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Abstract

Searching for new high temperature superconductors has long been a key research issue.

Fe-based superconductors attract researchers’ attention due to their high transition temper-

ature, strong irreversibility field, and excellent crystallographic symmetry. By using doping

methods and dopant levels, different types of new Fe-based superconductors are synthe-

sized. The transition temperature is a key indicator to measure whether new superconduc-

tors are high temperature superconductors. However, the condition for measuring transition

temperature are strict, and the measurement process is dangerous. There is a strong rela-

tionship between the lattice parameters and the transition temperature of Fe-based super-

conductors. To avoid the difficulties in measuring transition temperature, in this paper, we

adopt a machine learning method to build a model based on the lattice parameters to predict

the transition temperature of Fe-based superconductors. The model results are in accor-

dance with available transition temperatures, showing 91.181% accuracy. Therefore, we

can use the proposed model to predict unknown transition temperatures of Fe-based

superconductors.

1 Introduction

Superconductors with the zero resistance and the Meissner effect have significant practical

application [1]. The best known application is in the Magnetic Resonance Imaging (MRI) sys-

tems widely employed by health care professionals for detailed internal body imaging. Other

prominent applications include the magnetically levitated trains without friction and electrical

power transmission with no energy loss [2–5]. However, superconductors have superconduc-

tivity only at or below their transition temperature [6], which hold back the wide spread appli-

cation of superconductors.

Researchers have been conducting an extensive search for novel superconductors, especially

those with high transition temperature. High temperature superconductors such as cuprate

superconductors containing CuO2 planes [7–10], MgB2 [11], hydride superconductors under

extreme pressure [12–18], and Fe-based superconductors [19]. In particular, Fe-based super-

conductors have high transition temperature next to cuprates, an upper critical field above

50T, a relatively strong irreversibility field, and a high crystallographic symmetry [20], which
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attract the attention of researchers. In the process of exploring the influencing factors of Fe-

based superconducting transition temperature, a strong relationship between the transition

temperature and the lattice parameters is found [21–26]. According to composition and crystal

structure, Fe-based superconductors are divided into four categories, including ReFeAsO

(Re = rare earth elements) (1111 system), AFe2As2 (A = K, Sr, Ba, etc.) (122 system), LiFeAs

(111 system), and FeSe (11 system).

At present, one of the main research directions of Fe-based superconductors is to improve

their transition temperature via various doping methods and dopant levels [27,28]. The transi-

tion temperature is a key indicator to measure whether new superconductors are high temper-

ature superconductors. However, the measurement of the transition temperature needs high

precision devices including temperature controllers, constant current sources, and voltmeters,

etc. These conditions cannot be achieved by ordinary laboratories. Meantime, it is necessary to

artificially operate liquid nitrogen (77K) in the measurement process, and there are certain

security risks. In addition, it mainly depends on liquid helium (4.2K) as refrigerant for super-

conductors that have strict temperature requirements. Because the equipment for liquefied

helium is very complicated, and the liquid helium (4.2K) temperature is close to the absolute

zero, the measurement of the transition temperature is very difficult.

Machine Learning (ML) is one branch of artificial intelligence while it is currently in the

process of growth and evolution and is an active field in data science. One of the application of

ML is data mining. In past decades, algorithms and theories corresponding to ML have had

many advances, including the provision of useful data and robust computing infrastructures.

Data mining is now rapidly applied to superconducting material science. Examples include

using a Gaussian regression algorithm to predict physical parameters of superconductors [29–

38]; using support vector regression [39], random forest algorithm [40], and XGBoost model

[41] to predict high temperature superconductor candidates; and using GMDH-type neural

network [42] to predict hysteresis loops of superconductors. The BP algorithm has excellent

complex pattern classification and multi-dimensional function mapping capabilities, and it is

applied in function fitting, data analysis and prediction. To avoid the strict measurement con-

ditions and risk factors of the transition temperature measurement process, in this paper, we

adopt a machine learning method to build a model based on the lattice parameters to predict

the transition temperature of Fe-based superconductors.

2 Computational method

2.1 Description of BP algorithm

The BP algorithm is a type of error back propagation algorithm. Error back propagation con-

sists of forward propagation and feedback based on error signals. The forward propagation

direction is input layer!hidden layer!output layer. The state of each layer of neurons only

affects the state of the next layer of neurons. If the expected value is not obtained in the output

layer, error signals will propagate back. The back propagation direction is output

layer!hidden layer!input layer. By adjusting the weights and thresholds of each layer, the

error will decrease along the negative gradient direction. The weights and thresholds are con-

tinuously iterated until the error meets the precision requirements. The algorithm process is

shown in (Fig 1).

2.2 Calculation of BP algorithm

Assume a three-layer network with d-dimension input, l-dimension output, and q-dimension

hidden layer, as shown in (Fig 2). In the network, the threshold of the j−th neuron in the out-

put layer is θj, the threshold of the h−th neuron in the hidden layer is γh, the weight between
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the i−th neuron in the input layer and the h−th neuron in the hidden layer is vih, and the

weight between the h−th neuron in the hidden layer and the j−th neuron in the output layer is

whj.

The input of the h−th neuron in the hidden layer is:

ah ¼
Xd

i¼1
vihxi: ð1Þ

Fig 1. BP algorithm flowchart.

https://doi.org/10.1371/journal.pone.0255823.g001
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The input of the j−th neuron in the output layer is:

bj ¼
Xq

h¼1
whjbh; ð2Þ

where, bh is the output of the h−th neuron in the hidden layer.

For a training example (xk, yk), the output of a neuron is ~yk ¼ ð~yk1; ~y
k
2
; . . . ; ~ykl Þ,

~ykj ¼ f ðbj � yjÞ; ð3Þ

where, f() is an activation function.

The mean square error is:

Ek ¼
1

2
ð~ykj � ykj Þ

2
; ð4Þ

where, ykj is the actual value.

BP algorithm is an iterative algorithm, and the updating formula of parameter v is:

v v þ Dv: ð5Þ

The weight whj between hidden layer and output layer is:

Dwhj ¼ � Z
@Ek

@whj
; ð6Þ

where, η is the learning rate.

Fig 2. Network topology diagram.

https://doi.org/10.1371/journal.pone.0255823.g002
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According to the chain rule:

@Ek

@whj
¼
@Ek

@~ykj
�
@~ykj
@bj
�
@bj

@whj
: ð7Þ

According to the definition of βj:

@bj

@whj
¼ bh: ð8Þ

According to formulas (3) and (4):

gj ¼ �
@Ek

@~ykj
�
@~ykj
@bj
¼ � ~ykj � ykj

� �
f 0 bj � yj

� �
: ð9Þ

The updating formula of weights and thresholds is:

Dwhj ¼ Zgjbh: ð10Þ

Dyj ¼ � bgj: ð11Þ

Dvih ¼ Zehxi: ð12Þ

Dgh ¼ � Zeh: ð13Þ

In the formulas (12) and (13):

eh ¼ �
@EK

@bh
�
@bh
@ah
¼ bh 1 � bhð Þ

Xl

j¼1
whjgj: ð14Þ

By continuously iterating the weights whj, and vih, as well as the thresholds θj, and γh, the

accuracy of the network will continue to improve. The performance of the trained network is

evaluated by the mean absolute error (MAE), the root mean square error (RMSE), and the cor-

relation coefficient (CC).

3 Data description

Data were obtained from Japan’s National Institute for Materials Science (NIMS) at http://

supercon.nims.go.jp/index_en.html. After data processing, 203 sets of data were collected. To

strengthen data relevance, the data only contained four representative types of Fe-based super-

conductors, namely 11, 111, 122, and 1111. The space distribution characteristic of data

between the transition temperature and the lattice parameters is displayed in (Fig 3). The data

were roughly divided into the 4 groups, corresponding to the 4 types of Fe-based superconduc-

tors. Each group has a certain degree of discreteness and a non-linear relationship, which

meets the modeling requirements.

The visualization of transition temperature is shown in (Fig 4), which is discrete, and there

is no aggregation. The data are distributed among 0–60 K, which is consistent with the transi-

tion temperature range of Fe-based superconductors. Statistical analysis of the transition tem-

perature—including maximum, minimum, mean, variance, standard deviation (std), range,

median, coefficient of variation, and skewness—is presented in (Table 1). The coefficient of

variation is 70.03%, indicating the transition temperature has good dispersion. The skewness
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Fig 3. Transition temperature, Tc (K), and lattice parameters, lat.a (A) and lat.c (A).

https://doi.org/10.1371/journal.pone.0255823.g003

Fig 4. Transition temperature distribution of samples.

https://doi.org/10.1371/journal.pone.0255823.g004
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is greater than zero, indicating the data greater than the mean value are more scattered than

the data less than the mean value.

4 Result and discussion

4.1 Model accuracy

This paper divides the 203 sets of data into 2/3 training data and 1/3 testing data at ran-

dom, and trains the model. The regression analysis between the actual transition tempera-

ture and the estimated transition temperature in the course of training the model are

presented in (Fig 5) with accuracy of 91.181%. It shows a reasonable accuracy and power-

ful generalization. The performance of the model is shown in (Table 2). The MAE and CC

are 0.47265, and 85.44%, respectively, representing closely matching performance and

good prediction performance.

4.2 Model stability

To further estimate on the prediction stability, the model performance measures through the 5

predictions for observation in (Table 3). It is found that all predictions generally maintain high

accuracy from the training sample. The std of the MAE, RMSE, and accuracy are 0.0245,

0.05162, and 0.7057%, meaning that prediction errors are in a controllable range and that the

model has a good prediction stability.

4.3 Comparisons with previous studies

In (Table 4), the performance of our BP model is compared with that based on two other mod-

els, the RF (Random Forest) [43] and the MLR (Multi-variable Linear Regression Regression)

[44], in previous studies. It is found that our BP model has a optimal performance in terms of

the CC and accuracy. In addition, our BP model is more straightforward from the perspective

of computations and implementations than the others.

4.4 Fe-based superconductors prediction

In order to identify the feasibility and validity of the new model, 10 Fe-based superconductors

include the four kinds of Fe-based superconductors, whose transition temperature values are

in a range of 4.1–53.5K, were selected from the literature [45–50] that are not included in the

trained model as the data. We input the lattice parameters of every Fe-based superconductor

into the model, and obtain the corresponding predictive transition temperature. The results

Table 1. Statistical analysis of Tc in (Fig 4).

Parameter Data

Maximum 56.5000

Minimum 1.8000

Mean 19.3666

Variance 183.9457

Std 13.5627

Range 54.7000

Median 14.4000

Coefficient of variation 0.7003

Skewness 1.1113

https://doi.org/10.1371/journal.pone.0255823.t001
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are presented in (Table 5) and the visualization is shown in (Fig 6). The superconductors

NaFeAs, SmFeAsO0.2F0.8, LaFePO, and LaOFeAs have a slightly larger error (1-2K), and the

superconductors SmFeAsO0.93F0.07, Ba0.82K0.18Fe2As2, LiFeP, FeSe, and FeSe0.82 have a good

accuracy (0.2–0.5K). The result shows that the model we build achieves an acceptable accuracy

Fig 5. Regression analysis.

https://doi.org/10.1371/journal.pone.0255823.g005

Table 2. Performance of the model.

Parameter Data

MAE 0.47265

RMSE 7.6863

CC 0.8544

https://doi.org/10.1371/journal.pone.0255823.t002
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and we can measure the transition temperature of Fe-based superconductors based on the lat-

tice parameters.

5 Conclusion

In this paper, we used a machine learning method to predict the transition temperature of Fe-

based superconductors based on the lattice parameters. By training BP algorithm, the accept-

able accuracy of 91.181% was obtained in the model with available data. We made the perfor-

mance measurement for estimating the model stability, and the model errors were in a

controllable range. We used the trained model to predict, and the predictive value is close to

the actual value. Those suggest that the model is capable of estimating the transition tempera-

ture of Fe-based superconductors with reasonable accuracy and therefore is recommended for

predicting the transition temperature of Fe-based superconductors.

Table 3. Model evaluation.

Parameter MAE RMSE Accuracy

1st 0.47265 7.6863 91.181%

2st 0.47845 8.4063 91.296%

3st 0.50231 7.1271 90.382%

4st 0.47675 8.3406 89.428%

5st 0.42716 8.4370 91.131%

Minimum 0.42716 7.1271 89.428%

Maximum 0.50231 8.4370 91.296%

Mean 0.471464 7.99946 90.6836%

Median 0.47675 8.3406 91.131%

Std 0.0245 0.5162 0.7057%

https://doi.org/10.1371/journal.pone.0255823.t003

Table 4. Model performance comparisons.

Model CC Accuracy

RF 0.82 88.26%

MLR 0.84 88%

BP 0.8544 91.181%

https://doi.org/10.1371/journal.pone.0255823.t004

Table 5. Model prediction result.

Elements Lat.a Lat.c Tc Prediction References

SmFeAsO0.93F0.07 3.393 8.482 35.0 34.4591 [45]

NaFeAs 3.928 6.364 19.0 20.6925 [45]

Ba0.82K0.18Fe2As2 3.937 13.155 25.4 25.0637 [46]

LiFeP 3.692 6.031 6.0 6.2621 [47]

SmFeAsO0.2F0.8 3.931 8.477 49.0 47.1806 [48]

LaFePO 3.962 8.511 4.1 5.2642 [49]

LaOFeAs 4.035 8.740 41.0 42.4102 [49]

LaOFeAs 4.035 8.435 53.5 52.4721 [49]

FeSe 3.770 5.521 9.5 9.1126 [50]

FeSe0.82 3.770 5.510 10.3 10.1835 [50]

https://doi.org/10.1371/journal.pone.0255823.t005

PLOS ONE Fe-based superconducting transition temperature modeling by machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0255823 August 6, 2021 9 / 12

https://doi.org/10.1371/journal.pone.0255823.t003
https://doi.org/10.1371/journal.pone.0255823.t004
https://doi.org/10.1371/journal.pone.0255823.t005
https://doi.org/10.1371/journal.pone.0255823


Acknowledgments

This research did not receive any specific grants from funding agencies in the public, commer-

cial, or not-for-profit sectors.

Author Contributions

Writing – original draft: Zhiyuan Hu.

References
1. Cardwell DA, Ginley DS. Handbook of Superconducting Materials: Characterization, applications and

cryogenics. Institute of Physics, (2003).

2. Ben Azzouz F et al. Structure, microstructure and transport properties of B-doped YBCO system. Physi-

cal C, 442(2006),13–19. https://doi.org/10.1016/j.physc.2006.03.135

3. H Su, Welch DO. The effects of space charge, dopants, and strain fields on surfaces and grain bound-

aries in YBCO compounds. Supercond. Sci. Technol., 18(2005),24–34. https://doi.org/10.1088/0953-

2048/18/1/005

4. Volochova D et al. Time dependent changes in Ag doped YBCO superconductors. Acta Physica Polo-

nica A, 118(2010),1047–1048. https://doi.org/10.12693/APhysPolA.118.1047

5. Paturia P, Palonen H, Huhtinen H. Properties of Pr- and BZO-doped YBCO multilayers. Physics Proce-

dia, 36(2012),661–664. https://doi.org/10.1016/j.phpro.2012.06.263

6. Dahl PF. Kamerlingh Onnes and the discovery of superconductivity: The leyden years, 1911–1914.

Hist. Stud. Phys. Sci. 15,1–37 (1984).

Fig 6. Comparison of predictive value and actual value.

https://doi.org/10.1371/journal.pone.0255823.g006

PLOS ONE Fe-based superconducting transition temperature modeling by machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0255823 August 6, 2021 10 / 12

https://doi.org/10.1016/j.physc.2006.03.135
https://doi.org/10.1088/0953-2048/18/1/005
https://doi.org/10.1088/0953-2048/18/1/005
https://doi.org/10.12693/APhysPolA.118.1047
https://doi.org/10.1016/j.phpro.2012.06.263
https://doi.org/10.1371/journal.pone.0255823.g006
https://doi.org/10.1371/journal.pone.0255823


7. Maeda H, Tanaka Y, Fukutomi M, Asano T. A new high-Tc oxide superconductor without a rare earth

element. Japanese. J. Appl. Phys. 27,L209(1988).

8. Wang Y, Zheng J, Zhu Z, Zhang M, Yuan W. Quench behavior of high-temperature superconductor

(RE)Ba2Cu3OxCORC cable. J.Phys.D:Appl.Phys. 52(34),345303(2019).

9. Yang P, Wang Y, Qiu D, Chang T, Ma H. Zhu J, et al. Design and fabrication of a 1-MW high-tempera-

ture superconductor DC induction heater. IEEE Trans. Appl. Supercond. 29(5),1–6(2019).

10. Yang P, Li K, Wang Y, Wang L, Wu Q, Huang A, et al. Quench protection system of a 1-MW high-tem-

perature superconductor DC induction heater. IEEE Trans. Appl. Supercond. 29(5),1–6(2019).

11. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J. Superconductivity at 39 K in magne-

sium diboride. Nature 410,63–64(2001). https://doi.org/10.1038/35065039 PMID: 11242039

12. Durajski AP and Szczesniak R. Supercond. Sci. Technol. 27,115012(2014).

13. Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, et al. Nat. Sci. Rep. 4,696 (2014).

14. Drozdov AP, Eremets MI, Troyan IA, Ksenofontov V, and Shylin SI. Nature (London) 525,73(2015).

15. Errea I, Calandra M, Pickard CJ, Nelson J, Needs RJ, Li Y, et al. Phys. Rev. Lett. 114,157004(2015).

https://doi.org/10.1103/PhysRevLett.114.157004 PMID: 25933334

16. Kim DY, Scheicher RH, and Ahuja R. Phys. Rev. Lett. 103,077022(2009).

17. Liu H, Naumov II, Hoffmann R, Ashcroft NW, and Hemley RJ. Proc.Natl.Acad.Sci.(USA) 114,6990

(2017).

18. Li Y, Hao J, Liu H, Tse JS, Wang Y, and Ma Y. Sci. Rep. 5,9948(2015). https://doi.org/10.1038/

srep09948 PMID: 25942452

19. Nagamatsu, Watanabe T, Hirano M, Hosono H. Iron-based layered superconductor La[O1-xFx]FeAs (x

= 0.05–0.12) with Tc = 26K. J.Am.Chem.Soc. 130(11),3296–3297(2008). https://doi.org/10.1021/

ja800073m PMID: 18293989

20. Zhang Yun, Xu Xiaojie. Fe-based Superconducting Transition Temperature Modeling through Gaussian

Process Regression. Journal of Low Temperature Physics. https://doi.org/10.10007/s10909-020-0253-

9

21. Scalapino DJ. Superconductivity, Marcel Dekker, 1969.

22. Anderson PW. Physica C 185(1911)11.

23. Scalapino DJ. Physica C 235(1994)107.

24. Pines D. Physica C 235(1994)280.

25. S Chakravarty S Kivelson. Europhys. Lett. 16(1991)751.

26. Laughlin RB. Physica C 234(1994) 280.

27. Watanabe K.: Effect of anion concentration in substitution for in the Bi-Pb-Sr-Ca-Cu-O (2223-phase)

system superconductor. Supercond. Sci. Technol. 11(9), 843(1998).

28. Tang Z., Wang S J., Gao X H., et al. Evidence for charge transfer in Bi-based superconductors studied

by positron annihilation. Phys. Lett. A 17 (3–4),320–324(1993).

29. Zhang Y, Xu X. Predicting doped MgB2 superconductor critical temperature from lattice parameters

using Gaussian process regression. Phys. C: Supercond. Appl. 573,1353633(2020).

30. Zhang Y, Xu X. Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian

process regression. J. Magn. Magn. Mater. 512,166998(2020).

31. Zhang Y, Xu X. Machine learning the magnetocaloric effect in manganites from compositions and struc-

tural parameters. AIP Adv. 10(3),035220(2020).

32. Zhang Y, Xu X. Predicting the thermal conductivity enhancement of nanofluids using computational

intelligence. Phys. Lett. A 384, 126500(2020).

33. Zhang Y, Xu X. Machine learning modeling of lattice constants for half-Heusler alloys. AIP Adv.

10,045121(2020).

34. Zhang Y, Xu X. Relative cooling power modeling of lanthanum manganites using Gaussian process

regression. RSC Adv. 10, 20646–20653(2020). https://doi.org/10.1038/s41598-020-77678-8 PMID:

33244072

35. Zhang Y, Xu X. Machine learning band gaps of doped-TiO2 photocatalysts from structural and morpho-

logical parameters. ACS Omega 5, 15344–15352(2020). https://doi.org/10.1021/acsomega.0c01438

PMID: 32637808

36. Zhang Y, Xu X. Machine learning lattice constants for cubic perovskite ABX3 compounds. Chemistry

Select 5,9999–10009 (2020).

PLOS ONE Fe-based superconducting transition temperature modeling by machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0255823 August 6, 2021 11 / 12

https://doi.org/10.1038/35065039
http://www.ncbi.nlm.nih.gov/pubmed/11242039
https://doi.org/10.1103/PhysRevLett.114.157004
http://www.ncbi.nlm.nih.gov/pubmed/25933334
https://doi.org/10.1038/srep09948
https://doi.org/10.1038/srep09948
http://www.ncbi.nlm.nih.gov/pubmed/25942452
https://doi.org/10.1021/ja800073m
https://doi.org/10.1021/ja800073m
http://www.ncbi.nlm.nih.gov/pubmed/18293989
https://doi.org/10.10007/s10909-020-0253-9
https://doi.org/10.10007/s10909-020-0253-9
https://doi.org/10.1038/s41598-020-77678-8
http://www.ncbi.nlm.nih.gov/pubmed/33244072
https://doi.org/10.1021/acsomega.0c01438
http://www.ncbi.nlm.nih.gov/pubmed/32637808
https://doi.org/10.1371/journal.pone.0255823


37. R Juneja, Yumnam G, Satsangi S, Singh AK. Coupling the high-throughput property map to machine

learning for predicting lattice thermal conductivity. Chem. Mater. 31(14), 5145–5151(2019).

38. Juneja R, Singh AK. Guided patchwork kriging to develop highly transferable thermal conductivity pre-

diction models. J. Phys.: Mater. 3(2),024006(2020).

39. Vapnik V. The Nature of Statistical Learning Theory ( Springer-Verlag, New York,1995).

40. Breiman L.”Random forests,” Mach. Learn. 45, 5(2001).

41. Hamidieh K. A data-driven statistical model for predicting the critical temperature of a superconductor.

Computational Materials Science 154(2018)346–354. https://doi.org/10.1016/j.commatsci.2018.07.

052

42. Akram T, Naqvi SR, Haider SA, Kamran M. A novel framework for approximation of magneto-resistance

curves of a superconducting film using GMDH-type neural networks. Superlattices and Microstructures

145(2020)106635. https://doi.org/10.1016/j.spmi.2020.106635

43. Alizadeh Z, Mohammadizadeh MR. Predicting electron-phonon coupling constants of superconducting

elements by machine learning. Physica C: Superconductivity and its applications 558(2019)7–11.

https://doi.org/10.1013/j.phy.2018.12.008

44. Cai C.Z., Zhu Wen, Pei J.F., et al. Predicting the superconducting transition temperature Tc of BiPbSr-

CaCuOF superconductors by using support vector regression. J. Supercond. Nov. Magn. 23(5),737–

740(2010).

45. Chen XH, Wu T, Wu G, Liu RH, Chen H, Fang DF. Superconductivity at 43k in SmFeAsO1-x Fx. Nature

453(7196),761–762(2008).

46. Dai P, Hu J, Dagotto E. Magnetism and its microscopic origin in iron-based high-temperature supercon-

ductors. Nat.Phy. 8(10), 709–718(2012).

47. Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz JG, et al. Superconductivity in a lay-

ered perovskite without copper. Nature 372(6506), 532–534(1994).

48. ZA Ren, W Lu, J Yang, W Yi, XL Shen, ZC Li, et al. Superconductivity at 55K in iron-based F-doped lay-

ered quaternary compound Sm[O1-xFx]FeAs. arXiv preprint arXiv: 0804.2053, (2008).

49. MA McGuire, AD Christianson, AS Sefat, R Jin, EA Payzant, BC Sales, et al. Evidence for the spin den-

sity wave in LaFeAsO. arXiv-0804 (2008).

50. Yamada I, Belik AA, Azuma M, Harjo S, Kamiyama T, Shimakawa Y, et al. Single-layer oxychloride

superconductor Ca2-xCuO2CI2 with A-site cation deficiency. Phys. Rev. B 72(22),224503(2005).

PLOS ONE Fe-based superconducting transition temperature modeling by machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0255823 August 6, 2021 12 / 12

https://doi.org/10.1016/j.commatsci.2018.07.052
https://doi.org/10.1016/j.commatsci.2018.07.052
https://doi.org/10.1016/j.spmi.2020.106635
https://doi.org/10.1013/j.phy.2018.12.008
https://doi.org/10.1371/journal.pone.0255823

