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Abstract
Theoretical uncertainty limits our ability to extract cosmological information from baryonic fields
such as the thermal Sunyaev–Zel’dovich (tSZ) effect. Being sourced by the electron pressure field,
the tSZ effect depends on baryonic physics that is usually modeled by expensive hydrodynamic
simulations. We train neural networks on the IllustrisTNG-300 cosmological simulation to predict
the continuous electron pressure field in galaxy clusters from gravity-only simulations. Modeling
clusters is challenging for neural networks as most of the gas pressure is concentrated in a handful
of voxels and even the largest hydrodynamical simulations contain only a few hundred clusters that
can be used for training. Instead of conventional convolutional neural net (CNN) architectures, we
choose to employ a rotationally equivariant DeepSets architecture to operate directly on the set of
dark matter particles. We argue that set-based architectures provide distinct advantages over
CNNs. For example, we can enforce exact rotational and permutation equivariance, incorporate
existing knowledge on the tSZ field, and work with sparse fields as are standard in cosmology. We
compose our architecture with separate, physically meaningful modules, making it amenable to
interpretation. For example, we can separately study the influence of local and cluster-scale
environment, determine that cluster triaxiality has negligible impact, and train a module that
corrects for mis-centering. Our model improves by 70% on analytic profiles fit to the same
simulation data. We argue that the electron pressure field, viewed as a function of a gravity-only
simulation, has inherent stochasticity, and model this property through a conditional-VAE
extension to the network. This modification yields further improvement by 7%, it is limited by our
small training set however. We envision that our method will prove useful in problems beyond the
specific one considered here5.

1. Introduction

A pressing problem in cosmology is the accurate modeling of observables sourced or influenced by physics
beyond gravity, in short, baryonic effects. Hydrodynamic simulations are the canonical forward model for
such fields; however, their computational cost is too high for them to be a viable contender in generating the
vast number of realizations necessary to sample distributions. Thus, an approach that has recently emerged is
the use of neural networks to map cheaper gravity-only simulations to their full-physics counterparts. Not
only does this idea enable a substantial speed-up in generating realizations, but it could also improve our
physical understanding; to this aim interpretable models are required.

One example of a baryonic observable that we aim to model is the thermal Sunyaev–Zel’dovich (tSZ)
effect (Zeldovich and Sunyaev 1969, Sunyaev and Zeldovich 1970, 1980, Carlstrom et al 2002,

5 We make our code publicly available at this URL. Data products, trained models, and hyperparameter SQL databases will be shared
upon reasonable request.
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Gatti et al 2021). The tSZ field is a secondary cosmic microwave background (CMB) anisotropy generated by
inverse Compton scattering between electrons in the Universe’s large scale structure and CMB photons. Its
intensity at sky position n̂, to leading order determined by the Compton-y parameter, is given by a
line-of-sight integral over the electron pressure, Pe(⃗x):

y(n̂) =
σT

mec2

ˆ
dlPe(n̂, l) . (1)

The problem that we tackle in this work is the prediction of the electron pressure Pe(⃗x) given a
gravity-only simulation. Since this is a translationally equivariant spatial problem, the seemingly natural
approach chosen for similar problems, e.g. by Tröster et al (2019), Yip et al (2019), Zhang et al (2019),
Kasmanoff et al (2020), Thiele et al (2020), Rothschild et al (2021), Wadekar et al (2021), is a convolutional
neural net (CNN), taking as input the density field of a gravity-only simulation. However, in this work we
argue that existing domain knowledge on Pe(⃗x) and similar fields renders the CNN approach inferior to a
set-based architecture. In fact, electron pressure values high enough to affect observables are predominantly
found in massive gravitationally collapsed structures, called clusters. A neural network should naturally take
this property into account. From this point of view, translational invariance is in fact broken, negating the
main advantage of CNNs.

Besides the heavy bias toward clusters, the electron pressure field exhibits a related feature that further
inhibits the performance of CNNs. Even within a cluster the mass and electron pressure is highly
concentrated toward the center. Thus, CNNs operating on the density field are highly inefficient in that they
need to maintain a uniformly high spatial resolution in order to resolve the important small-scale details
near the cluster center, while conversely this high resolution leads to a waste of resources in the low-density
outer regions.

To a first approximation, clusters are described by their mass,M200, and radius, R200. Here, we employ
the standard convention of mass within a spherical volume that contains an average density 200 times larger
than the mean density of the Universe. These quantities determine a characteristic pressure scale:
P200 ∝M200/R200. The electron pressure6 Pe(⃗r) is to leading order a spherically symmetric function,
commonly approximated as a generalized Navarro–Frenk–White (GNFW) profile (Navarro et al 1997, Nagai
et al 2007, Battaglia et al 2012),

Pe(⃗r)≈ GNFW(|⃗r |;M200,R200), (2)

which we will use as the benchmark (with the parameterization as chosen in Battaglia et al (2012), fitted to
our data). There is an inherent random element in the electron pressure field if viewed as a function of a
gravity-only simulation’s snapshot at a given time. The reason is that chaos washes out some of the history;
in particular the time-integrated activity of the active galactic nuclei (AGN) is difficult to infer.

We propose to learn a probabilistic mapping directly from the simulation representation, i.e. from a set of
dark matter particles with associated positions q⃗i and velocities v⃗i. For a cluster α our most general model
can be written as

P̂e(⃗r) = F
(
{(⃗q(α)i , v⃗(α)i )}i∈α;{(⃗q(⃗r)i , v⃗(⃗r)i )}|⃗qi−⃗r |<R;sα,eα;a; r⃗

)
, (3)

where sα are scalar properties describing the cluster, eα are unit vector properties, a∼N (0,I) is drawn from
a standard normal, and we distinguish between feature tuples and SO(3) vectors using the given notation.
The first argument to F is the set of dark matter particles comprising the cluster, positions and velocities are
evaluated relative to the cluster position and bulk motion respectively. Conversely, the second argument is
the set of particles in the vicinity of the target position r⃗, where the positions are relative to r⃗ and the
velocities relative to the local bulk motion; R is a hyperparameter. Note that operating on particle sets
naturally solves the resolution problem mentioned earlier.

DeepSets (Zaheer et al 2017) are a class of architectures that naturally operate on such sets, part of a
broader direction in deep learning known as ‘geometric deep learning’ (see for example Battaglia et al 2016,
2018, Bronstein et al 2017, 2021 and citations therein). Geometric deep learning has previously seen success
in cosmology in works such as Cranmer et al (2020, 2021a, 2021b), Oladosu et al (2021). Given a tuple of
scalars f i associated with the ith dark matter particle, a DeepSet first computes another tuple gi using a
multi-layer perceptron (MLP). Then a pooling operation (in our case the mean) over the i-direction
produces a feature tuple that is invariant under the ordering of the input particles. We denote such an

6 We use r⃗ for coordinates relative to a cluster’s position.
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architecture as a scalar DeepSet. We construct the input features f i so as to make its elements SO(3)
scalars (Villar et al 2021). This can be achieved by using properties such as |⃗qi|, |⃗vi|, and contractions
between q⃗i, v⃗i and the elements of eα. A simple extension multiplies the gi with the q⃗i before pooling, thus
leading to an output feature tuple in which each element is an SO(3) vector. We denote such an architecture
as a vector DeepSet. It is easy to see that the described vector DeepSet is rotationally equivariant, since its
output is a linear combination of SO(3) vectors with SO(3) scalar coefficients. Thus we obtain a rotationally
equivariant class of architectures operating directly on the particle representation instead of gridded fields.

It should be noted that DeepSets exhibit a further feature that turns out to be useful in applications
similar to the one presented here. Namely, given an appropriate pooling operation, they are to leading order
invariant under the number of input particles. Thus, training can be performed efficiently on small input
sets while inference is then possible, with typically higher accuracy, on larger sets. This ‘sparsification’ of
input sets during training is also a form of regularization; in fact, we find it crucial in mitigating overfitting.

2. Architecture

Figure 1 schematically illustrates the various architecture components. We emphasize that most modules can
be trained and evaluated independently. This modular design makes the architecture amenable to
interpretation. At the end of section 4 we will briefly mention several modules we have experimentally added
to the architecture. At various points the cluster-scale properties sα, eα are passed, which we omit for
conciseness.

The function f produces the final output P̂e(⃗r) using two components, namely a (modified) GNFW
prediction and the output of the Aggregator MLP. By construction, the GNFW prediction is a single scalar g,
while we let the Aggregator output two scalars, a1, a2. The function f is chosen as:

P̂e(⃗r) = f(g,a1,a2) = ReLU[gReLU(1+ a1)+ k sinha2] , (4)

where k is a learnable parameter and ReLU(x)≡max(0,x) is the rectifying linear unit. The outer ReLU is
chosen because the output is known to be positive, and the inner ReLU because we believe it unphysical for
the GNFW prediction to contribute with inverted sign. The sinh function provides flexibility in that it can
act both as a linear and an exponential, depending on the hyperparameter k, a similar parameterization has
already been found useful in Thiele et al (2020). In some of our experiments we prune the network such that
the entire Aggregator disappears; in such cases f simply returns the GNFW prediction g.

The GNFWmodel takes as input the target radial position |⃗r |, which is corrected for mis-centering by the
Originmodule (the cluster finder estimates cluster positions that are not necessarily best to center the GNFW
profile at). The Originmodule is a vector DeepSet operating on the input features |⃗q|, |⃗v|, q̂.eα, v̂.eα, and sα
for particles within 2.5R200. The |⃗q| and |⃗v| are normalized by R200 and V200 respectively, and afterwards
transformed to zero mean, unit variance over the training set. The Originmodule outputs two vectors o⃗1, o⃗2;
the final shift in the cluster center is then computed as

∆o⃗=
R200

2
tanh[(Xoff/R200)⃗o1 + o⃗2] , (5)

with Xoff as defined in the following section. It appears reasonable that in many cases the desired shift in
origin will correlate well with a spatial measure of relaxedness (such as Xoff), which motivates the o⃗1 term.
However, in some cases this assumption may be false (e.g. Xoff happens to be very small), in which case we
give the network the freedom to disregard our physical intuition via the separate o⃗2 vector. The tanh acts
element-wise and stabilizes training. In the fully trained network,∆o⃗/R200 is generally small, so the tanh
reduces to a linear (in which case∆o⃗ transforms as a vector to a good approximation). However, due the
non-linear effects∆o⃗ has on other components of the network it is useful to bound its magnitude to a
reasonable range so that the training process does not become stuck in pathological configurations.

The Aggregator MLP combines multiple inputs.
The Localmodule produces scalar features from the set of dark matter particles in the vicinity of the

target position, where the cutoff R is a hyperparameter. For each particle we pass the features |⃗q|, |⃗v|, q̂.eα,
v̂.eα, and q⃗.⃗v, where q⃗ and v⃗ are with respect to the target position and local bulk velocity respectively and
their magnitudes normalized to zero mean, unit variance over the training set. After passing the local
particles through the DeepSet, we concatenate the resulting tuple with the number of particles within R to set
the scale. If other cluster-scale information, besides the Localmodule, is passed to f, we also pass information
on the target position r⃗ to the Aggregator. This is achieved by passing the scalars |⃗r | and |̂r.eα|, with |⃗r |
normalized by R200, as well as the sα. The use of the Localmodule is a form of expanding our training set
(one could imagine compressing the set of all particles comprising the cluster into some code which is then
evaluated at different positions; in this case, the training set would be very small however).
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Figure 1. Schematic illustration of the architecture used in this work. Our task is to predict the electron pressure Pe at positions r⃗,
using phase space coordinates q⃗, v⃗ of the dark matter particles. The spherically symmetric analytic GNFW profile generally
provides a good approximation for the target electron pressure field and also serves as the benchmark in this work. The first
correction we introduce is for mis-centering. This correction to the point where the GNFW profile is centered is computed by the
Originmodule which is a vector DeepSet operating on all particles in the halo. Second, we introduce local corrections to the
GNFW profile using the Localmodule which is a scalar DeepSet operating on all particles within a certain radius R from the target
position. Third, stochasticity is modeled using a conditional-VAE design, in which the Stochastic module is an MLP acting on a
downsampled version of the residuals. The Aggregator MLP and the function f serve to combine and compress their inputs.
Individual modules can be independently removed from and added to the architecture.

The other input to the Aggregator models the probabilistic nature of the mapping, through a conditional
VAE (Johnson et al 2016, Esser et al 2018, Horowitz et al 2021, Lanusse et al 2021) architecture. The
Stochastic module is the standard VAE encoder, taking as input the residuals of the electron pressure field
with respect to a deterministic model. Since the simulation we are using implements AGN feedback in a
spherically symmetric fashion, we average these residuals in spherical shells around the cluster position
(another instance of domain knowledge). These spherical shells are chosen with respect to the position
computed by the Rockstar halo finder (see the following section), i.e. the Originmodule has no influence on
how these shells are chosen. These shells are chosen as 32 linearly spaced radial intervals out to 2 R200. We
perform principal component analysis on the residuals over the training set and find that the most important
eigenvector represents transfer of electron pressure between inner and outer parts of the cluster, bolstering
our intuition that the stochasticity is driven by AGN feedback. We will find in section 4 that this
interpretation is perhaps too simplistic, however. Given our expectation that the unresolved AGN activity
drives stochasticity, we choose the VAE code to be a single number; such a small latent space dimension is
also useful in regularizing the model in view of the small training set. We have explicitly confirmed that
doubling the latent space dimension leads to worse results.

On a fundamental level, our architecture composes many MLPs. While we allow for some degree of
heterogeneity in their structure, we generally use LeakyReLU activation functions, layer normalization (Ba
et al 2016), depths of 3 · · ·4 hidden layers, and∼196 hidden neurons per layer. We find that, not surprisingly,
the Aggregator is most susceptible to overfitting. This motivates us to introduce dropout (Hinton et al 2012)
there, with rates of∼5% found optimal in the hidden layers while the first layer requires much higher
rates of∼30%.

3. Data and training

We use the IllustrisTNG 300-1 simulation (Marinacci et al 2018, Naiman et al 2018, Nelson et al 2018, 2019,
Pillepich et al 2018, Springel et al 2018) for training and testing. This simulation provides a gravity-only and
a full-physics run with the same initial conditions. In this work, we restrict ourselves to the present-day
(redshift z= 0) snapshot; a generalization to earlier times is naturally possible by passing z to the various
MLPs in the architecture.

We use the state-of-the-art cluster finder code Rockstar (Behroozi et al 2012, 2013) to identify clusters
with massesM200 > 5× 1013M⊙/h in the gravity-only snapshot7. The resulting 463 clusters are randomly
assigned to training (70%), validation (20%), and testing (10%) sets. They have radii R200 ranging from 600
to 1600 kpc/h and contain between 1.5 and 47 million dark matter particles within 2.5 R200.

The cluster-scale scalars sα are chosen as:

7 The reason for this choice of mass cutoff is that in the IllustrisTNG astrophysics model at lower masses the gas physics changes qualit-
atively as AGN feedback is more effective in driving gas out of the cluster.
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• logarithmic mass, logM200,
• position offset from center of mass, Xoff,
• velocity offset from bulk motion, Voff,
• same as Xoff, but with respect to the center of mass of all particles within 2.5 R200 (instead of only the ones
identified by Rockstar as being bound),

• magnitude of angular momentum, |⃗J|,
• eigenvalues of mass inertia tensor, I(m)

a (a= 1,2,3),

• eigenvalues of velocity inertia tensor, I(v)a (a= 1,2,3) (sometimes called the velocity dispersion tensor).

The cluster-scale vectors eα are chosen as:

• angular momentum, J⃗,
• position offset, X⃗off,

• eigenvectors of mass inertia tensor, I⃗(m)
a (a= 1,2,3),

• eigenvectors of velocity inertia tensor, I⃗(v)a (a= 1,2,3).

It is important to ensure the correct behavior of these quantities under SO(3) transformations. Thus, we
order eigenvalues, together with the corresponding eigenvectors, according to magnitude. The orientation of
the eigenvectors needs also to be fixed. This can be accomplished using any pseudo-vector, in this case we
choose orientation such that the contraction of any eigenvector with the angular momentum J⃗ is positive.

All vectorial properties eα are normalized such that contractions with isotropically distributed unit
vectors have unit variance. The scalar properties, except for logM200, are normalized by the appropriate
self-similar scales; usingM200 and R200, any quantity can be nondimensionalized. Thus, we reduce all inputs
to geometric ones apart from logM200 which sets the scale. After the self-similar normalization, we apply the
affine transformation to the sα that yields zero mean and unit variance over the training set.

Since our training set is relatively small, we find it crucial to add noise to the cluster-scale properties. The
non-uniform distributions of some of the scalars sα motivate us to use the following procedure. For each
feature in s, we sort the values in the training set and compute the nearest-neighbor differences∆+,∆−.
During training, we generate noise according to

δ = Nr∆sgn(r) , r∼N (0,1) . (6)

Here, N is a hyperparameter for which we find valuesO(10) to work best. Owing to its exceptional role as
setting the overall scale, we allow for a different value of N for the logM200 feature, finding that somewhat
lower noise levels are optimal. Note that this noise prescription does not actually preserve the mean, but
empirically we find it to work better than ‘patching’ two one-sided Gaussians. For the vector properties, we
experimented with rotations by angles drawn from a normal. We find mild evidence that standard deviations
of∼2 deg are preferred over noiseless vectors.

We produce electron pressure fields from the full-physics simulation using Voxelize (Villaescusa-Navarro
et al 2021), with a voxel sidelength of 5 R200/64. This resolution is sufficient for current and near-future tSZ
measurements; we find that higher resolutions lead to more unstable training, presumably due to large local
outliers. The choice to keep the resolution in units of R200 is motivated by the general geometric spirit of this
work, a production-quality model would most likely choose a constant resolution instead.

Our reconstruction loss for a given cluster is given by

Lrecon =

⟨(
Pe(⃗r)− P̂e(⃗r)

P200

)2⟩
|⃗r |<2R200

, (7)

where the normalization with P200 mitigates our dearth of clusters at the high-mass end8. The target
positions r⃗ are randomly sampled during training for efficiency, while testing is of course performed on all
available voxels.

Training is performed using the Adam optimizer (Kingma and Ba 2015) and a one-cycle learning rate
schedule (Smith and Topin 2017). Each epoch iterates once through all clusters in the training set, randomly
choosing 256 target positions in each cluster and assembling four clusters into each mini-batch. We typically
train for 100 epochs, in some cases 200. We find it necessary to choose different learning rates for the
individual modules. For modules that have access to cluster-scale information (Aggregator, Origin), we also

8 For practical applications the scaling with P200 should be omitted, in which case a somewhat larger training set will likely be required.
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apply weight decay. We find it beneficial to apply gradient clipping (typically atO(1)) in order to stabilize
training.

It turns out to be optimal to passO(103) randomly sampled dark matter particles to the Originmodule
during training, since such a sparse sampling reduces overfitting. We typically passO(102) dark matter
particles to the Localmodule, this is purely for efficiency. In many cases there are fewer dark matter particles
than this number in the local vicinity; then we simply sample some particles multiple times. During testing
we increase these numbers typically by a factorO(10) and observe some benefit from the finer sampling.
Further increase of the number of dark matter particles passed does not increase the prediction quality.

For hyperparameter searches we use the Optuna package (Akiba et al 2019), solving the problem

θopt = argminLopt(θ) with Lopt(θ)≡median(Lrecon[networkθ]/Lrecon[GNFW benchmark]) , (8)

where the median is over the validation set at the end of training. During training runs on architectures in
which the stochastic module is included, we take as the training loss the sum of reconstruction loss and
negative KL divergence of the VAE code with respect to a standard normal, the latter multiplied with a scaling
which we anneal from zero to some hyperparameter over the course of training. For such architectures, we
perform multi-objective optimization on both Lopt and the mean of the KL divergence over the validation
set. We then produce figures similar to figure 2 for multiple models in the Pareto frontier, considering the
validation set only, in order to choose the best model9.

4. Results and discussion

In figure 2 we plot several network losses compared against the GNFW benchmark. Only correcting for
mis-centering (blue) already gives a factor∼2 improvement over the use of cluster centers as identified by
Rockstar. Likewise, only using the dark matter matter particles in the vicinity of the evaluation point10 (cyan)
yields a further improvement. Combining the local information with the shifted GNFW profiles (magenta)
performs better than Local-only by a few percent, the improvement being most pronounced in the high-loss
regime. We conjecture that this could be because the addition of the simpler GNFWmodel helps the network
generalize in these relatively rare situations. Expectedly, the model including the Stochastic module (green)
generally obtains lower reconstruction losses than the other models. The corresponding losses with random
VAE samples (light green) are not much worse in most cases, although a larger training set would certainly
help the network learn a more robust representation of the probabilistic component.

Naturally, we should ask whether our models are learning something trivial. We have checked that a more
general spherically symmetric model, implemented as an MLP that takes as input |⃗r | and the cluster scalars
sα, does not perform more than a few percent better than the GNFW benchmark. Similarly, we find that a
network using only the local density achieves more than twice the loss Lopt compared to the Local network,
demonstrating that the DeepSet is providing substantial information.

We have also experimented with adding further modules to the network. First, between Origin and
GNFW we have inserted an MLP that uses the cluster sα, eα to account for deviations from spherical
symmetry. We find no improvement from this modification. Second, we have constructed vector and scalar

DeepSets operating on the cluster set {(⃗q(α)i , v⃗(α)i )}i∈α whose outputs were then passed to the Aggregator.
Since these additional modules also do not yield any improvements, we conclude that the relatively large
local regions contain enough information to infer the global properties of the cluster. It is important to
appreciate that even these null results can tell us something physical, again a consequence of the
interpretable, modular design.

In order to gain some further intuition, we now present two plots focusing on four example clusters from
the testing set. These clusters were chosen at percentiles 25, 50, 75, and 100 inM200 to give a representative
sample. We use the most powerful network for the predictions, corresponding to the green markers and
violins in figure 2.

First, in figure 3 we show images of projected electron pressure. Note that the cutoff r< 2 R200 has been
applied in all rows, so the projection depth varies with distance from the cluster center. Visually, the
spherically symmetric GNFW benchmark model provides a reasonable approximation to the target for all
but the most massive object. The network predictions do generally pick up deviations from spherical
symmetry in approximately the right direction. However, the network predicts fields that are noticeably
smoother than the target; this is a commonly observed problem in similar tasks (Rothschild et al 2021). The

9 Total compute cost is 13.4 (Tesla P100 + 9CPU) khr (1.09t CO2e (Lannelongue et al 2021)) with a PyTorch (Paszke et al 2019)
implementation.
10 We find that R∼ 300 kpc h−1 is a good choice.
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Figure 2. Network losses evaluated on testing set and compared against the GNFW benchmark model. Each data point is an
individual cluster, the marker size indicating mass. For the version of the network including the Stochastic module, two modes of
evaluation are possible: first, we can evaluate the reconstruction, i.e. the Aggregator receives the output µ of the Stochastic MLP
(dark green points); second, we can randomly sample the VAE code, i.e. the Aggregator receives the vector a drawn from a
standard normal (light green violins). The lines are simple smoothing splines and only meant to guide the eye (the light green line
corresponds to the means of the violins). The numbers in the legend’s first column are the performance metric Lopt introduced in
equation (8) (lower is better, benchmark≡ 1).

Figure 3. Projected electron pressure fields of four clusters. The projection directions were chosen randomly. Each ‘circle’ has
radius 2 R200. Cluster mass increases from left to right. The color scale is consistent within each column (i.e. for each cluster),
normalized to the maximum pixel. The agreement between the target and the neural network prediction is good and always better
than the GNFW benchmark’s performance. Note the dipole pattern in the GNFW residuals in the second and fourth column,
indicating the effect of mis-centering. Deviations from spherical symmetry (compare the GNFW prediction) are generally
predicted in qualitative agreement with the target. However, the predicted field is generally too smooth, which is a common
problem with neural networks. In appendix, we perform a qualitative comparison with results obtained using the CNN from
Thiele et al (2020).
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Figure 4. Electron pressure profiles of the same clusters as displayed in figure 3. The network predictions are generally in better
agreement with the target than the GNFW profiles. For all but the least massive objects the network appears to have learned a
good estimate of its uncertainty (represented by the blue bands), with the predicted uncertainty increasing towards the cluster
outskirts where substructure and the two-halo term start to become important. The neural network is able to predict a large
dynamic range of electron pressure values, in particular the rare, dense cluster cores are predicted accurately.

most massive object (right column) appears to have undergone a recent merger event. Our network does
realize this and provides a relatively good prediction, although the detailed structure of the electron pressure
field around the secondary halo is not perfect. On the other hand, the GNFW benchmark struggles with this
sample and overpredicts the pressure almost everywhere.

Second, in figure 4 we plot the electron pressure profiles corresponding to the same objects. This figure
may be somewhat easier to interpret than figure 3, and it also gives us the opportunity to explore the
probabilistic component of our network. We observe that generally the profiles predicted by our network are
in better agreement with the target than the GNFW benchmark. It is noticeable that the GNFW profiles are
generally too high around r∼ R200, although we have carefully fitted them to the same data the network was
trained on. This is a consequence of the fact that averaging in spherical shells and the locally evaluated loss
function equation (7) do not commute in general. The stochastically sampled network predictions include
the reconstructed profile in all four examples; this is a good indication that the network’s representation of
stochasticity is in fact a reasonable one. Furthermore, our expectation that the stochastic component is
mainly responsible for a transfer of pressure between inner and outer parts of the cluster is confirmed.
However, it should be noted that the predicted stochasticity in the profiles increases with cluster mass. This is
difficult to reconcile with our argument that the stochasticity is primarily driven by the unresolved AGN
activity, since AGN feedback is more efficient in altering the gas distribution in the shallower gravitational
potential wells of lower-mass objects. This may be an indication that the primary driver of stochasticity is in
fact the mass accretion rate, as was argued in Rothschild et al (2021). Such an interpretation is further
supported by the fact that the merger in the rightmost column of figure 3 seems to be the most challenging
scenario for the network.

As a final result, we examine the histograms of electron pressure values, shown in figure 5. We observe
that for the range−1.8≲ log10(Pe/P200)≲ 1 the network produces a histogram that is in almost perfect
agreement with the target, while the GNFW benchmark shows some discrepancies. At low electron pressure,
the network predictions cluster in a relatively narrow range−2.3≲ log10(Pe/P200)≲−1.8 below which the
histogram drops off compared to the target. This behavior is explained by the small contribution such small
electron pressures give to the loss function. Similarly, for log10(Pe/P200)≳ 1.2, the network shows a lack of
high-pressure values. This is most likely because predicting this small number of extreme peaks is a difficult
objective given the small training set.

5. Future directions

We have developed a general method to construct interpretable models that predict continuous fields from a
set of points while enforcing the underlying symmetries. We have argued that the set-based approach
introduced in this work has multiple advantages over CNNs that are commonly chosen for similar problems.
Specifically, the direct operation on the simulation representation as a set of dark matter particles simplifies

• incorporation of inductive biases (such as the prominent role clusters play for the electron pressure field),

8
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Figure 5. Histograms of electron pressure. We directly histogram the voxelized electron pressure values (cf section 3). Thus, this
figure is for illustrative purposes only, since the voxel sizes vary between different clusters (as they are fixed in units of R200).
Regardless, this plot is a useful diagnostic. The neural network is able to predict a large dynamic range of electron pressure values,
performing much better than the GNFW benchmark. Low values are underpredicted because they contribute little to the loss
function, while high values are overpredicted presumably due to their extreme sparsity.

• modularization of the architecture into physically meaningful units,
• enforcement of underlying symmetries,
• fast training, through ‘sparsificiation’ of training data.

The application to cosmological structures demonstrates the power of our approach and opens up several
directions of further investigation. The Originmodule could possibly be almost directly incorporated in
existing codes to improve the centering of spherically symmetric profiles. In order to get this work to a
production-quality stage, training would need to be extended to lower-mass halos and non-zero redshifts,
both of which should not present any major obstacles. Furthermore, it may be useful to combine the trained
network with a CNN that handles the low-density regions outside the most massive objects. Such a
combined architecture could then be used to predict cosmologically interesting summary statistics.
Extensions to other baryonic fields beyond electron pressure should be straightforward and could potentially
be easier since electron pressure is comparatively sparse. For fields that are better correlated with the dark
matter density than is electron pressure, CNNs may benefit from the high locality. However, this would also
apply to our set-based architecture, in which the cluster-scale modules could potentially be discarded in such
cases. An interesting extension could involve transfer learning to sub-grid implementations different from
IllustrisTNG.

In terms of interpretation, symbolic regression of e.g. the Originmodule could provide useful insights
and perhaps compact equations that would be more convenient to implement in existing codes. A more
detailed ablation study, e.g. on the importance of the various cluster-scale properties sα, could be interesting.

Beyond cosmology, we see potential use cases in irregular structures in condensed matter or in
super-resolution atmosphere models from scattered meteorological measurements.
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Appendix. Qualitative comparison to CNN

In this section, we provide a qualitative comparison to the convolutional neural net (CNN) results from
Thiele et al (2020). As we have argued in the main text, the set-based architecture is better able to structurally
mirror the distinct features of the problem, namely sparseness and rotational equivariance.

Showing that these advantages also translate into better predictions compared to those obtained with
CNNs in Thiele et al (2020) is a non-trivial task, however. In that earlier work, the emphasis was on
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Figure 6. For comparison with figure 3, we provide images of some halos obtained with the CNN from Thiele et al (2020). See the
text for cautionary notes on direct comparison.

predicting an entire volume, while here we are constraining ourselves to massive halos (we have argued,
however, that the remainder of the task should be relatively straightforward and can probably be solved with
CNNs). Thus, Thiele et al (2020) optimized the network for summary statistics (mostly the power spectrum)
and worked at a fixed spatial resolution (while we, in this work, choose to adapt the resolution to individual
halos, in the geometric spirit of the architecture).

Due to these caveats, a comprehensive quantitative comparison is beyond the scope of this work (and
should probably be performed at the level of summary statistics one would eventually be interested in, which
necessitates inclusion of redshift dependence). However, a relatively straightforward comparison can be
made at the level of halo images. We have already presented integrated images of a few halos, obtained with
our set-based network, in figure 3. For comparison, figure 6 provides similar images obtained with the CNN
(this figure is a modified version of figure 10 in Thiele et al 2020). The color scales are constructed identically
to the way chosen in figure 3. We need to mention a few points in which the two figures are not directly
comparable. First, the CNN images are at a fixed resolution, with 3.2h−1Mpc sidelength. Second, the
semi-analytic model labeled ‘B12’ is similar to the GNFWmodel used as a benchmark in this work, but it
was not refit to the specific simulation (which is IllustrisTNG-300, same as in this work). Only an overall
scaling was applied to the ‘B12’ pressure profiles.

Despite these differences, at least a qualitative comparison is possible. The object labeled ‘massive halo’ is
actually the same object as the right-most one in figure 3, with the same projection direction (it is a lucky
coincidence that this object ended up in the testing set in Thiele et al 2020, too). Here, we observe that the
CNN tends to make the same mistakes as the B12 model, albeit to a lesser extent. This strong reliance on the
semi-analytic model is a general trend observed with the CNN, while the set-based architecture proves to be
relatively robust to mistakes made by the GNFWmodel. At a more quantitative level, the set-based
architecture presented in this work produces a more accurate prediction than the CNN, as evidenced by the
darker residuals in figure 6 compared to figure 3.

While for the other two objects in figure 6 we unfortunately do not have counterparts in figure 3, the
same trends appear to hold: the CNN is overly reliant on the B12 model, which translates into larger errors
than those made by the set-based architecture.
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