values of 1.45, 1.46, and 1.49, 
respectively. KER generally increased during 30 
days of accelerated storage, reaching 2.32 (PB 
1121), 2.25 (PB 1509), 2.17 (PB 1637), 2.31 (PB 
1718), and 2.20 (Pusa Sugandh) on the 30th 
day. The aging effect on KER followed this order: 
Pusa Sugandh (58.27%), PB 1509 (55.17%), PB 
1718 (55.03%), PB 1637 (48.63%), and PB 1121 
(43.21%). These results align with findings from 
Indiarto & Nurannisa [23]. 
 
Variability in elongation ratio is linked to amylose 
content, particularly in PB 1121 and PB 1509, 
possibly due to amylose structure and its 
interaction with protein and lipids during 
accelerated storage. Starch granule expansion 
without disintegration depends on amylose 
content (Juliano, 1985), aligning with VER and 
WAR trends governed by structural changes and 
amylose content. Aging efficiency varies with rice 
variety, pre-treatments, techniques, and storage 
conditions [23].  
 

3.5 Multivariate Analysis and Modeling 
 
Spectral signatures were correlated with 
physicochemical parameters and aging duration, 
yielding correlation coefficients from -0.1 to 0.85 
in the 400-1500 nm wavelength range. 
Correlation of raw spectral signatures with 
physicochemical parameters spanned wide 
wavelength ranges, making wavelength selection 
challenging. To address this, mathematical 
transformations, specifically 1st derivatives of 
spectral reflectance values, were employed. 
Correlation analysis revealed wavelength bands 
of interest: 1500-1800 nm for amylose content, 
1200-1800 nm for VER, 1100-1800 nm for WAR, 
500-1300 nm for KER, and 950-1400 nm for 
accelerated aging duration. For KER, correlation 
coefficients surpassed ± 0.8 at 1150-1350 nm. 

The derivatives demonstrated higher maximum 
correlation coefficients compared to raw spectral 
reflectance values (Table 1). 
 
3.5.1 Amylose content 
 
Amylose content changes during rice accelerated 
aging, affecting grain texture and cooking 
properties. PLSR models were developed using 
data in the 1500-1800 nm wavelength range, 
resulting in R² values of 0.65 (calibration) and 
0.90 (validation), with an RMSE of 0.23. PCA 
showed that the first three principal components 
explained 94% of the variability. Subsequently, 
MLR modeling using sensitive wavelengths in the 
1500-1800 nm range yielded R² values of 0.82 
(calibration) and 0.84 (validation) with RMSE 
values of 0.186 and 0.210, respectively               
(Fig. 3a). 
 
Matsau et al. [25] employed NIR spectroscopy, 
achieving an R² of 0.72 for amylose content in 
Japonica rice within the 850-1048 nm range. 
Fernández-Novales et al. [26] determined 
reducing sugars in grape ripening using 
Shortwave-NIR spectroscopy, obtaining an R² of 
0.92 (800-1050 nm). Bao et al. [10] predicted rice 
starch quality with a spectroradiometer, yielding 
an R² of approximately 0.91 for amylose content 
(400-2500 nm). He et al. [27] used NIR 
spectroscopy for cereals, attaining R² values 
above 0.9 in the 1923-1961 nm range for starch 
and amylose content. 
 
3.5.2 Volume Expansion Ratio 

 
Similar to the amylose content approach, VER 
was correlated with spectral signatures. The first 
three principal components explained 94.6% of 
VER variability, with loading values peaking 
between 1200-1800 nm. PLSR models had R² 
values of 0.50 (calibration) and 0.67 (validation), 
with RMSE of 0.21. MLR models yielded R² 
values of 0.87 (calibration) and 0.85 (validation), 
with RMSE values of 0.13 and 0.15, respectively 
(Fig. 3b). 
 
Moghimi et al., [28] attempted to develop 
calibration models for evaluating the TSS and 
acidity of kiwifruit. They developed a model using 
principal component analysis (PCA) and partial 
least square regression (PLS). The correlation 
coefficients for TSS and acidity were 0.93 and 
0.943 respectively. RMSE values were 0.076% 
and 0.26°Brix respectively obtained between 
wavelength region of 400 to 1000 nm. 
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Table 1. Wavelengths showing maximum correlation with first derivative spectral reflectance 
 

Parameter Max. correlation Wavelength range (nm) 

Amylose content 0.7917 1500-1800 
VER 0.7982 1200-1800 
WAR 0.7630 1100-1800 
KER 0.8463 500-1300 

 

  

                                                                         (a) 

 

 

 
(b) 

  
(c) 

  
(d) 
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(e) 

 
Fig. 3. MLR models for prediction of a) amylose content, b) VER, c) WAR, d) KER, e) ageing 

 
3.5.3 Water expansion ratio 

 
For water expansion ratio, the first three principal 
components explained 93.6% of the variability, 
with loading values peaking at 1100-1800 nm. 
PLSR models achieved R² values of 0.78 
(calibration) and 0.70 (validation), with RMSE of 
0.044. MLR models obtained R² values of 0.97 
(calibration) and 0.90 (validation), with RMSE 
values of 0.21 and 0.25, respectively (Fig. 3c). In 
a study by Kusumiyati et al. [29] on apple fruit 
quality evaluation, NIR spectroradiometer yielded 
an R² of 0.81 and RMSE of 0.009 for water 
content within the 702-1065 nm wavelength 
band. 
 
3.5.4 Kernel elongation ratio 

 
For kernel elongation ratio (KER), the first three 
principal components explained 96% of the 
variability, with loading values peaking at 500-
1300 nm wavelengths. PLSR models achieved 
R² values of 0.64 (calibration) and 0.84 
(validation), with RMSE of 0.16 and 0.15. MLR 
models obtained R² values of 0.83 (calibration) 
and 0.85 (validation), with RMSE values of 0.124 
and 0.11, respectively (Fig. 3d). In a study by 
Schmilovitch et al. [30] on mango physiological 
indices using NIR spectroscopy, MLR models 
had R² values of 0.92 for TSS and 0.6085 for 

acidity in the 1200-2400 nm wavelength region, 
outperforming PLSR models. 
 
3.5.5 Ageing of rice 

 
For accelerated aging, spectral signatures were 
correlated similarly to amylose content. The first 
three principal components explained 96% of the 
variability. PLSR models achieved R² values of 
0.42 (calibration) and 0.58 (validation), with 
RMSE of 6.27. MLR models obtained R² values 
of 0.82 (calibration) and 0.70 (validation), with 
RMSE values of 4.2 and 4.5, respectively (Fig. 
3e). In a study by Fernández-Novales et al. [26] 
on wine quality prediction during aging using NIR 
spectroscopy, it was found to be a promising 
technique for assessing grape wine quality 
attributes during fermentation and aging. 
 
The chemometric analysis indicated that spectral 
reflectance values between 350 to 2500 nm 
could adequately predict quality. MLR 
outperformed PLSR in terms of R² and RMSE in 
both calibration and validation. MLR's superior 
performance is attributed to its selective 
wavelength choice, eliminating overfitting and 
collinearity issues observed in PLSR models 
(Table 2) (ElMasry et al., [31,32] Fernández-
Novales et al., [26]. 

 
Table 2. Summary of PLSR and MLR statistics for amylose content, VER, WAR, KER, and 

ageing 
 

Parameters MLR Model PLSR Model 
Calibration Validation Calibration Validation 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

Amylose content 0.82 0.18 0.84 0.21 0.64 0.23 0.90 0.23 
VER 0.87 0.13 0.85 0.15 0.50 0.21 0.67 0.21 
WAR 0.97 0.21 0.90 0.25 0.77 0.04 0.70 0.04 
KER 0.83 0.124 0.85 0.11 0.63 0.15 0.84 0.15 
Ageing 0.82 4.2 0.70 4.5 0.42 6.27 0.57 6.27 
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4. CONCLUSION 
 

Physicochemical changes during accelerated 
rice aging were assessed both destructively and 
non-destructively. Spectral reflectance, including 
first derivatives, correlated with these changes 
and aging periods. PCA, PLSR, and MLR were 
used to develop predictive models. 
 

• Spectral reflectance effectively captures 
amylose content, VER, WAR, and KER 
changes during rice aging, enabling age 
determination. 

• Variabilities in physical parameters and 
aging were characterized within 600-1800 
nm using raw spectral reflectance, and 
900-1350 nm using 1st derivatives. 

• MLR models outperformed PLSR models, 
achieving R² > 0.80 for physical 
parameters and age prediction (PSLR R²: 
0.42-0.77). 
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