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Abstract

Processing information on three-dimensional (3D) objects requires methods stable to rigid-body
transformations, in particular rotations, of the input data. In image processing tasks, convolutional
neural networks achieve this property using rotation-equivariant operations. However, contrary to
images, graphs generally have irregular topology. This makes it challenging to define a
rotation-equivariant convolution operation on these structures. In this work, we propose spherical
graph convolutional network that processes 3D models of proteins represented as molecular
graphs. In a protein molecule, individual amino acids have common topological elements. This
allows us to unambiguously associate each amino acid with a local coordinate system and construct
rotation-equivariant spherical filters that operate on angular information between graph nodes.
Within the framework of the protein model quality assessment problem, we demonstrate that the
proposed spherical convolution method significantly improves the quality of model assessment
compared to the standard message-passing approach. It is also comparable to state-of-the-art
methods, as we demonstrate on critical assessment of structure prediction benchmarks. The
proposed technique operates only on geometric features of protein 3D models. This makes it
universal and applicable to any other geometric-learning task where the graph structure allows
constructing local coordinate systems. The method is available at https://team.inria.fr/nano-d/
software/s-gcn/.

1. Introduction

Prediction of protein three-dimensional (3D) structure is an important problem in structural biology and
structural bioinformatics. Despite tremendous progress in this field (Greener et al 2019, Kryshtafovych et al
2019, Xu 2019, Senior et al 2020), particularly in light of the recent critical assessment of structure prediction
(CASP14) results (Callaway 2020), the accuracy of the predicted structures tends to vary significantly
depending on the availability of additional information, and the number of homologous structures and
sequences in the databases (Abriata et al 2019, Hou et al 2019, Senior et al 2019, Zheng et al 2019). Therefore,
estimation of reliability of the predicted models, and also the assessment of the local structural fragments, is
crucial for the practical application of these predictions.

The problem of protein model quality assessment (MQA) has been recognized by the protein structure
modeling community and became one of the subchallenges of CASP, the critical assessment of protein
structure prediction community-wide challenge (Cheng et al 2019, Won et al 2019). All of the
state-of-the-art MQA methods use, to a certain extent, supervised or unsupervised machine learning.
Initially, statistical potentials (Olechnovi¢ and Venclovas 2017), shallow neural networks (Wallner and
Elofsson 2003), regression methods, and support vector machines (Ray et al 2012, Uziela et al 2016) were
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widely used. More recently, this problem has also got attention from the machine-learning (ML) community.
This triggered the development of more advanced approaches, such as deep learning-based techniques
(Derevyanko et al 2018, Conover et al 2019, Pages et al 2019, Eismann et al 2020, Jing et al 2020, Hiranuma
et al 2021) and graph convolutional networks (GCNs) (Baldassarre et al 2021, Sanyal et al 2020, Igashov et al
2021). The latter methods operate on a molecular graph representation of protein models.

In this work, we propose to capture the 3D structure of a molecular graph using convolution operation
based on spherical harmonics. The main idea of our approach is to learn spatial filters in a reference
orientation of each graph node. Indeed, proteins are chained molecules, with a repeated topology of the
backbone. Thus, using local coordinate frames constructed on the protein’s backbone, we can build
rotational-equivariant spherical filters. We then incorporate these filters into a message-passing framework
and design a new method called spherical graph convolutional network (S-GCN), which significantly
outperforms the classical GCN architecture.

Most of the protein MQA methods operate on the atom-level representation of a protein molecule
(Uziela et al 2016, Olechnovic and Venclovas 2017, Karasikov et al 2019, Pages et al 2019, Igashov et al 2021).
At the same time, the state-of-the-art methods use various types of features that often include information
about the evolution of molecules or other biological characteristics. On the contrary, S-GCN works with the
residue-level protein representation, which significantly reduces computational costs and the number of
parameters. Also, our method processes only geometric information, i.e. the input feature vector of each
amino acid contains only three geometric features and a one-hot vector representing the type of the amino
acid. This work demonstrates that the state-of-the-art quality of the protein model assessment task can be
achieved using only geometric properties of protein models without any chemo-physical prior information,
which often requires additional expensive computations.

The main results of our work can be summarized as follows:

e We propose a new message-passing method based on trainable rotational-equivariant spherical filters.

o The proposed method significantly improves the quality of model assessment as compared to a classical
GCN approach, applied to the same input configuration.

e Despite the residue-level representation and only geometric input features, the results of the proposed
method are comparable to the state of the art.

2. Related work

2.1. Structural bioinformatics

Quality assessment of protein models is a classical problem in protein structure prediction community. There
have been multiple approaches developed over last 30 years. These include physics-based techniques (Randall
and Baldi 2008, Faraggi and Kloczkowski 2014), statistical and unsupervised methods, such as DFIRE (Zhou
and Zhou 2002), DOPE (Shen and Sali 2006), GOAP (Zhou and Skolnick 2011), RWplus (Zhang and Zhang
2010), ORDER_AVE (Liu et al 2014), VoroMQA (QOlechnovic¢ and Venclovas 2014) and more, classical
ML-approaches ModelEvaluator (Wang et al 2009), ProQ2 (Ray et al 2012), Wang_SVM (Liu et al 2016),
Qprob (Cao and Cheng 2016), SBROD (Karasikov et al 2019), a learning-to-rank technique (Jing et al 2016),
deep learning methods (Derevyanko et al 2018, Conover et al 2019, Pages et al 2019, Sato and Ishida 2019,
Jing and Jinbo 2020, Hiranuma et al 2021), neural (Wallner and Elofsson 2003), and graph neural networks
(GNNs) (Baldassarre et al 2021, Sanyal et al 2020, Igashov et al 2021).

2.2. GNNs for molecular graphs

In the last years, various GNNs were proposed to address the problem of learning on molecular graphs.
Starting with the message-passing paradigm in the molecular graph domain (Gilmer et al 2017), further
multiple approaches elaborated on this idea (Schiitt et al 2017, Thomas et al 2018, Chen et al 2019, Klicpera
et al 2020, Nachmani and Wolf 2020, Sun et al 2020). All of them were designed to operate on small
molecules. For example, in QM9 (Blum and Reymond 2009, Rupp et al 2012), a popular benchmark that is
used to evaluate these methods, molecules consist of up to 23 atoms. On the contrary, a protein molecule can
contain thousands of atoms, and this fact requires different approaches that take into account the size of the
data. Recently, GNNs have also been started to be applied to protein graphs for solving various problems
such as protein design (Ingraham et al 2019), protein docking (Fout et al 2017, Cao and Shen 2020),
classification (Weiler et al 2018, Zamora-Resendiz and Crivelli 2019), and quality assessment (Baldassarre
et al 2021, Sanyal et al 2020, Igashov et al 2021).
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Figure 1. Schematic representation of a molecular graph. (A) 3D protein structure is partitioned into Voronoi cells, shown with
the dashed lines. The central amino acid has the associated coordinate system, which is built according to the topology of its
backbone (atoms C, Cn, N) with the center at the position of the C, atom. R symbols denote amino acid residues. The spherical
angles ¢ and 0 of the neighboring residues are computed with respect to the local coordinate system of the central residue.

(B) Graph corresponding to the Voronoi tessellation, v is the central node, u is its neighbor, x, and x,, are the corresponding
feature vectors, which are also shown with colored boxes.

2.3. Equivariance

Processing information in 3D must be stable against rigid-body transformations of the input data. This
stability can be achieved using equivariant operations, which is a very active research topic, especially
regarding rotational equivariance. For example, rotation-equivariant CNNs were proposed for spherical
images using correlations on a sphere (Cohen et al 2018) and then extended to fully Fourier-space
architectures (Kondor et al 2018, Anderson et al 2019). Similar architectures can be constructed for
rigid-body motions using tensor field rotation- and translation-equivariant networks (Thomas et al 2018,
Weiler et al 2018). Spherical harmonics kernels have also been applied to point-cloud data (Poulenard et al
2019). Alternatively, for some types of volumetric data, rotation-equivariant representation can be
constructed with oriented local coordinate frames (Pages et al 2019). The same idea can be applied to the
protein graph representation, where the spatial relation between local frames can be encoded using spatial
edge features (Ingraham et al 2019) or additional edge descriptors (Sanyal et al 2020). For general molecular
graphs, the problem is more difficult. Still, there has been significant progress using, e.g. the message-passing
formalism with messages containing radial and directional information about neighboring graph nodes
(Klicpera et al 2020).

3. Proposed method

3.1. Protein graph

A protein molecule is a chain of amino acids, or residues, folded in a 3D space. We construct a graph G of the
protein molecule by splitting the surrounding space into cells using the Voronoi tessellation method
Voronota (Olechnovi¢ and Venclovas 2014). Nodes of the resulting graph correspond to the protein residues
and edges are associated with the pairs of residues whose Voronoi cells have a non-zero contact surface.
Figure 1 schematically shows the graph construction.

Each node v of the graph G contains a feature vector x, associated with the corresponding protein
residue. These features include one of 20 amino-acid types encoded with the one-hot representation, the
solvent-accessible surface area for each residue, the volume of residue’s Voronoi cell, and the ‘buriedness’ of
the residue, which is a topological distance in the graph G to the nearest solvent-accessible node. We
represent the whole set of nodes as a feature matrix X € RNV*“ where N is a number of residues and d = 23 is
the size of the feature vector.

To describe the edges of the graph G, we will use the following notations. Let A € RN*N be the symmetric
binary adjacency matrix of the graph. For any pair of residues v and u, the two corresponding entries of the
matrix A equal 1 if v and u have an edge, and zero otherwise. In our settings, the graph G does not have
self-loops, hence the main diagonal elements of the matrix A are zeros. In order to refer to neighbors of a
node v in the graph G, i.e. those nodes that have a common edge with v, we will use notation A/ (v).
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3.2. Spherical harmonics
Let us consider a complex square-integrable function f{6, ¢) defined on a unit sphere S;. This function can
be expanded in a polynomial basis using spherical harmonics as the basis functions,

f(e#’) = Z Z Wlelm(G’QO)v (1)

where w/" are the expansion coefficients, and Y;"(6, ) are the spherical harmonics (Hobson 1955),

Q2141) (I—m)!

ar I+ m)!Pr(Cose)em' )

Y1'(0,0) =

Here, P}"(cos @) are the associated Legendre polynomials (Hobson 1955). We should also note that a real
function on a unit sphere can be decomposed in a polynomial basis more compactly using real spherical
harmonics as the basis functions. Below we will be using this real basis, which is specified in supplementary
materials (is available online at stacks.iop.org/MLST/2/045005/mmedia).

3.3. Local coordinate system

The protein backbone consists of atom repetitions C, C,, N, O. This allows us to unambiguously associate
each residue with a local coordinate system. Indeed, for each residue we can define the normalized C,—N
vector as the x-axis, the unit vector lying in the C—C,—N plane, orthogonal to x, and having positive dot
product with C,—C as the y-axis, and the vector product of x with y as the z-axis. Then, given a node v, we
can associate each neighbor u € A/(v) with a pair of spherical angles Q! = (6%, ¢"). They specify the angular
position of the projection of the node u onto a unit sphere in the local coordinate system of v. An example of
a local coordinates system is schematically shown in figure 1(A). Now, having an unambiguous orientation
for each node in the graph, we can construct a rotation-equivariant convolution operation.

3.4. Spherical convolution
We can approximate the expansion (3) of the function f(6, ) by cutting the series at the maximum
expansion order L,

L !
f0,0) = f0.0) =D w"Y/"(0,¢). (3)

=0 m=—1

The same approximation can be obtained for a matrix function F: §; — R4*d: g, d, €N,

L 1
F(97(‘0) ~ P(e,(p) = Z Z Wlelm(97<p)a (4)

1=0 m=—1

where matrices W;" denote expansion coefficients of the function F in the Y}" basis. Finally, we can introduce
the spherical convolution operation for the vertex v in the following way,

Fov= Y F(6 ¢!)x,. (5)
ueN (v)

Considering matrices W} to be optimized parameters, we will thus learn a spherical filter. We should
specifically emphasize that matrices W}" are rotation-equivariant by construction.

3.5. Neural network
The distinctive feature of convolutional networks built on spatial graphs is the way the graph nodes exchange
information by passing messages to each other. On each layer of the network, nodes’ feature vectors are
combined and updated using the information from the neighboring nodes (Scarselli et al 2009, Kipf and
Welling 2017). In our implementation, for the information exchange, we use the proposed spherical
convolution operation (5).

Let Ag € RN*N be a matrix of local angular coordinates for each node’s neighbor in the adjacency matrix
A. This means, for any pair of graph nodes v and u connected with an edge, the corresponding entry of
matrix Ag is a pair 2% = (0%, ) of angular coordinates of u with respect to the local coordinate system of v.
We also denote Y;"(Aq) € RV*N as a result of the elementwise application of the spherical harmonics Y;" to
the matrix Aq. We should note that the main diagonal elements of matrices Ag and Y;"(Ag) are zeros, and,
opposed to the adjacency matrix A, matrices A and Y;"(Aq) are not symmetric. Then, the kth layer of the
S-GCN can be expressed as follows,


https://stacks.iop.org/MLST/2/045005/mmedia
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L
H'=0 Y ¥"(AQ)H "W+ H'W+b |, (6)

I,m

where H*~! € RN*4—1 and H* € RN*% are nodes’ feature matrices before and after applying the layer,

H® = Xis the input feature matrix, W;" € Ré—1%dk and W € R%-1%4 gre trainable parameters, b € Ré% isa
trainable bias vector, and o is a nonlinear activation function. If we let the maximum expansion order L =0,
we can see that the operation (6) reduces to a standard message-passing form,

H'=o (AH"'W{ + H'W+b), (7)

where for each node v, the first term transforms features from v’s neighbors A/ (v), the second term
transforms and aggregates features from v itself, and the last terms provides a bias for the activation function
o.

In supplementary materials, we also provide a modification of the proposed spherical convolution layer
(6), which explicitly uses information about contact surface areas between Voronoi cells, and discuss the
corresponding network architecture.

4. Experiment

The main purpose of the MQA task is to evaluate the deviation between a generated model of a protein
molecule and its native, or target, structure. If the target structure is known, the quality of the model can be
calculated by computing one of specifically designed metrics, e.g. CAD-score (Olechnovic et al 2012), IDDT
(Mariani et al 2013), or GDT-TS (Zemla et al 1999). Most often, however, experimental protein structures
are unknown, and thus there is a need for protein structure prediction and MQA. In this section, we report
the results of the protein MQA task obtained by our spherical architectures and the GCN baseline. We
trained all of our networks using local per-residue CAD-scores as the ground truth. They have been shown to
be a more informative and stable metric compared to other MQA measures with respect to local structural
perturbations of a protein molecule (Olechnovic et al 2019). To retrieve the global per-model scores, we
averaged the predicted local scores.

We provide results of S-GCN along with several state-of-the-art MQA methods that are described in
detail below. We would also like to emphasize that for several reasons, in this work, we do not compare
S-GCN with recent GNNs designed for small molecules. First of all, we attempted to train tensor field
networks (Thomas et al 2018) and DimeNet (Klicpera et al 2020) on protein molecules but did not get any
adequate results. Secondly, we are unable to test S-GCN on established ML benchmarks such as QM9
(Blum and Reymond 2009, Rupp et al 2012) due to the specificity of the graph representation in our method.

4.1. Datasets

For our experiments, we collected data from the CASP benchmarks (Moult et al 1995, Kryshtafovych et al
2019). They contain experimentally obtained native protein structures and the corresponding 3D models
predicted by the CASP challenge participants.

For training, we used data from CASP[8-11] stage2 submissions. For each target, we additionally
generated 50 near-native models (Hoffmann and Grudinin 2017) in order to enrich the training dataset with
high-quality examples. For validation and selection of hyperparameters, we used data from CASP12 stage2
submissions. All models that we used for training and validation were initially filtered and preprocessed.
More precisely, we excluded targets that had only models with low CAD-scores and preprocessed all models
by removing residues that were not present in the target structure. More details and the list of all targets are
available in supplementary materials. In total, we had 333 target structures and 73 418 models from
CASP[8-11] for training and 39 targets and 5411 models from CASP12 for validation. Finally, to test our
architectures, we used unrefined data from CASP13 (73 target structures, 10 882 models) and unrefined data
from CASP12 (38 target structures, 5471 models). The overall homology between the targets is very low, as it
is shown in supplementary materials.

For each model, we precomputed matrices Y"(Aq) up to the 10th expansion order. These matrices were
the most space-consuming part of our dataset, as a spherical harmonic expansion of order L requires the
storage of L? coefficients for each pair of adjacent nodes in a graph.

4.2. Metrics
For the evaluation of the methods, we chose z-scores, mean squared error (MSE), determination coefficient
R?, Pearson, and Spearman correlations, as it is described in more detail below. We used global CAD-scores

5
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Table 1. Architectures of our baseline and S-GCNs. SCL and GCL are the spherical and graph convolution layers, correspondingly. FC is
a fully-connected layer with ELU activation. The parameters in the parentheses are the sizes of the input and the output feature vectors,
correspondingly. BN is the batch normalization layer.

Network Architecture

Baseline Encoder: FC(23, 32) — Dropout — FC(32, 64) — Dropout — FC(64, 128) — Dropout —
Message-passing: GCL(128, 113) — Dropout — GCL(113, 98) — Dropout —
GCL(98, 83) — Dropout — GCL(83, 68) — Dropout — GCL(68, 53) — Dropout —
GCL(53, 38) — Dropout — GCL(38, 23) — Dropout —GCL(23, 8) — Dropout
Scorer: FC(8, 16) — Dropout — FC(16, 32) — Dropout — FC(32, 64) — Dropout —
FC(64, 32) — Dropout — FC(32, 16) — Dropout — FC(16, 1) — Sigmoid

S-GCN SCL(23, 20) — Dropout — SCL(20, 16) — BN — Dropout — SCL(16, 8) — Dropout —
SCL(8, 4) — BN — Dropout — SCL(4, 1) — Sigmoid

S-GCN; Spherical part: SCL(23, 20) — Dropout — SCL(20, 16) — BN — Dropout —
SCL(16, 14) — Dropout — SCL(14, 12) — BN — Dropout — SCL(12, 8)—
Scorer: FC(8,128) — D — FC(128, 64) — D — FC(64, 1) — Sigmoid

as the ground truth for the assessment’. We computed z-scores for the top-predicted protein models for each
target and then averaged them over all targets, as explained in more detail in supplementary materials. For the
MSE, R?, and correlations, we used two different ways of calculation: per-target and global. In the per-target
approach, we computed the metrics separately within each protein target and then averaged results over all
targets (we averaged correlations using the Fisher transformation (Fisher 1915)). In the global approach, we
stacked scores of all protein models into one vector and calculated the metrics on this vector. For each metric,
we also computed bootstrapped means and confidence intervals. For the global metrics, a bootstrapped
sample is chosen from the whole set of models. For the per-target metrics, a bootstrapped sample is a sample
of targets and their models, respectively. These results are available in supplementary materials.

4.3. Baseline architecture

For the baseline, we built a standard GNN based on the message-passing operation described in equation (7).
The structure of the proposed architecture can be split into three main parts. The encoder is a set of
fully-connected layers that transform the residues’ features into a high-dimensional space. The
message-passing part is a set of graph convolution layers (7) that capture the structure of a protein graph and
work as a feature extractor. Finally, the scorer is a set of fully-connected layers with a sigmoid at the end. They
form a multilayer perceptron and use the obtained features to predict the scores of each protein residue. As a
result, we obtain three main design parameters—the number of encoder, message-passing, and scoring
layers. We performed a grid search on the values of these parameters and found out that the optimal
architecture had three encoder layers, eight message passing layers, and three scoring layers. For each layer,
we used the ELU activation function and the dropout rate set to 0.3, as we detected it to be optimal. In total,
our baseline network contains 339 053 trainable parameters. Table 1 briefly lists the final architecture.

4.3.1. Training

We trained this network on CASP[8-11] datasets for 40 iterations. We tuned hyperparameters on CASP12
(preprocessed) dataset. For training, we used the Adam optimizer (Kingma and Ba 2015) and the MSE of
local scores as the loss function. On each iteration, we trained the network in four parallel processes feeding
512 models to each process. One training iteration took ~10 min on Intel® Xeon(R) W-2123 CPU @ 3.60
GHz and ~1 min on NVIDIA Quadro P5000/PCle/SSE2 GPU.

4.3.2. Hyperparameters
The learning rate was 0.001, the batch size 1, the dropout rate 0.3, and the L,-regularization coefficient of
1073,

4.4. S-GCN architectures

While constructing a S-GCN, we considered multiple expansion orders in the range from 3 to 10 and finally
chose orders of 5 and 10. We also experimented with the number of layers, the batch normalization layers
(Ioffe and Szegedy 2015) and the batch size, dropouts, the regularization parameters, and the output

> Although we mainly focus on experiments with CAD-score as the ground truth, we also evaluated the quality of our method on the
same data with IDDT and GDT-TS as the ground truth. The results are available in supplementary materials.
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dimensionality of the spherical convolution layers. The details of these experiments are available in
supplementary materials.

Finally, we settled upon two architectures. The first architecture, S-GCN, represents a sequence of
spherical convolution layers (6) combined with dropout and batch normalization layers. In the second
architecture, S-GCNj, we added three fully-connected layers to the end of the network following the idea
used in the baseline. S-GCN with the expansion order of 5 contains 24 675 trainable parameters, and S-GCN
with the order of 10 contains 95 475 trainable parameters. Respectively, S-GCNj with the order of 5 contains
42 625 trainable parameters, and S-GCNj with the order of 10 contains 137 725 trainable parameters. Table 1
briefly describes these configurations.

4.4.1. Training

For training, we used the Adam optimizer and the MSE of local scores as the loss function. We trained the
networks on the shuffled data and split the whole training process into equal iterations. Within each
iteration, we trained each network in four parallel processes feeding 2048 models to each of them. We stored
and processed the adjacency matrices in a sparse format. One training iteration takes on average ~18 min for
S-GCN(5) and ~26 min for S-GCN(10) on Intel® Xeon(R) W-2123 CPU @ 3.60 GHz, and ~9 min for
S-GCN(5) and ~34 min for S-GCN(10) on NVIDIA Quadro P5000/PCle/SSE2 GPU. Such a significant
difference between the CPU and GPU timings compared to the baseline experiment is explained by loading
of precomputed spherical harmonics from the hard drive. We trained 5th-order networks for 40 iterations
and 10th-order networks for 60 iterations.

4.4.2. Hyperparameters

The learning rate was set to 0.001, the batch size 64, the dropout rate 0.2 and we used L,-regularization with
the coefficient of 0.003 for the network of order 5. We used the dropout rate of 0.1 and L,-regularization with
the coefficient of 0.001 for the network of order 10.

4.5. Results

We compared S-GCN and S-GCN; with our baseline network architecture, and also with the state-of-the-art
single-model (Cheng et al 2019) quality assessment methods SBROD (Karasikov et al 2019), VoroMQA
(Olechnovic and Venclovas 2017), ProQ3 (Uziela et al 2016), Ornate (Pages ef al 2019), and VoroCNN
(Igashov et al 2021). SBROD is a regression-based method operating on 4D geometric descriptors,
VoroMQA uses statistics from Voronoi 3D tessellation, ProQ3 is a neural-network-based method with
precomputed descriptors of various origin, Ornate uses deep convolutional networks to process volumetric
data in local coordinate frames, and, finally, VoroCNN is a GCN built on an atom-level molecular graph. We
downloaded the results of VoroMQA and ProQ3 for CASP[12-13] and the results of SBROD for CASP13
from the official CASP archive at predictioncenter.org. To obtain the results of SBROD on CASP12 and
Ornate and VoroCNN on CASP[12-13], we ran these methods locally. We should emphasize that the main
results we report in this work were obtained on the CASP13 dataset, which was not used during training and
validation. However, to give a complete picture, we also provide the results obtained on the unrefined
CASP12 dataset. Table 2 lists the results for CASP12 and table 3 lists the results for CASP13.

First of all, we can see a huge performance gap between the baseline network and the other methods. This
can be explained by the fact that the baseline approach uses neither the 3D structure of the graph nor
additional chemo-physical or biological features that are widely accepted by the state-of-the-art methods. At
the same time, we would like to emphasize that our S-GCNs, which explicitly use the 3D structure of the
data, managed to achieve a similar or better quality of predictions compared to the state-of-the-art methods.
Figure 2(A) shows some of the spherical filters learned by the 5th and the 10th order S-GCNs. We can see
their rather complex shape, which is difficult to interpret solely from physico-chemical considerations.

Tables 2 and 3 also demonstrate that using a higher order of the spherical harmonic expansion improves
the MSE and R? metrics. At the same time, the order 5 seems to outperform the 10th order in correlation and
z-score metrics. This behavior becomes clearer if we look closer at the absolute values of the predictions.
Indeed, figure 2(B) illustrates that the predictions of the 10th order network are closer to the diagonal, thus
improving MSE and R. It also explains that even though some methods can have high correlation metrics,
their predictions are shifted with respect to the main diagonal, which results in negative R%. Thus, we can
conclude that a higher polynomial order of the network allows us to better predict the absolute values of
protein scores.

Regarding the correlation metrics, the 5th order S-GCN performs better than the others. We can
conclude that it should be the method of choice for ranking protein models and selecting the best model
from a given set. Also, taking into account the fact that the 10th order S-GCN has considerably more
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Table 2. Comparison of S-GCN and S-GCN; with the baseline network and the state-of-the-art MQA methods on the unrefined
CASP12 stage2 dataset. All metrics are provided for CAD-score. Parameters in parentheses correspond to the order of the spherical
harmonic expansion.

Global metrics Per-target metrics
Method z-score  MSE R? Pearson, r Spearman, p MSE R? Pearson, r Spearman, p
SBROD 1.282 0.961 —81.899 0.552 0.531 0.961 —427.838 0.762 0.685
VoroMQA 1.410 0.051 —3.426 0.675 0.700 0.051 —19.762 0.803 0.766
ProQ3 1.670 0.035 —2.036 0.795 0.806 0.035 —16.572 0.801 0.750
Ornate 1.780  0.007 0.424 0.813 0.805 0.007 —1.101 0.828 0.781
VoroCNN 1.871 0.007 0.370 0.818 0.803 0.007 —1.380 0.817 0.774
Baseline 1.025 0.011 0.065 0.658 0.666 0.011 —2.641 0.677 0.604
S-GCN(5) 1.704 0.010 0.157 0.854 0.831 0.010 —1.890 0.797 0.738
S-GCN(10) 1.665 0.005 0.573 0.812 0.789 0.005 —0.831 0.710 0.680
S-GCN;(5) 1.609 0.015 —0.272 0.872 0.853 0.015 —3.866 0.816 0.762
S-GCN,(10) 1.303  0.006 0.492 0.803 0.790 0.006 —0.917 0.738 0.683

Note: Best column values are highlighted in bold.

Table 3. Comparison of S-GCN and S-GCN; with the baseline network and the state-of-the-art MQA methods on the unrefined
CASP13 stage2 dataset. All metrics are provided for CAD-score. Parameters in parentheses correspond to the order of the spherical
harmonic expansion.

Global metrics Per-target metrics
Method z-score  MSE R? Pearson, r  Spearman, p MSE R? Pearson, r  Spearman, p
SBROD 1.453  0.050 —3.234 0.417 0.433 0.051 —22.455 0.805 0.761
VoroMQA 1.369  0.038 —2.197 0.659 0.688 0.038 —15.930 0.804 0.768
ProQ3 1.459  0.035 —1.969 0.726 0.728 0.035 —17.519 0.775 0.737
Ornate 1.403  0.009 0.193 0.786 0.799 0.009 —2.326 0.814 0.786
VoroCNN 1.516  0.007 0.368 0.764 0.767 0.007 —1.962 0.811 0.771
Baseline 0.865 0.017 —0.424 0.465 0.491 0.017 —6.375 0.648 0.619
S-GCN(5) 1.362  0.013 —0.118 0.806 0.808 0.013 —3.459 0.789 0.744
S-GCN(10) 1.247  0.007 0.422 0.774 0.783 0.007 —1.348 0.722 0.694
S-GCN;(5) 1.582 0.020 —0.668 0.801 0.799 0.020 —6.415 0.820 0.773
S-GCN;(10)  1.281  0.008 0.336 0.779 0.785 0.008 —1.760 0.742 0.702

Note: Best column values are highlighted in bold.

trainable parameters, and takes four times more disk space than the 5th order S-GCN, it makes more sense to
use the latter for practical tasks. We can also see that the last scoring layer improves the correlation metrics.
S-GCNs also demonstrate a better prediction quality on z-scores, but, as we show in supplementary
materials, these metrics are not stable and we can not confidently say that one method outperforms another
because they all have intersecting confident intervals.

One final remark that we can make after comparing the 5th and the 10th order S-GCNss is that the 10th
order architecture may require significantly more training data. Therefore, the current CASP training set may
not be very well suited for higher-order architectures. As an alternative, one can consider training on
Rosetta-generated decoys (Hiranuma et al 2021) or using other methods for protein structure prediction.

Let us now demonstrate some practical examples of local per-residue score estimations. Figures 3(A) and
(B) shows S-GCN(5) predictions for an obligatory complex of bacteriophage RNA-binding protein and its
individual subunits. We can clearly see that the binding interface has lower scores compared to the rest of the
structure, and is very visually distinguishable. This can be explained by the specificity of the interface, as it
lacks energetically favorable partner contacts in the unbound state. Another example of a structural
transition between the open and the closed states of a D-ribose-binding protein is shown in figures 3(D)—(F).
As in the previous case, we can see that the interface between the two protein domains becomes more
energetically favorable in the closed form of the protein.

An interesting general question is how well S-GCN can distinguish target (native) structures from the
generated models. Supplementary figure S5 shows distributions of the global scores predicted for targets and
models from CASP13 by S-GCN(5) and S-GCN(10). In both cases, we can see a clear separation between the
two distributions.
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Figure 2. (A) Examples of spherical filters learned by S-GCN of order 5 (top row) and S-GCN of order 10 (bottom row). The
distance to the center is proportional to the absolute function value. The red color corresponds to the positive values, the blue
color—to the negative ones. (B) Histograms comparing the ground-truth scores and the predictions of S-GCNs on the CASP13
dataset.

Figure 3. (A)—(B) S-GCN(5) predictions for the obligatory complex of bacteriophage RNA-binding protein (pdb code luna,

(A) and its individual subunit (B). (C)—(F) S-GCN(5) predictions for the open-to-close transition of the D-ribose-binding
protein, the open state (pdb code 1ba2_A, (C), two intermediates (pdb codes 1ba2_B, D, and lurp, (E), and the closed state (pdb
code 2dri, (F). The colorbar on the right shows the distribution of the local scores, from 0.3 (red) to 0.7 (blue).

5. Conclusion

In this work, we applied spherical convolutions to capture the 3D structure of a protein graph. The results
demonstrate that our method gives a significant improvement in the quality of predictions compared to the
baseline without orientational relations between the graph nodes. The spherical convolution method can
also be combined with other approaches for the protein MQA, and can also potentially use more input
features. Thus, we believe it will be possible to achieve even higher prediction results adding biological and
chemical information to the input graphs. In addition, we would like to notice that the idea of spherical
convolutions is universal and can be applied to various types of graph-learning tasks, provided that the graph
structure permits us to define an equivariant coordinate systems for each graph node.
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Broader impact

Our work will likely stimulate the development of new representation-learning methods applied to 3D
graphs. The latter may represent molecules, such as proteins or nucleic acids. However, these graphs can also
describe more general 3D data from other research domains, e.g. from astronomy or earth science.

From the application point of view, we believe our method will be useful in the structural bioinformatics
and structural biology communities. Indeed, there has been a very rapid improvement of methods for 3D
protein structure prediction, mostly owing to novel developments in deep learning and in algorithms
extracting coevolution signals from sequence data. However, the question of how to assess the quality of the
predicted models, and which parts of the predicted structures are likely to be less accurate, is still open. Thus,
we hope that the proposed approach will help bioinformaticians and structural biologists to better use and
analyze available computational data.

From a more general perspective, proteins are responsible for the main cellular functions in any
organism. They maintain the shape of the cells, control chemical catalysis, play the role of cellular motors,
and regulate vital processes. This makes the study of protein structures and interactions an important part of
molecular biology. Understanding protein structure is also crucial for therapeutic purposes toward the
development of new drugs, and the improvement of existing ones. To conclude, gaining knowledge of
proteins and their functions contribute to a better understanding of the life machinery and organization,
which has a significant social impact.
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