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ABSTRACT 
 
Numerous anthropogenic threats to the exceptionally rich coral-reef ecosystem at Abrolhos Bank 
(Brazil) arguably require implementing drastic conservation policy and meanwhile, urge for the prior 
detailed assessment of species richness and the species distribution across the Bank. Due to their 
unavoidable incompleteness, the already implemented “Rapid Assessment Surveys” at Abrolhos 
Bank deserve being completed, at least numerically, by implementing an appropriate extrapolation 
procedure, to avoid serious bias precisely due to ignoring both the number and the frequency 
distribution of those species still remaining undetected after Rapid Assessment Surveys. 
Complying with this concern, I report on the results of a numerical extrapolation of a previously 
achieved partial survey of the soft-bottom shelled-mollusc fauna at Abrolhos Bank. This numerical 
extrapolation provides least-biased estimates regarding not only the number of species which have 
remained unrecorded but, moreover, additional information on the respective frequencies of these 
still unrecorded species. As a result, the extrapolated total species richness at Abrolhos Bank 
reaches at least 435 shelled-molluscs species (instead of only 293 species actually recorded by the 
Rapid Assessment Survey), out of which 30 species (instead of 19) are expected to be Brazilian 
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endemics. Accordingly, the soft-bottom shelled-mollusc fauna – an admittedly fairly reliable 
indicator for the whole marine biodiversity – definitely demonstrate the major biological interest of 
the whole reef ecosystem at Abrolhos Bank and the imperative necessity of implementing truly 
efficient conservation programs of this ecosystem. 
 

 
Keywords: Rapid assessment survey; marine biodiversity; coral reef; bivalve; gastropod; sampling 

effort. 
 

1. INTRODUCTION 
 
The Abrolhos Bank (Brazil), while being 
considered as the largest and richest reef 
complex in the south-west Atlantic [1,2], is yet 
submitted to steadily increasing detrimental 
pressures and threats, in particular from 
overfishing, tourism, nearby mangrove loss and 
oil drilling programs [1]. Molluscan fauna – by far 
the most diverse group in marine environment 
and a fairly good indicator for marine biodiversity 
as a whole [3] – is expected, accordingly, to be a 
major contributor to the marine biodiversity at 
Abrolhos Bank. Yet, much remains to be 
surveyed in this respect, especially regarding the 
smallest and the rarest molluscan species. 
 
An extended survey is therefore urgently needed 
as a prerequisite for the properly informed 
implementation of appropriate conservation 
programs. Yet, the exhaustive survey of so rich 
an ecosystem is clearly far beyond practical 
reach and, here as elsewhere, only ‘Rapid 
Assessment Programs’ can reasonably be 
carried out. Such rapid – but thus partial – 
assessments are likely being the best 
compromise in practice, given, on the one hand, 
the multiplicity of demands of urgent surveys of 
biodiversity worldwide (especially under tropical 
climate) and, on the other hand, the limited 
available resource to be devoted to field 
investigations in general. 
 
In this perspective, a Rapid Assessment has 
been carried out and reported by R.S. ABSALAO 
[4], focused on the soft-bottom shelled-molluscan 
fauna at Abrolhos Bank. No less than 293 
species were recorded, viz: 229 species of 
Gastropods, 53 species of Bivalves, 6 species of 
Polyplacophores and 5 species of Scaphopodes. 
 
These 293 species represent, however, only an 
unknown proportion of the richness of the whole 
soft-bottom molluscan fauna at Abrolhos: a likely 
substantial underestimate of the actual true 
species richness, since Rapid Assessment 
Surveys only lead to more or less incomplete 
samplings [4]. 

Accordingly, the present study aims at improving 
this reported incomplete field data, by 
implementing a recently developed procedure of 
least-biased numerical extrapolation of the so-
called “Species Accumulation Curve” (which 
accounts for the kinetics of increase in the 
number of recorded species during progressive 
sampling). In turn, this numerical extrapolation 
helps to address the following issues: 
 

- To provide a least-biased estimate of the 
number of unrecorded species and, 
thereby of the true species richness of the 
molluscan fauna at Abrolhos Bank; 

- To provide the estimated complete 
distribution of species frequencies for the 
soft-bottom molluscan fauna, that is, 
including also the estimated frequencies of 
occurrence of each of the still unrecorded 
species; 

- To furthermore focus on the Brazilian 
endemic species occurring at Abrolhos 
Bank, highlighting specifically their 
estimated number and their estimated 
respective frequencies of occurrence on 
the Bank; 

- At last, to anticipate the additional 
sampling effort that would be required to 
gain any chosen increment in the actually 
recorded species richness. This, with the 
desirable prospect of a future 
reinforcement of survey operations at 
Abrolhos Bank. 

 

2. MATERIALS AND METHODS 
 

2.1 The Reported Field Data 
 
The present study is based on the survey of the 
molluscan fauna at 39 sites at Abrolhos Bank, 
carried out during the expedition devoted to the 
“Abrolhos Rapid Assessment Survey Program”, 
and reported by R.S. ABSALAO [4]. As mentioned 
above, the Abrolhos Bank (centered 
approximately 18° S) harbors the richest coral-
reef ecosystem located off the Brazilian coast, 
but is, unfortunately, threatened by a series of 
detrimental anthropogenic pressures [1], hence 
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the interest and the urgency of performing this 
survey. The corresponding sampling procedure 
and the collected data are provided in detail in 
the open-access reference [4] and, accordingly, 
needs not being further repeated here. 
 
Due to the substantial incompleteness of the 
reported samplings (almost unavoidable when 
having to deal with such species-rich 
communities, comprising a large part of rare 
species), the numerical extrapolation of these 
incomplete samplings is required to get a 
relevant envision of the field reality. 
 

2.2 The Numerical Extrapolation 
Procedure and Its Exploitation 

 
Numerical extrapolation of the reported Abrolhos 
Rapid Assessment Survey was therefore 
implemented prior to further analysis, thereby 
aiming at avoiding biased inferences which can 
likely result from ignoring the substantial set of 
more or less rare species that remained 
unrecorded [5]. This is all the more important that 
rare species (beyond their own intrinsic interest) 
may disproportionately contribute to the 
functional structuring of communities, as often 
emphasized [6-16]: “rare species are critical for 
bio-assessment” as quoted in [16]. The numbers 
N0 of observed individuals and the numbers R0 of 
recorded species for the whole community and 
for each of its two main components, Gastropods 
and Bivalves, are given in Table 1. Numerical 
extrapolation can thus serve as a convenient 
palliative to the unavoidable lack of exhaustive 
inventories, which otherwise would be required 
[17–22]. As quoted in reference [22]. "virtually 
always, species richness cannot be observed but 
needs to be estimated because some species 
may be present but remain undetected. This fact 
is commonly ignored in ecology and 
management, although it will bias estimates of 
species richness and related parameters”. 
 
Furthermore, beyond the first aim of estimating 
the number of unrecorded species, the newly 
developed extrapolation procedure can provide, 
in addition, fairly accurate estimates of the 
respective frequencies of occurrence of each of 
these unrecorded species, as detailed in sections 
below.  Numerically completed this way (and only 
when it is so [19]), the distribution of species 
frequencies can further reveal some qualitative 
and quantitative aspects of interest regarding the 
underlying process that governs the spatial 
structuration of species occurrences across the 
studied communities or ecosystem [23-27]. 

2.2.1 Estimation of the total species richness 
 
The least-biased estimation of the number of still 
unrecorded species after partial sampling and 
the resulting estimation of the total species 
richness, St, of the partially sampled community 
are computed according to the procedure defined 
in [28,29] and briefly summarized in Appendix 1, 
on the basis of the numbers fx of species 
observed x-times during partial sampling (x = 1 
to 5). The same procedure allows to further 
derive the least-biased extrapolation of the 
“Species Accumulation Curve”, which can also 
predict, in turn, the expected increase in the 
number of recorded species, R(N), as a function 
of the growing sampling size N (N: number of 
currently recorded individuals); see Appendix 1 
for the main aspects of the computation 
procedure. In practice, this extrapolation of the 
Species Accumulation Curve allows to forecast 
and, thereby, to anticipate the expected 
additional sampling efforts that would be required 
to obtain any desirable increment in sampling 
completeness. 

 
2.2.2 Extrapolation of the distribution of 

species frequencies 

 
As is the case for the Distribution of Species 
Abundance, the Distribution of Species 
Frequencies requires. 
 

(i) To be corrected for the bias resulting from 
drawing stochasticity during samplings of 
finite sizes and, still more importantly,  

(ii) To be completed by numerical 
extrapolation addressing the set of 
undetected species (to the extent that 
sampling is suspected to be incomplete, as 
revealed by the subsistence of “uniques” 
[i.e. species only recorded once]). The 
appropriate procedure of correction and of 
numerical extrapolation of the distribution 
of species frequencies (formally treated the 
same way as the distribution of species 
abundances) is described in details in 
reference [30], briefly summarized in 
Appendix 2 and exemplified in details in 
reference [31]. Classically, the Species 
Frequencies Distribution is graphically 
presented with the (log-transformed) 
frequencies, ai, plotted against the rank i of 
species, the latter being ordered by 
decreasing values of frequencies (with, 
thus, a1 and aSt respectively standing for 
the highest and the lowest frequencies in a 
community of St co-occurring species). 
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3. RESULTS 
 

3.1 Estimated Total Species Richness for 
the Molluscan Fauna as a Whole and 
for Its Two Main Components 

 
Table 1 provides the least-biased estimates of 
the total species richness of shelled-molluscan 
fauna inhabiting soft-bottoms at Abrolhos Bank: 
at first as a whole and subsequently for each of 
its two main components, Bivalves and 
Gastropods. 
 

With sampling completeness level around two 
third (Table 1), it could be considered of interest 
to improve the sampling completeness by further 
pursuing investigations on the bank. Yet, to make 

a rationnaly based decision as to whether it 
seems materially possible or not to pursue 
sampling operation any further, the extrapolation 
of the species accumulation curve beyond the 
actual sampling size deserves bein considered: 
Figs. 1 and 2. As said, this extrapolation allows, 
in turn, to predict and thus to anticipate the 
additional sampling effort that would be required 
to obtain any  desired increment in sampling 
completeness: Fig. 2. 
 
3.2 Corrected and Extrapolated 

Distributions of Species Frequencies 
 
The corrected and extrapolated Distributions of 
Species Frequencies are provided in Figs. 3 to 5, 
for the estimated:  

 

Table 1. The number of collected individuals N0, the number of recorded species R0, the type of 
nonparametric estimator (Jackknife) selected as being the least-biased one, the estimated 

number Δ of unrecorded species, the resulting estimate of the “true” total species richness St 
(= R0 + Δ), the resulting estimated level of sampling completeness R0/St.  
Estimations are computed according to the least-biased procedure [28],  

the selection key being provided in Appendix 1 
 

Molluscan Fauna Abrolhos ALL Taxa Bivalves Gastropods Other taxa 
nb. collected individuals N0 1019 173 826 20 
nb. recorded species R0 = R(N0) 293 53 229 11 
selected least-biased estimator Jackknife-5 Jackknife-3 Jackknife-4 / 
number unrecorded species Δ 142 27 102 13 
estimated total species richness St 435 80 331 24 
sampling completeness  R0/St 67 % 66 % 69 % 46% 

 

 
 

Fig. 1. Extrapolated part of the species accumulation Curve accounting for the increase of the 
number of detected species R(N) as a function of growing sample size N beyond the actually 

achieved sampling (N0 = 1019, R(N0) = 293). Superimposed, here, are the extrapolations 
computed for six non-parametric estimators: Chao and the Jackknife series for orders 1 to 5. 
Substantial differences between these extrapolations highlight the importance of rationally 

selecting the least-biased extrapolation, corresponding, here, to the nonparametric estimator 
Jackknife-5 
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Fig. 2. The least-biased extrapolation of the species accumulation curve (according to the 
selected estimator, here, Jackknife-5) highlighting the expected additional sampling effort, N, 

required to obtain a given increment in the number R(N) of recorded species: For example, 
increasing completeness from the actual level of 67% up to 80%, or 90%, or 95% levels would 

require increasing sampling efforts from the actual sampling size N0 = 1019 to N ≈ 2000, 
≈ 4200, ≈ 8200, respectively 

 

 
 

Fig. 3. The numerically completed distribution of species frequencies of occurrence for the 
whole soft-bottom molluscan fauna at Abrolhos Bank: (i) Discs: the 293 already recorded 

species, ranks 1 to 293; (ii) Double line: the estimated 142 species remaining still unrecorded, 
ranks i = 294 to 435 
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Fig. 4. The numerically completed distribution of species frequencies of occurrence for the 
Bivalves subset: (i) Discs: the 53 already recorded species, ranks 1 to 53; (ii) Double line: the 

27 still unrecorded species, ranks i = 54 to 80 
 

 
 

Fig. 5. The numerically completed distribution of species frequencies of occurrence for the 
Gastropods subset: (i) Discs: the 229 already recorded species, ranks 1 to 229; 

(ii) Double line: the 102 still unrecorded species, ranks i = 230 to 331 
 

(i) 435 species of the whole soft-bottom 
molluscan fauna,  

(ii) 80 species of Bivalves (Pelecypoda), 
(iii) 331 species of Gastropods, respectively. 

 

The species are, classically, ranked by 
decreasing order of frequencies. 
 
3.3 Brazilian Endemics  
 
Estimation of their total number and the 
distribution of their respective frequencies of 
occurrence across Abrolhos Bank. 

Among the 293 recorded species, 19 are 
recognized as Brazilian endemics, all of them 
belonging to Gastropods [4]. The procedure of 
least-biased extrapolation was applied to this 
sub-group of endemic species (as it can be 
applied to any other kinds of subsets, as argued 
in [28,32]) leading to an estimated 11 unrecorded 
endemic species and, accordingly, an estimated 
total of no less than 30 endemic species for the 
sampled area of Abrolhos Bank. 
 
The numerically completed distribution of species 
frequencies, among these 30 endemic species, 
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is provided in Fig. 7. The comparison with the 
distribution of species frequencies within the 
whole molluscan fauna (Fig. 3) shows that the 
frequencies of these endemic species are 
approximately evenly distributed all across the 

range of frequencies of the whole molluscan 
fauna at Abrolhos Bank. 
 
The sampling completeness for endemic species 
turns out to be just slightly lower (63%) than it is

 

 
 

Fig. 6. The least-biased extrapolation of the species accumulation curve (according to the 
selected estimator, here also, Jackknife-5) for the subset of Brazilian endemic species, 

highlighting the expected additional sampling effort N required to obtain a given increment in 
the number R(N) of recorded endemic species: for example, increasing completeness from 

63% to 80%, 90%, 94% would require increasing sampling efforts from N0 = 1019 to N ≈ 2300, 
≈ 5200, ≈ 9600, respectively 

 

 
 

Fig. 7. The numerically completed distribution of species frequencies of occurrence for the 
subset of Brazilian endemic species: (i) Discs: the 19 already recorded species, ranks 1 to 19; 

(ii) Double line: the estimated 11 species still remaining unrecorded: ranks i = 20 to 30 
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for the whole molluscan fauna (67%). As shown 
above for the whole molluscan fauna, the 
numerical extrapolation of the Species 
Accumulation Curve (Fig. 6) allows to forecast 
the additional sampling effort required to record 
new endemic species. 
 

4. DISCUSSION 
 
Conservation concerns regarding threatened 
areas, such as Abrolhos Bank, incite, first, to 
carry out biodiversity surveys aiming at being 
both quickly completed and as comprehensive as 
possible [33]. 
 
Unfortunately, simultaneously complying with 
both these requirements is usually beyond 
practical and/or economical possibilities, given 
the ordinarily limited available resource to be 
devoted. Hence the policy of implementing, as a 
surrogate, ‘Rapid Biodiversity Assessments’, as 
those performed at Abrolhos Bank, off the 
Brazilian coast [4] with, usually, substantial – 
although unknown – degree of sampling 
incompleteness, as an unavoidable 
consequence. In turn, such uncontrolled 
sampling incompleteness will inevitably lead to 
unacceptably biased estimates of species 
richness and regrettably truncated knowledge 
relative to the distribution of species frequencies. 
 
Hence also, the interest of implementing 
convenient numerical extrapolations of the 
actually achieved incomplete samplings, to reach 
– at least numerically – exhaustive surveys. 
 
While numerical extrapolations remain, of 
course, silent as regards the identities of the 
unrecorded species they have, yet, the major 
practical advantage of providing – with minimum 
time and resource expenditure – the reliable 
estimates of both the number of unrecorded 
species and the distribution of their respective 
frequencies of occurrence. And the “silence” of 
numerical extrapolation, as regards the 
taxonomic identities of unrecorded species, has 
finally limited inconvenience, since unrecorded 
species – most of them being rare – often remain 
taxonomically ill-defined presently, especially 
among invertebrates [3] and, accordingly, would 
simply be anonymously accounted as 
“morphospecies” or “RTU” (i.e. Recognizable 
Taxonomic Units), if any further additional 
sampling efforts could have been conducted [3]. 
 
As a whole, numerical extrapolations – at least 
when conducted in compliance with sound and 

accurate procedures [28–30] – can therefore 
provide very valuable quantitative information 
regarding both the number and the more or less 
uneven frequencies and spatial distribution of 
species across the studied ecosystem – and this, 
in an incomparably shorter time and at very 
significantly lowered cost. 
 
Among the various threats to Abrolhos Bank 
already highlighted in Introduction section, the 
prospect of large oil drilling operations should be 
emphasized, as likely being particularly harmful 
to local marine biodiversity and becoming more 
prominent at present. This more specifically 
justifies the urgency of having undertaken the 
numerical extrapolations of the previously 
reported Rapid Assessment (yet waiting for the 
desirable future achievement of some more 
complete samplings). 
 
As expected, the molluscan species richness at 
Abrolhos Bank proves being substantially larger 
than suggested by Rapid Assessment, reaching 
an estimated level of 435 species, out of which 
142 species were thus remained unrecorded 
(Table 1, Figs. 1, 2). The corresponding degree 
of sampling incompleteness typically falls in the 
usual range for marine biodiversity rapid 
assessments in tropical areas [34]. Now, here, 
this estimated species richness of 435 units far 
exceeds what is usually reported in tropical coral 
reefs: at the local scale, rarely more than one 
hundred species, even often less are usually 
reported [31,35,36]. Indeed, this high level of 
biodiversity at Abrolhos Bank may also be partly 
due, here, to the comprehensive sampling of the 
smaller-size species as well (i.e. including 
species less than 10 mm long, a range of size 
which still remains often neglected during most 
surveys). 
 
Among these 435 shelled-mollusc species, an 
estimated 30 species are Brazilian endemics, out 
of which 11 were let unrecorded (Fig. 7). These 
11 unrecorded endemic species, thus remain to 
be detected, which would yet require substantial 
supplementary sampling effort to be consented in 
the future (as anticipated by considering Fig. 6). 

 
The numerically completed distribution of species 
frequencies over the Bank (Fig. 3) – including the 
estimated distribution of frequencies of each of 
the 142 unrecorded species – shows a sigmoidal 
shape, reminiscent of a log-normal distribution, 
as such suggesting the involvement of many 
independent factors governing together the 
distribution of species frequencies. The same 



 
 
 
 

Béguinot; ARRB, 35(11): 103-117, 2020; Article no.ARRB.62548 
 
 

 
111 

 

holds true for each of the two main components 
of the shelled-molluscan fauna: Bivalves (80 
species out of which 27 remain to be recorded) 
and Gastropods (331 species out of which 102 
remain to be recorded). Indeed, there again, 
sigmoidal shapes characterize the respective 
distributions of frequencies for each of these two 
classes, considered separately (Figs. 4 and 5).  
More precisely, the distributions of species 
frequencies – for the whole molluscan fauna as 
well as for the Bivalves and the Gastropods 
subsets separately – comply fairly well with the 

“broken-stick” model [37] (parametrized with the 
corresponding levels of estimated species 
richness): Figs. 8, 9, 10. This fair compliance 
with the “broken-stick” model – characterized by 
a typically random-generation process – still 
further highlights the stochastic-like 
consequences of the extraordinarily complex 
network of both historical and environmental 
factors that  jointly contribute to the respective 
frequencies and spatial distributions of the           
more than 400 co-occurring species on Abrolhos 
Bank. 

 

 
 

Fig. 8. The distribution of species frequencies for the whole soft-bottom Molluscan fauna at 
Abrolhos Bank, compared to the corresponding “broken-stick” model (dashed line) 

computed at the same level of species richness 
 

 
 

Fig. 9. The distribution of species frequencies for the Bivalves fauna at Abrolhos Bank, 
compared to the corresponding “broken-stick” model (dashed line) 

computed at the same level of species richness 
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Fig. 10. The distribution of species frequencies for the Gastropods fauna at Abrolhos Bank, 
compared to the corresponding “broken-stick” model (dashed line) 

computed at the same level of species richness 
 
At last, the two minor components of the shelled-
molluscan fauna, namely Polyplacophora and 
Scaphopoda, contribute together for an 
estimated 24 species only, out of which 11 were 
recorded and 13 still remain unrecorded (Table 
1). 
 
As a whole, the respective contributions of the 
four classes (Gastropoda, Pelecypoda 
(Bivalves), Polyplacophora and Scaphopoda) at 
Abrolhos Bank fairly mirror what is recognized 
worldwide for shelled-molluscs, in terms of 
relative proportions of species richness in each 
class [38]. More specifically, the approximately 
four to one ratio between the respective numbers 
of species of Gastropods and Bivalves, as 
reported from the richest molluscan hotspot of 
Koumac, New-Caledonia [3], is similarly 
highlighted on Abrolhos Bank. 
 

5. CONCLUSION 
 

With almost three hundred recorded species, the 
Rapid Assessment of the shelled-molluscan 
fauna inhabiting soft-bottoms at Abrolhos Bank, 
Brazil (as reported by R.S. ABSALAO [4]) already 
pointed for the remarkable richness of this 
threatened reef-associated ecosystem. In turn, 
the least-biased numerical extrapolation of this 
rapid – and therefore fairly incomplete – 
assessment leads to a still 50% higher figure, 
with, finally, an estimated figure of 435 species of 
shelled-molluscan fauna at Abrolhos Bank, out of 

which no less than 30 species feature as 
Brazilian endemics. And, more or less similar 
proportions are expected for the other major 
groups of marine invertebrates and vertebrates 
occurring at Abrolhos Bank, since shelled-
molluscs, as a group, are considered an 
especially appropriate “indicator” for the whole 
marine animal biodiversity [3]. 
 
All this, indeed, truly represents an invaluable 
biological richness attributed to Brazil, therefore 
requiring an effective protection policy. It is not 
the place, here, to further specify the details of 
the conservative measures to be taken in this 
regard: first of all, our purpose was to factually 
highlight why such an exceptionally rich 
ecosystem as Abrolhos Bank actually deserves 
to be preserved. And, by the way, to provide a 
factual and compelling account of precisely what 
needs now an urgent protection. 
 
In turn, this clearly emphasizes the responsibility 
of Brazilian higher decision-makers, in the face of 
the steadily increasing threats to this 
exceptionally interesting reef-associated 
ecosystem. 
 
On a more global point of view, the present study 
makes a modest but valuable additional 
contribution to the overall effort that is now 
required to compensate for the usual 
incompleteness of marine biodiversity surveys in 
the tropics [34]. 
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APPENDIX 1 
 
Bias-reduced extrapolation of the Species Accumulation Curve and associated estimation of 
the number of missing species, based on the recorded numbers of species occurring 1 to 5 
times 
 
Consider the survey of an assemblage of species of size N0 (with sampling effort N0 typically identified 
either to the number of recorded individuals or to the number of sampled sites, according to the 
inventory being in terms of either species abundances or species incidences), including R (N0) 
species among which f1, f2, f3, f4, f5, of them are recorded 1, 2, 3, 4, 5 times respectively. The following 
procedure, designed to select the less-biased solution, results from a general mathematical 
relationship that constrains the theoretical expression of any theoretical Species Accumulation Curves 
R(N) [see [28,39,40]: 
 

∂
x
R(N)/∂Nx

 = (-1)
(x-1)

 fx(N) /CN, x ≈ (– 1)
(x-1) 

(x!/N
x
) fx(N) ( ≈ as N >> x) (A1.1) 

 
Compliance with the mathematical constraint (equation (A.1)) warrants reduced-bias expression for 
the extrapolation of the Species Accumulation Curves R(N) (i.e. for N > N0). Below are provided, 
accordingly, the polynomial solutions Rx (N) that respectively satisfy the mathematical constraint 
(A1.1), considering increasing orders x of derivation ∂

x
R(N)/∂Nx

. Each solution Rx (N) is appropriate for 
a given range of values of f1 compared to the other numbers fx, according to [28]: 
 

* For f1 up to f2  R1 (N) = (R (N0) + f1) – f1.N0/N 
 

* For larger f1 up to 2f2 – f3  R2 (N) = (R (N0) + 2f1 – f2) – (3f1 – 2f2).N0/N – 
(f2 – f1).N0

2
/N

2
  

 
* For larger f1 up to 3f2 – 3f3 + f4  R3 (N) = (R (N0) + 3f1 – 3f2 + f3) – (6f1 – 8f2 + 3f3).N0/N – 
(– 4f1 + 7f2 – 3f3).N0

2/N2 – (f1 – 2f2 + f3).N0
3/N3  

 
* For larger f1 up to 4f2 – 6f3 + 4f4 – f5  R4 (N) = (R(N0) + 4f1 – 6f2 + 4f3 – f4) – 
(10f1 – 20f2 + 15f3 – 4f4).N0/N – (– 10f1 + 25f2 – 21f3 + 6f4).N0

2/N2 – 
(5f1 – 14f2 + 13f3 – 4f4).N0

3
/N

3 
– (– f1 + 3f2 – 3f3 + f4).N0

4
/N

4 
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* For f1 larger than 4f2 – 6f3 + 4f4 – f5    R5 (N) = (R (N0) + 5f1 – 10f2 + 10f3 – 5f4 + f5) – 
(15f1 – 40f2 + 45f3 – 24f4 + 5f5).N0/N – (– 20f1 + 65f2 – 81f3 + 46f4 – 10f5).N0

2
/N

2 
– 

(15f1 – 54f2 + 73f3 – 44f4 + 10f5).N0
3/N3 – (– 6f1 + 23f2 – 33f3 + 21f4 – 5f5).N0

4/N4 – 
(f1 – 4f2 + 6f3 – 4f4 + f5).N0

5
/N

5 
  

 
The associated non-parametric estimators of the number ΔJ of missing species in the sample [with ΔJ 
= R (N=∞) – R(N0) ] are derived immediately: 
 

* f1 < f2  ΔJ1 = f1; R1 (N) 
 

* f2 < f1 < 2f2 – f3  ΔJ2 = 2f1 – f2; R2 (N) 
 

* 2f2 – f3 < f1 < 3f2 – 3f3 + f4  ΔJ3 = 3f1 – 3f2 + f3; R3 (N)  
 

*3f2 – 3f3 + f4 < f1 < 4f2 – 6f3 + 4f4 – f5  ΔJ4 = 4f1 – 6f2 + 4f3 – f4; R4 (N) 
 

* f1 >4f2 – 6f3 + 4f4 – f5  ΔJ5 = 5f1 – 10f2 + 10f3 – 5f4 + f5; R5 (N). 
 
N.B. 1: As indicated above (and demonstrated in details in [28]), this series of inequalities define the 
ranges that are best appropriate, respectively, to the use of each of the five estimators, JK-1 to JK-5. 
That is the respective ranges within which each estimator will benefit of minimal bias for the predicted 
number of missing species.  
 
Besides, it is easy to verify that another consequence of these preferred ranges is that the selected 
estimator will always provide the highest estimate, as compared to the other estimators. Interestingly, 
this mathematical consequence, of general relevance, is in line with the already admitted opinion that 
all non-parametric estimators provide more or less pronounced under-estimates of the true number of 
missing species [19,21,34,41-44]. Also, this shows that the approach initially proposed in [45] – which 
has regrettably suffered from its somewhat difficult implementation in practice – might be 
advantageously reconsidered, now, in light of the very simple selection key above, of far much easier 
practical use, namely: the best estimate of the number of species remaining unrecorded after 
incomplete sampling is provided by the non-parametric estimator providing the highest value, among 
the Chao and the series of Jackknife estimators. And this is no longer a likely admissible point of view 
as suggested in [19,21,34,41-44] but, now, a rationally established affirmation. 
 
N.B. 2: In order to reduce the influence of drawing stochasticity on the values of the fx, the as-
recorded distribution of the fx should preferably be smoothened: this may be obtained either by 
rarefaction processing or by regression of the as-recorded distribution of the fx versus x. 
 
N. B. 3: For f1 falling beneath 0.6 x f2 (that is when sampling completeness closely approaches 
exhaustivity), then Chao estimator may alternatively be selected: see reference [29]. 
 

APPENDIX 2 
 

Correction and extrapolation (when required) of the as-recorded S.A.D.  
 
N.B: details regarding the derivation of the following expressions are provided in [30]. 
 
Correction for bias of the recorded part of the S.A.D. 
 
The bias-corrected expression of the true abundance, ãi, of species of rank ‘i' in the S.A.D. is given 
by: 
 
Extrapolation of the recorded part of the S.A.D.  
 
Accounting for the complementary abundance distribution of the set of unrecorded species. 
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The following expression stands for the estimated abundance, ai, of the unrecorded species of rank i 
(thus for i > R0): 
 

ai = (2/Ni) / (1+ R(Ni)/Ni).(1– [∂R(N)/∂N]Ni) (A2.2) 
 
which, in practice, comes down to: 
 

ai ≈ (2/Ni)/(1+ R(Ni)/Ni), as f1(N) already becomes quite negligible as compared to N for the 
extrapolated part. 

 
This equation provides the extrapolated distribution of the species abundances ai (for i > R (N0)) as a 
function of the least-biased expression for the extrapolation of the species accumulation curve R (N) 
(for N > N0), ‘i' being equal to R (Ni). The key to select the least-biased expression of R (N) is provided 
at Appendix 1. 
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