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Abstract
Neural network training and validation rely on the availability of large high-quality datasets.
However, in many cases only incomplete datasets are available, particularly in health care
applications, where each patient typically undergoes different clinical procedures or can drop out
of a study. Since the data to train the neural networks need to be complete, most studies discard the
incomplete datapoints, which reduces the size of the training data, or impute the missing features,
which can lead to artifacts. Alas, both approaches are inadequate when a large portion of the data is
missing. Here, we introduce GapNet, an alternative deep-learning training approach that can use
highly incomplete datasets without overfitting or introducing artefacts. First, the dataset is split
into subsets of samples containing all values for a certain cluster of features. Then, these subsets are
used to train individual neural networks. Finally, this ensemble of neural networks is combined
into a single neural network whose training is fine-tuned using all complete datapoints. Using two
highly incomplete real-world medical datasets, we show that GapNet improves the identification of
patients with underlying Alzheimer’s disease pathology and of patients at risk of hospitalization
due to Covid-19. Compared to commonly used imputation methods, this improvement suggests
that GapNet can become a general tool to handle incomplete medical datasets.

1. Introduction

Supervised machine-learning models, such as the neural networks employed in deep learning, require to be
trained and validated on large high-quality datasets [1]. In particular, these datasets need to be complete, i.e.
each datapoint needs to have the values of all features, in order for them to be employed in standard
neural-network training algorithms [2]. However, in many applications only incomplete datasets are
available, i.e. each datapoint has values only for some of the relevant features [3]. For example, this often
occurs in medical applications involving patient data, e.g. because various patients might undergo different
clinical and diagnostic procedures at different times, with some patients even dropping out from a study [3].
Often, the dataset can contain medically relevant information despite being incomplete, motivating the
interest on techniques that deal with missingness.

In order to deal with these missing data, there are two standard approaches. The first and most
commonly employed one is to exclude the datapoints that do not have all relevant features [4]. However, data
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exclusion reduces the statistical power of the dataset [5] and can introduce biases if the data are not missing
completely at random [6]. The second and more complex approach is to impute the missing data. Various
statistical imputation strategies have been proposed. The simplest one is arguably to substitute the missing
values with their ensemble average [6]. In this study, we use as a benchmark five imputation techniques (see
details in section 4.1). More sophisticated imputation strategies obtain better results employing, e.g.
multilayer perceptrons, extreme gradient boosting machines, and support vector machines [7–9]. For
example, a previous study [10] improved the classification of individuals in the datasets of the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and the Parkinson’s Progression Markers Initiative by employing a
multiple recurrent graph convolutional network to impute the missing features (the brain volumes obtained
from magnetic resonance imaging (MRI)). However, a major drawback of data imputation is that it can
amplify biases in the available data or even introduce spurious correlations [4], especially when data are
missing in great numbers or not at random [11]. Because of their drawbacks, both exclusion and imputation
strategies can only deal with a limited amount of missing data. For instance, a study that employs similar
imputation methods to impute 10%–50% of the data shows a significant increase in the error [12].

To address these limitations, here we introduce GapNet, an alternative neural-network training approach
based on a hierarchical architecture that can make use of highly incomplete datasets. GapNet takes advantage
of all available information without the need for imputation of missing data. As real-world test cases with
highly incomplete datasets, we show that GapNet improves the identification of patients in the Alzheimer’s
disease (AD) continuum in the ADNI cohort and of patients at risk of hospitalization due to Covid-19 in the
UK BioBank cohort. By distilling the information available in large incomplete datasets without having to
reduce their size or to impute missing values, GapNet allows extracting valuable information from a wider
range of datasets, being employable for many applications.

2. Results

2.1. GapNet working principle
To demonstrate the GapNet working principle, we first apply it on a simulated dataset, representing a
two-class classification problem with F continuous input features.

2.1.1. The simulated dataset
We employ the simulated dataset Madelon [13], where the datapoints are clustered around the vertices of an
F-dimensional hypercube and assigned to the class of the closest vertex (section 4.2). Figure 1(a) provides a
schematic illustration for the case F = 3. Here, we consider a system with F = 40 features, so that
y = f(x1, . . . ,x40), where y ∈ {0,1} is the class assignment for each datapoint. As shown in figure 1(b), the
dataset consists of 1000 samples, where only 100 samples have all the 40 features (samples 451–550).

2.1.2. Vanilla approach
To establish a benchmark, we first consider a vanilla neural network approach, schematically shown in
figure 1(c). We employ a dense neural network having an input layer with 40 nodes corresponding to the 40
features, two hidden layers with 80 nodes each with rectified linear unit (ReLU) activation, a dropout layer
with a frequency of 0.5, and an output layer with a single node (sigmoidal activation). This vanilla neural
network must be trained using the complete samples. Thus, we consider the dataset composed of complete
cases and split it into five folds (four for training and one for testing). We train the neural network for 1000
epochs using the Adam optimizer [14] with binary cross-entropy loss.

2.1.3. Imputation approaches
To test the imputation methods, after the five-fold split, we concatenate the training dataset with the
incomplete dataset, we impute the missing values using five imputation strategies (see details in section 4.1),
and proceed to train the neural network as described above. Finally, the trained model is evaluated on the
complete testing dataset.

2.1.4. GapNet stage I
The GapNet approach involves a two-stage training process, as schematically presented in figure 1(d). In
training stage I (figure 1(d)), the input feature space is split into a set of non-overlapping clusters for which
complete samples are available. We then build a group of identical neural network models, one for each
cluster of the input data. In turn, we train a neural network using each of these clusters to predict the desired
output. This stage can be seen as a means to extract the relevant information from all the clusters, which is
conceptually similar to a recent preprint [15] for proposing a deep-clustering approach to maintain
discriminablility in the embedding space. In the current example, we identify two clusters of features, the
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Figure 1. The GapNet approach to missing training data. (a) Schematic representation of Madelon [13], an artificial dataset used
to test binary classification problems. (b) Simulated dataset with colored areas representing the available data, while white areas
represent the missing data. (c) The baseline benchmark is provided by a vanilla neural network trained and tested on the
complete samples. Additional benchmarking is provided by training neural networks with imputed data. (d) The GapNet
approach: in training stage I, subsets containing all samples with certain features are used to train individual neural networks. In
training stage II, their outputs are combined by an output node, whose connections are trained with all complete samples.

first one corresponds to features 1–25 (dark green area in figure 1(b)) and the second one to features 26 to 40
(light green area), each with 550 samples. Then, we train two dense neural networks to predict y using
x1, . . . ,x25 and x26, . . . ,x40, respectively. Each neural network consists of an input layer (with 25 and 15 nodes,
respectively, corresponding to each cluster of features), two hidden layers (with 50 and 30 nodes, respectively,
with ReLU activation), a dropout layer (frequency 0.5), and finally an output layer with a single node
(sigmoidal activation). We train these neural networks on the available samples (retaining 20 complete
samples for testing, the same for both neural networks) for 1000 epochs (Adam optimizer [14], binary
cross-entropy loss).

2.1.5. GapNet stage II
In training stage II (figure 1(d)), the input and hidden layers of the first-stage neural networks are combined
into a single neural network, adding an output node (sigmoidal activation). The concatenated neural
networks result in a model with an input for each one of the available features and a singular output. These
new connections are trained for 1000 epochs (Adam optimizer [14], binary cross-entropy loss) using all
available complete samples (retaining for testing the same 20 samples used for testing in training stage I).
This concatenated neural networks can integrate the extracted information from separate clusters in stage I.
We investigated also a variation of GapNet based on more stages of training (see details in supplementary
materials, ‘GapNet with intermediate training stage’).

2.1.6. Comparison with the vanilla approach
In figure 2(a), we evaluate the performance using the receiver operator characteristic (ROC) curve, which
plots the true positive rate versus the false positive rate as a function of the threshold. The area under the
ROC curve (AUC) is then 0.5 for a random estimator and approaches 1 as the estimator performance
improves. Figure 2(a) shows the ROC curve for GapNet (orange line) and vanilla neural network (blue line),
obtained as the fivefold cross-validation average. The GapNet approach (AUC 0.838 ± 0.080) outperforms
the vanilla neural network (AUC 0.608 ± 0.055). This difference is statistically significant with a p-value
p < 0.01 (z = 3.574), tested using the Delong test [16].

Figure 2(b) shows box plots of the AUC values obtained from complete cases over fivefolds for the
GapNet (orange) and the vanilla neural network (blue). GapNet results are significantly better than that of
vanilla approach, demonstrating that GapNet can learn important information from the clustered network.
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Figure 2. GapNet improves the classification of simulated data. (a) The receiver operator characteristic (ROC) curves obtained
with GapNet (orange, area under the curve (AUC) 0.838 ± 0.080) is significantly better than that of the vanilla neural network
(blue, AUC 0.608 ± 0.055) and of other neural networks trained using imputed dataset. The solid lines represent the average
ROC curves for the test datatset over the fivefold cross-validation. The black dashed line represents the ROC curve of a random
classifier. The error bands are reported in supplementary figure S2 (first column). (b) Box plots of the AUC values obtained for
the test dataset over the fivefold cross-validation for the GapNet (orange), the vanilla neural network (blue), and the
impute-data-trained neural networks (gray lines). GapNet delivers the best result (large AUC). The black vertical lines mark the
median value for each box plot, the green dots are the fliers, the boxes are the interquartile ranges, and the black horizontal lines
are the whiskers. (c) The fivefold-averaged test loss for GapNet (orange) outperforms all other approaches (smaller loss
consistently over 1000 epochs, while the losses for the other methods increase denoting overfitting). The error bands are reported
in supplementary figure S2 (second column). (d) The fivefold-averaged testing AUC shows that GapNet (orange) produces the
best predictive performance without overfitting. The error bands are reported in supplementary figure S2 (third column). The
comparison for loss and AUC with the training dataset is shown in supplementary figure S1.

Supplementary table S1 shows that the sensitivity, specificity, accuracy, and precision computed by setting
the predictions’ threshold at 0.5 are improved by the GapNet approach.

A crucial aspect when selecting a neural network algorithm is its robustness to overfitting. For this reason,
we monitor the test dataset over the training process. Figures 2(c) and (d) present the evolution of the test
loss function and the test AUC over 1000 epochs (the evolution of the corresponding training is presented in
supplementary figure S1). The test loss function for the vanilla neural network increases after the initial
decrease and its AUC decreases after the initial increase, while GapNet results is robust against overfitting.

2.1.7. Comparison with imputation approaches
Figures 2(a) and (b) show that the GapNet approach outperforms imputed-data-trained neural networks in
term of AUC. Nevertheless, the imputed-data-trained neural networks tend to outperform the simpler
vanilla neural network. However, the test loss of the imputed-data-trained neural networks (gray lines in
figure 2(c)) increases more during training than that of the vanilla neural network, denoting that using
imputed data leads to more overfitting, even though their performance in terms of AUC remains better than
the vanilla neural network (gray lines in figure 2(d)).

Overall, these proof-of-principle results on simulated data show the effectiveness and robustness of the
GapNet approach to fully exploit incomplete datasets. Thus, the clear advantage is that GapNet can make use
of all available data, without having to impute the missing data.

2.2. Identification of patients in the AD continuum in the ADNI cohort
As a first real-world GapNet application, we consider the identification of individuals with underlying
amyloid pathology, which is one of the earliest pathological changes occurring in AD [18–21].

2.2.1. Incomplete data clustering
We use data from the ADNI cohort (section 4.3). In total, 869 individuals underwent 1465 neuroimaging
visits including both baseline visits and subsequent longitudinal follow-up visits for some individuals. In
each visit, one or more of the following three neuroimaging modalities were employed: structural MRI,
amyloid positron emission tomography (amyloid-PET), and fluorodeoxyglucose-PET (FDG-PET), which
are normally used to assess gray matter atrophy, amyloid deposition and glucose hypometabolism in AD,
respectively (figure 3(a)). For MRI, we include the mean thickness of the 68 cortical regions of the Desikan
atlas [22] and the volumes of 14 subcortical gray matter regions of the Aseg atlas [23]. For amyloid-PET, we
include the mean amyloid standard uptake value ratio (SUVR) values from the same brain regions included
in MRI. For FDG-PET, we include the SUVR of five composite brain regions [24]. The final number of
features is 169, and the corresponding regions of interest (ROIs) are listed in supplementary table S2. MRI
scans were acquired in 233 visits, amyloid-PET scans in 1045 visits, and FDG-PET scans in 1258. Only 120
visits (corresponding to 118 individuals, of which 40 cognitively normal subjects without amyloid pathology
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Figure 3. GapNet improves the identification of patients on the Alzheimer’s disease continuum in the ADNI cohort.
(a) Neuroimaging modalities (structural magnetic resonance (MRI), amyloid positron emission tomography (amyloid-PET), and
fluorodeoxyglucose-PET (FDG-PET)) and corresponding brain regions of interest (ROIs). Mean values in each ROI are extracted
by a standard Freesurfer processing pipeline [17]. (b) Schematic representation of the dataset. The dataset corresponds to 1465
visits in each of which one or more neuroimaging modalities are employed. Only 120 visits resulted in the acquisition of all three
neuroimaging modalities (highlighted by the thick black line). (c) GapNet: first a neural network with two hidden layers is trained
using each cluster of features (i.e. the brain region data for each neuroimaging modality). Then, all these neural networks are
concatenated to return the final output. (d) Box plots of the test AUC values. GapNet outperforms the vanilla neural networks
trained either on all individuals with complete features or on imputed dataset. The black mark represents the median, the black
boxes are the interquartile ranges, and the black horizontal lines are the whiskers. (e) Receiver operating characteristic (ROC)
curve showing that GapNet (orange, AUC 0.901 ± 0.075) outperforms the vanilla neural network (blue, AUC 0.86 ± 0.11) and
the imputed-data-trained networks. The solid lines represent the averages over a fivefold cross-validation and the black dashed
line represents the ROC curve of a random classifier. The error bands are reported in supplementary figure S4 (first column).
(f) The average test loss and (g) the average test AUC show that GapNet (orange) outperforms all other approaches. The error
bands are reported in supplementary figure S4 (second and third columns). The comparison with the loss and AUC for the
training dataset is shown in supplementary figure S3. (h) Relevance heatmaps for the GapNet classification between cognitively
normal individuals and patients in the AD continuum. The color-coded areas represent the regions with high classification
importance. For amyloid-PET (upper panel), these regions include the left pericalcarine, right pars trianularis, bilateral superior
parietal lobule, right precuneus, right postcentral lobule, left medial orbitofrontal cortex, right precentral lobule at the cortical
level, as well as bilateral hippocampus and bilateral amygdala at the subcortical level. For MRI (lower panel), the regions are
mainly from the right hemisphere, including the caudal anterior cingulate and posterior cingulate at the cortical level as well as
the right caudate and left pallidum at the subcortical level.

and 78 subjects with amyloid pathology) resulted in the acquisition of all three neuroimaging modalities
(figure 3(b)).

To apply the GapNet approach (figure 3(c)), we identify three clusters of features corresponding to the
three imaging modalities. We evaluate the classification performance on the test sets in the fivefold
cross-validation. We define the test set from 20% of the complete data (Ntest = 24). We use the rest of the
data for the training set (Ntrain = 1441 including the remaining 80% of the samples with complete data as
well as all the incomplete samples). In training stage I, these three clusters of features are used to train three
independent neural networks (input layer with 5, 82 and 82 nodes, respectively; two hidden layers with 10,
164, and 164 nodes, respectively, with ReLu activation; dropout layer with frequency 0.5; output layer with
single neuron and sigmoidal activation). We train the MRI network on 209 samples, the amyloid-PET
network on 1021 samples, and the FDG-PET network on 1234 samples (in all cases for 1000 epochs with
binary cross-entropy loss function and Adam optimizer). These three networks are then combined into a
single neural network in training stage II with a joint output node, and the new connections are retrained on
the 96 complete training samples (1000 epochs, binary cross-entropy loss function, Adam optimizer).

2.2.2. Comparison with the vanilla approach
We compare the performance of GapNet and the vanilla neural network trained with complete cases in
figures 3(d)–(g). In figure 3(d), the boxplots of AUC values are color-coded with GapNet in orange and the
vanilla in blue. The results are sorted in descending order of median AUC values. The result of GapNet are
better than those of the vanilla approach, indicating the combining information in the clustered network
improves the classification task. Figure 3(e) shows that the ROC curve for the GapNet approach (orange,
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AUC 0.901 ± 0.075) is superior than that of the vanilla neural network (blue, AUC 0.86 ± 0.11). This
difference is statistically significant (Delong test [16], p-value p < 0.05, z = 1.96). Supplementary table S1
shows that the sensitivity, specificity, accuracy, and precision computed by setting the predictions’ threshold
at 0.5 are improved by the GapNet approach. Figures 3(f) and (g) show the test loss and AUC. It can be seen
that GapNet performs better than the vanilla neural network and is not prone to overfitting. The evolution of
the corresponding training is presented in supplementary figure S3.

2.2.3. Comparison with the imputed datasets
Figures 3(d) and (e) show that GapNet outperforms also the neural networks trained with imputed data.
Interestingly, the AUC of the vanilla neural network are also better than those of most imputed-data-trained
networks, probably due to the artifacts introduced during the imputation process.

The test loss (figure 3(f)) and the testing AUC (figure 3(g)) for the imputed-data-trained networks
improve initially, but subsequently greatly overfit, eventually underperforming both GapNet and the vanilla
neural network.

2.3. Prediction of Covid-19 hospitalization in the UK BioBank cohort
As a second example of a real-world application, we consider an incomplete dataset to predict hospitalization
due to Covid-19. The dataset is based on the UK BioBank cohort, which contains information concerning
Covid-19 test results, hospitalizations, and clinical examinations (section 4.4). The aim of this analysis is to
discriminate patients at high risk of hospitalization due to severe Covid-19 symptoms from those at low risk
of hospitalization, based on their previous medical records.

2.3.1. Incomplete data clustering
The cohort includes 4226 individuals and 32 different features with a varying number of records per feature,
ranging from 1122 to 3776 values. The parameters include easily accessible testing information, such as red
blood and white blood cell counts (see supplementary table S3 for the full list of features).

The missing data are irregularly distributed across the dataset, so we sort the features based on the
number of missing values and we gather them into eight different clusters of four features each in order to
reduce the amount of information loss. Figure 4(a) shows the input data color-coded based on the different
clusters, from the largest cluster in dark green to the smallest in yellow. The colored areas represent the data,
while the missing values are shown as white patches.

Discarding all patients with incomplete records leads to a reduced cohort of only 501 subjects, as
indicated by the black line in figure 4(a). The schematic representation of the GapNet approach is provided
in figure 4(b). We split the data into training and testing sets. The testing set includes about
20%(Ntest = 100) of the complete samples, while the training set includes the remaining complete data (401
samples) and all the incomplete data (Ntrain = 4126).

In training stage I, the eight clusters of features are used to train eight independent neural networks with
input layer of four nodes. Each of these neural networks has two hidden layers with 25 nodes each (ReLu
activation) and a dropout layer (frequency 0.5). The output layer consist of a single neuron (sigmoidal
activation). We train the neural networks on each cluster of inputs for 1000 epochs using the binary
cross-entropy loss function and Adam optimizer. These eight networks are then combined into a single
neural network in training stage II with a joint output node, and the new connections are retrained on the
complete samples (1000 epochs, binary cross-entropy loss function, Adam optimizer).

2.3.2. Comparison with the vanilla approach
We compare the performance of GapNet and the vanilla neural network in figure 4(c). The boxplots of AUC
values are color-coded showing the GapNet in orange and the vanilla in blue, and the results are sorted in
descending order of median AUC values. It is interesting to note that the GapNet results are significantly
better that the vanilla approach, with an increase of 0.12 in the median AUC, demonstrating that combining
the information in the clustered network improves the classification task.

Figure 4(d) shows that the ROC curve for the GapNet approach (orange, AUC 0.71 ± 0.06) is
significantly better that of the vanilla neural network (blue, AUC 0.63 ± 0.05) as demonstrated by the
Delong test [16] (p = 0.0008, z = 3.4). Also in this case, supplementary table S1 shows that the sensitivity,
specificity, accuracy, and precision computed by setting the predictions’ threshold at 0.5 are improved by the
GapNet approach.

Finally, we compare the training process by looking at the evolution of the loss (figure 4(e)) and AUC
(figure 4(f)) over 1000 epochs. The loss function for the vanilla neural network increases very rapidly after
the initial decrease, while the GapNet results robust against overfitting also over a long training period. See
also supplementary figure S5, for the comparison between training and testing loss function and AUC.
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Figure 4. GapNet improves the identification of patients at risk of hospitalization due to Covid-19 in the UK BioBank cohort.
(a) Eight clusters of features employed to predict hospitalization due to Covid-19 (sizes top to bottom 3776, 3627, 3552, 3322,
2652, 1122, 1188, 1493). The white areas represent the missing data. The 501 subjects with all features are delimited by the black
line. (b) Network architecture employed for the GapNet approach. Neural networks with two hidden layers are trained for each
cluster and then concatenated to obtain a single output. (c) Box plots showing the statistics of the AUC over the fivefold
cross-validation. The black vertical lines mark the median value for each boxplot, the boxes are the interquartile ranges, and the
black horizontal lines are the whiskers. The boxes are sorted in descending order of medians, and the performance of GapNet
results better than all the other neural networks considered. (d) Receiver operating characteristic (ROC) curve showing that
GapNet (orange, AUC 0.71 ± 0.07) outperforms the vanilla neural network (blue, AUC 0.64 ± 0.07) and all neural networks
trained with imputed data. The solid lines represent the averages over the fivefold cross-validation and the black dashed line
represents the ROC curve of a random classifier. The error bands are reported in supplementary figure S6 (first column). (e) The
average test loss and (f) the average AUC show that the GapNet approach (orange) performs better that the vanilla neural network
(blue) and the imputed-data-trained networks (gray lines). In particular, the GapNet approach is the only one that does not
overfit. The error bands are reported in supplementary figure S6 (second and third columns). The comparison with the loss and
AUC for the training dataset is shown in supplementary figure S5.

Moreover, after an initial stage, the AUC for the GapNet remains nearly constantly above 0.71, while the
vanilla is below 0.7 throughout the training.

2.3.3. Comparison with the imputated datasets
Figure 4(c) shows that the GapNet approach outperforms also the imputed-data-trained networks in term of
AUC. The neural networks trained with imputations at fixed values (‘mean’, ‘median’ and ‘frequent’) result
intermediate between the GapNet approach and the vanilla neural network, while those trained with
imputations with multiple Bayesian regression and k-nearest neighbor perform worse. A possible
explanation is that the more advanced imputation methods enhance the biases already present in the dataset.
This picture is generally confirmed by the ROC curves presented in figure 4(d).

Figures 4(e) and (f) show the averages of the test loss and of the test AUC, respectively. After an initially
decreasing stage, the validation loss start to increase for all the imputation methods until values in the range
0.653–0.673, while the GapNet remains steadily around 0.627. The AUC follow similar trends, as all
imputation methods start to decrease after the initial 300 epochs, ending up below 0.7, while GapNet
remains stable around AUC= 0.71.

3. Discussion

The need to handle incomplete datasets is ubiquitous in all fields dealing with empirical data, such as
medicine and engineering. While several imputation techniques have been developed, they always rely on
(explicit or implicit) assumptions on the frequency and distribution of missing values, and often incur the
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risk of introducing biases. Here, we have proposed an alternative approach that can be employed also when
the missing data are very frequent and not missing at random. We have called this approach GapNet.

In the GapNet approach, the neural network undergoes two training stages, first training an ensemble of
neural networks, each on a data subset with a complete cluster of features, and then combining these into a
single estimator that is fine-tuned on the available complete samples. This estimator is better at predicting
the results for complete data when compared both with a simple vanilla neural network approach trained
only on complete data and trained on datasets imputed with five common imputation techniques. We have
demonstrated the superior predictive ability of the GapNet approach on three examples, one corresponding
to simulated data as a proof of principle, and the other two on real-word medical datasets of AD and
Covid-19 patients.

These findings suggest that the improved predictions obtained by the GapNet approach are potentially
generalizable to other datasets. We suggest employing GapNet can improve machine learning applications on
real medical datasets [25–27], by increasing the dataset size adding incomplete feature and producing more
reliable predictions when applied to new data.

3.1. ADNI
The major goal for the classification in the AD continuum is to establish a biomarker-based deep-learning
model. In this respect, the GapNet approach outperforms the vanilla neural network as well as neural
networks trained with imputed data, delivering robust results and detecting complex relationships when
combining different imaging modalities. Another crucial evaluation is the importance analysis of features. In
figure 3(h), we mapped the feature importance for the GapNet model by performing a permutation feature
analysis [28] (see also supplementary figure S9). The results show that 16 out of the most important 20
features are derived from the amyloid-PET imaging modality, and the remaining 4 features are from MRI.
Crucially, most of these features (or ROIs) have been reported to be impaired in AD by previous studies
assessing patients at different disease stages. For amyloid-PET, the orbito-frontal and precuneus ROIs have
been often identified in the early stages of amyloid pathology [29]; the subcortical ROIs (amygdala and
hippocampus) are in line with the Aβ42 accumulation regions that have been reported in amyloid pathology
during the early AD stages; and the other three cortical ROIs (pericalcarine, postcentral, and precentral) are
consistent with the Aβ42 accumulation regions showing high SUVRs during the late AD stages [29]. For
MRI, both the highlighted cortical ROIs (caudal anterior cingulate and posterior cingulate) and subcortical
ROIs (caudate and pallidum) have also been reported in previous studies on informative regions across
different stages of the AD continuum [30–35].

Overall, the most predictive features are mainly derived from the amyloid-PET modality, including
parietal and frontal regions, which are typical sites of amyloid accumulation in AD [36]. These key findings
on AD-related brain changes suggest that the GapNet estimator is capable of producing robust predictions
for early and accurate AD diagnosis.

3.2. UK BioBank
A hot topic in COVID-19 research is to understand the effect of other comorbid diseases and conditions on
the risk of developing severe Covid-19 symptoms [37–43]. This type of studies can help understanding, for
instance, which individual’s characteristics are associated with a higher risk of hospitalization, and who
should be constantly monitored or prioritized in the vaccination process [44–46]. However, when analyzing
patient data, the choice between discarding the incomplete values or imputing them, and the imputation
technique employed [47] can lead to different results [48–50] depending also on the size of the cohort and
the handling of missing data. Here, we provide a simple example to predict severe Covid-19 outcomes, with
the aim of pointing out the advantages of using GapNet in this context: exploiting the incomplete values and
avoiding biases or alterations of the original dataset. In the presented results, the incidence of the different
features is consistent with previous findings in the literature. The most relevant clusters, in fact, include
features such as systolic and diastolic blood pressure, red blood cell distribution width and serum creatinine
levels (see details in supplementary materials, ‘Feature importance analysis’), connected with known
Covid-19 high-risk comorbidities [39, 41, 51, 52].

In conclusion, we have proposed GapNet, a conceptually effective model of neural network architectures,
to produce more robust predictions in datasets with missing values, which have become increasingly
common in research. We have shown how GapNet can detect complex nonlinear relationships between all
the variables and is capable of learning and inferring from medical data with incomplete features. We have
verified the effectiveness of GapNet in two real-world prominent datasets, the identification of patients in the
AD continuum in the ADNI cohort, and the prediction of patients at risk of hospitalization due to Covid-19
in the UK BioBank cohort. We believe that GapNet is a preliminary step towards generic, scalable
architectures that can investigate many real-world medical problems, or even tasks from many domains,
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holding great potential for several future applications. One of the next steps will be to apply GapNet to more
complex kinds of neural network architectures, such as recurrent and convolutional neural networks, as well
as to apply it to more complex input data, such as time sequences and images.

4. Methods

4.1. Imputationmethods
In this work, we consider five common imputation strategies to compare with GapNet and the vanilla
approach. Three simple strategies [53] replace the missing features with a value depending on the statistical
properties of the non-missing features; here, we use the mean, the median, and the most frequent features.
The fourth imputation strategy, called multiple imputation by chained equations (MICE) [54], relies on a
regression model (we use a Bayesian ridge regression) to recursively estimate the missing features. At each
imputation step, one feature is used as the target of a regression model and another one as the input. The
imputation consists of ten regression cycles, in each one of them, all features are regressed against all the
others. We use a Bayesian ridge regression (labeled as ‘Bayesian’) as estimator for a MICE algorithm. The
final imputation strategy considers the five nearest neighbors (in the Euclidean feature space) for each
datapoint and uses the mean of the features of these datapoints to fill the missing features [55]. The distance
between samples is estimated by euclidean distance between each pair of datapoints, discarding the missing
values. The five smallest distances are selected and their mean completes the considered datapoint.

4.2. Simulated dataset
To verify the working principle of GapNet, we use a simulated dataset adapted fromMadelon [13]
implemented with scikit-learn [56] (figure 1(a)). We simulate a binary-classification dataset including 1000
samples with F = 40 features (x1, . . . ,x40). Of these features, 10 are informative features (x3, x9, x11, x15, x18,
x19, x20, x23, x31, x40), 20 are linear combinations of the informative features (x1, x2, x5, x7, x8, x10, x12, x13,
x14, x17, x22, x24, x26, x28, x30, x32, x34, x36, x37, x39), and 10 are uncorrelated random noise without
information (x4, x6, x16, x21, x25, x27, x29, x33, x35, x38). These informative features are consistent with the
ones individuated by GapNet (see details in supplementary materials, ‘Feature importance analysis’). We
introduce missingness in the dataset by removing the values of features x1 to x25 from samples 1–450 and the
values of features x25 to x40 for samples 551–1000, so that only 100 samples (samples 451–550) are complete
(figure 1(b)).

4.3. ADNI cohort
The data used for this analysis were obtained from the ADNI database (http://adni.loni.usc.edu). The ADNI
was launched in 2003 as a public–private partnership, led by Principal Investigator Michael WWeiner, MD.
The primary goal of ADNI has been to test whether serial MRI, PET, other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early AD. The individuals included in the current study were recruited as part of
ADNI-GO and ADNI-2.

Amyloid pathology has been identified using a cut-off of>976.6 pgml−1 on cerebrospinal fluid (CSF)
levels of Aβ42, following previously established procedures [57]. Subjects who are cognitively normal and
have high CSF Aβ42 values are used as a healthy reference group, while subjects who are cognitively normal,
have mild cognitive impairment, or AD dementia with low CSF Aβ42 values are included in the group with
high risk of having AD (the AD continuum group).

4.3.1. Ethics approval and consent to participate
ADNI was reviewed and approved by all host study site institutional review boards and participants
completed informed consent after receiving a comprehensive description of the ADNI. All procedures
performed in studies involving human participants were in accordance with the ethical standards of the
institutional and/or national research committee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards. Informed consent was obtained from all individual
participants included in the study. For up-to-date information, see http://adni.loni.usc.edu.

4.4. UK Biobank cohort
The dataset employed in the prediction of Covid-19 hospitalization is based on the general practitioners’
records provided by the UK BioBank dedicated to Covid-related research [58].

We build the labels using the COVID-19 test result records and the hospital inpatient register data. The
labels are assigned ‘0’ for patients positive to Covid-19 who do not appear in the hospital records, and ‘1’ for
patients hospitalized due to Covid-19 and identified by the ICD-10 diagnostic code U07.1 [59]. The input
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values come from merging the primary care data from the two largest providers, The Phoenix Partnership
(TPP) [60] and Egton Medical Information System (EMIS) [61]. The data are cleaned to obtain the dataset:
we select the patients positive to Covid-19, we filter only the medical coding systems SNOMED CT [62] and
CTV3 [63], and we include records in the five years interval 1 January 2015 to 1 January 2020 (antecedent to
the first reported case in the dataset). The selected values include many standard medical examinations, such
as pressure measurements, body weight, and blood tests. At this point, we cut the less common codes to
obtain a dataset of 501 subjects with complete features and we undersample the more represented category
(the non-hospitalized subjects are nearly five times larger) to obtain a balanced dataset. The final number of
attributes incorporated is 32, listed in table S3 together with their corresponding Read Code.

4.4.1. Ethics approval and consent to participate
UK Biobank had obtained ethics approval from the North West Multi-centre Research Ethics Committee
which covers the UK (Approval Number: 11/NW/0382) and had obtained informed consent from all
participants. The UK Biobank approved an application for use of the data (37142) and ethics approval for the
analyses was obtained from the UCL Research Ethics Committee (11527/001).

Data availability statement

The ADNI dataset is owned by the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Data are publicly
and freely available from the Institutional Data Access / Ethics Committee (contact via http://adni.loni.
usc.edu/data-samples/access-data/) upon sending a request that includes the proposed analysis and the
named lead investigator.

The Covid-19 dataset generated by UK Biobank analysed during the current study are available via the
UK Biobank data access process (see www.ukbiobank.ac.uk/register-apply/). The exact number of samples
currently available in UK Biobank may differ slightly from those described in this paper.

No new data were created or analysed in this study.
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