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Forecasting Ranking in Harness Racing Using Probabilities
Induced by Expected Positions
Fredrik Armerin, Jonas Hallgren, and Timo Koski

Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden

ABSTRACT
Ranked events are pivotal in many important AI-applications
such as Question Answering and recommendations systems.
This paper studies ranked events in the setting of harness
racing.

For each horse there exists a probability distribution over its
possible rankings. In the paper, it is shown that a set of
expected positions (and more generally, higher moments) for
the horses induces this probability distribution.

The main contribution of the paper is a method, which
extracts this induced probability distribution from a set of
expected positions. An algorithm is proposed where the
extraction of the induced distribution is given by the esti-
mated expectations. MATLAB code is provided for the
methodology.

This approach gives freedom to model the horses in many
different ways without the restrictions imposed by for instance
logistic regression. To illustrate this point, we employ a neural
network and ordinary ridge regression.

The method is applied to predicting the distribution of
the finishing positions for horses in harness racing. It out-
performs both multinomial logistic regression and the mar-
ket odds.

The ease of use combined with fine results from the sug-
gested approach constitutes a relevant addition to the increas-
ingly important field of ranked events.

Introduction

The problem of finding the outcome of a harness race is studied. Formally,
that is the problem of obtaining a probability distribution from a set of
ordered expectations.

A prediction of the outcome of a competitive event is sought. Predicting the
outcome can, for instance, mean the winner but the approach here suggested
predicts the full distribution of the outcome of the race. The method produces
the probability that a certain horse finishes in a particular position.
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The motivation for this methodology is that it allows more freedom for the
user in specifying and building models.

Sometimes heuristics can be implemented in the model. Therefore, it can
many times be easier to create a model for the positions rather than for
the probabilities. As an example, it can be known that a horse always finishes
before another horse. While mathematically different, this motivation is
similar to that of Freund, Schapire, and Abe (1999) who introduced the
AdaBoost algorithm, also with applications in horse racing.

Harness Racing and Efficient Markets

Adelman (1981) gives the history of harness racing in, mainly, New York, and is
the reference for this section.Harness racing, or trotting, has a long traditiondating
back to at least the 19th century. Races were originally organized as impromptu
contests at the beginning of the 19th century. The step to the modernization of
harness racing is the formation in theWinter 1824–1825 of theNewYork Trotting
Club. A trotter typically started twice as many races annually as a good thor-
oughbred, and this made it possible to commercialize the sport by increasing the
number of races. By collecting statistics regarding trotters, it was possible to form
opinions on how good a horse would perform in a race even though it had only
competed for a few, if any, times at a given race track. Hence, from early on
collecting statistics played an important part in harness racing.

When the algorithm presented in this paper is applied, data from harness
races are used. One part of the data are the odds offered by a bookmaker. For the
odds of an event to be useful, it must contain information about the probability
of the event in question, and this leads to the concept of efficient markets.
Efficiency in a financial market deals with how efficiently prices reflect different
types of information. This, in turn, leads to the question of whether a market is
efficient or not: The Efficient Market Hypothesis is a theory that the price of a
security reflects all currently available information about its economic value. A
market in which prices fully reflect all available information is said to be efficient.
Elton et al. (2014). When considering betting markets, prices of assets are
replaced with the odds of different events.

In betting markets, as in their financial equivalents, there are three forms
of market efficiency: weak, semi-strong and strong. These forms of efficiency
differ in the respect of information sets, i.e. what is included in the definition
of “information”, Elton et al. (2014).

Testing for different kinds of efficiency in betting markets goes back at
least to the 1940s when both laboratory experiments and tests based on
observed results from race tracks were used; see Vaughan Williams (2005).
Both in laboratory experiments as well as in different types of actual betting
markets, there is typically a tendency for bets on horses with lower odds to
have a better return than bets put on horses with higher odds. This tendency
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is often referred to as the “favorite-longshot bias”, or just “longshot bias”.
There are several suggested explanations for this anomaly; see e.g. Coleman
(2004), Thaler (1992), Vaughan Williams (2005) and references therein.

Although identifying the longshot-favorite bias together with inconsistent
pricing in the show and placemarkets as two anomalies in the pari-mutual betting
markets, Thaler (1992) concludes: The racetrack betting market is surprisingly
efficient. Market odds are remarkably good estimates of winning probabilities.

Competitive Events

There are n horses participating in a race, and their expected finishing
positions are given. What can then be said about the induced probability
distribution? This paper proposes a method where the distribution is given as
the solution to a convex optimization problem. A two-step procedure
emerges: the expected positions are estimated and then the distribution is
obtained by solving a convex optimization problem.

Ranking of Competitive events is a well-studied field with many recent
contributions. There are many aspects of the problem but predicting the
winner is most common in the literature. Ordered expectations are studied in
for instance Gaines and Rice (1990) but there the interest is testing when
expectations are ordered.

Recent approaches to predicting the winner use popular machine learning
tools. Lessmann, Sung, and Johnson (2009) applies an SVM-based classifica-
tion model indicating a presence of non-linear relationships among the
variables. Another method is crowdsourcing used by Schumaker (2013)
where several sources, such as multiple bookmakers, are used to create the
prediction; this combined with a betting system produced good performance.
The performance of different neural networks is evaluated by Davoodi and
Khanteymoori (2010). The experimental results are similar to the ones
presented in this paper. Silverman and Suchard (2013) use a regularized
logistic regression. This paper also employs regularized regression but with-
out the limitations of logistic regression.

To evaluate individual players performance relative to other opponents it is
also possible to use a ranking system, Aldous (2015). These systems have been of
mathematical interest for more than a century, Carroll (1883), but rose to fame
more recently with the Elo-system, Elo (1978), developed for rating chess
players. Glickman (1999) generalized Elo from a Bayesian perspective which
was further developed to Microsofts’ Trueskill in Herbrich, Minka, and Graepel
(2006). All three systems relate to Bradley and Terry (1952).

Pieramati et al. (2010) develops an Elo-rating for trotters which would fit
well into our framework. The ratings could be used as expectations produ-
cing a probability distribution.
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Ranking in AI

The ranking problem is important and well studied in AI-applications. A
prominent example is DeepQA, featured in IBMs Watson, Ferrucci et al.
(2010). Other examples are Ko, Si, and Nyberg (2010). In a similar field but
with a different application Breese, Heckerman, and Kadie (1998) use a
ranking approach for recommendation engines in e-commerce applica-
tions. Interesting future work would be to apply the methodology to these
problems.

Convex Optimization

Familiarity with a few popular concepts in convex optimization is
assumed throughout this paper. CVX is a package for specifying and
solving convex programs, see Grant and Boyd (2014), Grant and Boyd
(2008). Another method, the alternating direction method of multipliers
(ADMM), is also implemented, see Boyd et al. (2011) for the version used
in the paper. See Fukushima (1992), Gabay and Mercier (1976), and
Glowinski and Marroco (1975) for historical references, and Nishihara
et al. (2015) for recent theory on ADMM. ADMM provides high perfor-
mance and is—given the work by Boyd et al. (2011)—easy to implement
for many standard problems. While our problem is one of the standard
problems, the ADMM implementation does require more work than its
CVX counterpart.

Contributions

The main contribution of this paper is the two-step procedure, an algorithm
which yields a probability distribution from a set of expected values in a
ranked competitive event. The problem of finding the distribution is
expressed as a convex optimization problem. Estimates of the expectations
are required as input to solve the problem.

The expectations are obtained without restriction. The method is a relevant
competitor to logistic regression which is considered a standard method. The
suggested approach supersedes logistic regression both in performance and in
speed.

The paper is organized as follows. Section 2 provides a mathematical for-
mulation of the problem and present our solution as a two-step procedure. In
Section 3 the developed method is applied to an application in regression
analysis. The methodology is applied to real data in Section 4. The paper
concludes with a discussion in Section 5. The dataset is described in Appendix
A; a few theoretical justifications are given in Appendix B. MATLAB code is
provided in Appendix C.
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The Induced Distribution

This section introduces necessary terminology and background. Then the
main problem is formulated and solved.

Problem Formulation

Throughout the paper it shall be assumed that the participants in the
race are horses. Let n be the number of horses and let Xk be the finishing
position for horse number k. Denote its expected position, E½Xk�, by μk.

Denote the probability that horse number k will finish in the j’th
position by pkj. The element pkj of the matrix P denotes the probability
that horse number k finishes in position j. That is, the k’th row of p gives
the distribution of the finishing position for the k’th horse while the j’th
column gives the distribution for the j’th position. Let μ denote the
vector ½μ1μ2 � � � μn�.

A distribution must sum to 1; that combined with the properties of
expectation gives the following set of equations.

i)
Pn

j¼1 jpkj ¼ μk for every k.

ii)
Pn

k¼1 pkj ¼ 1 for every j.

iii)
Pn

j¼1 pkj ¼ 1 for every k.

A matrix P satisfying 2. and 3. is called a doubly stochastic matrix. Finding P
corresponds to solving the matrix equation

XP ¼ mT ¼Δ ½ μ 1 1 � � � 1 �T

with the constraint [i)]

i) 0 � pkj � 1

for every k and every j. Here X is defined to satisfy equations i-iii as,

X ¼
A
B
C

2
4

3
5:

The capital letter matrices A;B and C correspond to equations 1, 2 and
3, respectively; they are defined as direct sums of their lower case
vectors:

A ¼
a 0 0

0 . .
.

0
0 0 a

2
4

3
5;B ¼ b 0 0

0 . .
.

0
0 0 b

2
4

3
5;C ¼ I � � � I

2
4

3
5:
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The vectors a ¼Δ ½12 � � � n�, and b ¼Δ ½11 � � � 1� are both of length n. The
matrix C is n copies of an n� n identity matrix. So the matrices A, B, C
are all of size n� n2 and the matrix X is of size 3n� n2

Thus, the problem is written as

minimize
P

XP �m

subject to 0 � pkj � 1; "j; k:
(1)

The class containing the solutions to the problem, the n� n doubly stochastic
matrices, is called the nth Birkhoff polytope. It is convex and has dimension
ðn� 1Þ2, see Pak (2000), and Beck and Pixton (2003). The polytope was named
after Birkhoff (1946) and famously used by Von Neumann (1953).

If the number of participating horses is large there might exist several
solutions. The set of equations can then be extended to include higher
moments. That is,

mT ¼ ½μ μ2 . . . μr 1 . . . 1�T

with a corresponding X matrix with an extended A. Let Ak denote the matrix
where ak ¼ ½1k; 2k; . . . ; nk�. Then A is given by the stacked matrices

½A1A2; . . . Ar�T and is of size r � n. The size of the extended X matrix is of
size ð2þ rÞn� n2. Thus, it is always possible to extend the problem and find
a solution given higher moments. Proposition B.3 establishes that the solu-
tion is unique.

The optimization problem is convex since both the objective function and
the feasible region—the Birkhoff polytope—are convex, Luenberger (1997). A
more general formulation of the optimization problem would be to replace
the norm with a loss function but this paper is restricted to work with the
norm.

The upper bound of the constraint can be relaxed since any positive P
satisfying XP ¼ m will be a probability distribution. However, in Section 4
the real world example indicates that this relaxation impairs performance.

Normalizing the Expectation

Typically the expectations are not known but estimated as μ̂. Obtaining the
probability distribution from the estimates can be problematic. The relation

Pn
k¼1

μk ¼ Pn
k¼1

E½Xk� ¼
Pn
k¼1

Pn
j¼1

jpkj

¼Pn
j¼1

j
Pn
k¼1

pkj ¼
Pn
j¼1

j ¼ 1
2 nðnþ 1Þ;

(2)

must hold and inserting the estimate μ̂ does not necessarily satisfy the
equality. To remedy this, consider the normalized estimate ~μ given by
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~μk ¼ μ̂k
1
2
nðnþ 1ÞPn

j μ̂j
; (3)

which satisfies

Xn
k¼1

~μk ¼
1
2
nðnþ 1ÞPn

j μ̂j

Xn
k¼1

μ̂k ¼
1
2
nðnþ 1Þ: (4)

All elements in μ must lie in the interval ½1; n�. That is, require that 1 � ~μk �
n for every k. If this condition is not met, the problem is not well specified
and a probability distribution can not be found, see Proposition B.2. It is still
possible to solve the optimization problem and find an approximative solu-
tion but it will not be a probability distribution.

Examples

Given a vector

μ̂ ¼ ½1:4 2:2 3:1�
the induced distribution is sought. To do this, normalize to find ~μ and then
proceed by solving the convex optimization problem; see Figure 4 in
Appendix C for Matlab code. This gives the estimated P̂-matrix

P̂ ¼
0:88 0:10 0:02
0:10 0:83 0:07
0:02 0:07 0:91

2
4

3
5;

which is a doubly stochastic matrix, i.e. it sums to 1 in all directions.
For a degenerate example the procedure is repeated with the vector

μ̂ ¼ ½1:2 2:9 3:9�;
which after applying the normalization from (3) becomes

0:9 2:17 2:92½ �:
Since 0:9 is smaller than 1 the problem is not well specified and a distribution
can not be found. However, as mentioned in above, it is still possible to solve
the optimization problem. This produces the estimate

P̂ ¼
0:98 0:00 0:00
0:01 0:85 0:15
0:01 0:15 0:86

2
4

3
5; (5)

which is not a doubly stochastic matrix. This is problematic but if the object
is to find the distribution of the horse placing first in the race it is possible to
change the second constraint of the optimization:
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ii)
Pn

k pk1 ¼ 1.

That is, require that the distribution is proper for the first position but not
for the others.

Application to a Regression Example

The previous section described a method for obtaining a probability
distribution given a set of expectations. This section will estimate the
expectations and plug them into the developed methodology.

Let H be a corpus of features relating to targets y. The targets are assumed
to be of the racing type described in the previous section. Let T be the
number of observed races. For each race indexed by t ykt denotes the finishing
position for horse k. The vector Hk

t contains the m features for horse k in race
t. So each race is described by the resulting vector yt of length nt with
finishing positions for the horses participating in the race, and the matrix
Ht of dimension m� n containing the input data to the race. The raw data
are the same as Josefsson and Hellander (2014) and further described in
Appendix A.

Two-Step Procedure

A given model will be calibrated to a subset, Htrain, of the data. Given the
calibrated model an estimate or distribution of some unobserved yvalidation
is desired. It is created using Hvalidation which always is available before the
race occurs. The algorithm works in two steps, first the expected positions
of the race are estimated and then the induced probability distribution is
extracted from the expected positions. The procedure is described in
Algorithm 1 below.

Algorithm 1 Two-step procedure

(1) Calibrate the model to the data.

θtrain  argmin
θ

L½f ðHtrain; θÞ � ytrain�

(2) Predict the probability distribution for a race in the validation corpus:
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Training Methods

Three methods are used in the paper. Ridge regression, neural networks and
logistic regression. The methods and details on their implementations are
given below.

The linear regression model is given by,

ŷ ¼ f ðh;wÞ ¼ wTH:

Ridge regression, introduced by Hoerl and Kennard (1970), adds an ,2
regularization on the parameters in ordinary least squares regression. That
is, implementing ridge regression in our calibration step gives the following
estimate of w

wtrain  arg min
w

wTHtrain � ytrain
�� ��2

2
þ λ wk k22;

where λ is called the tuning parameter.
In regression it is common to transform data. A popular data transforma-

tion is single layer feedforward neural network given by the tranformation
ΦðHÞ7!σðαTHÞ. The prediction, given an input H, is then

ŷ ¼ wTΦðHÞ ¼
XNnodes

j¼1
ΦðHÞwj ¼

XNnodes

j¼1
σðαTj HÞwj ¼

XNnodes

j¼1
σ
Xm
i¼1

αj;iHi

 !
wj:

The activation function is chosen to be a ramp, i.e. σðxÞ ¼ maxðx; 0Þ. This is
a popular choice referred to as a rectifing linear unit (ReLU), LeCun, Bengio,
and Hinton (2015).

To train the network a naive, but efficient, approach is employed: the
vectors α are initialized randomly and normalized so that their euclidean
norm is 1. Then the weights, w, are estimated using ridge regression

wtrain  argmin
w

wTΦðHtrainÞ � ytrain
�� ��2

2
þ λ wk k22:

The computational cost of a net trained this way is low; the costliest parts are
ridge regression and the evaluation of the activation function. The ReLu is
cheap to evaluate, most of the time is spent computing the dot product αTH.

The two-step procedure will be compared to multinomial logistic regres-
sion. The prediction for the probability that a horse finishes in position k out
of n is then given as

P̂ðyvalidation ¼ kÞ ¼ P̂ðyvalidation ¼ nÞeHvalidationwk ;

P̂ðyvalidation ¼ nÞ ¼ 1

1þPn�1
k¼1 eHvalidationwk

:

APPLIED ARTIFICIAL INTELLIGENCE 179



See Hastie et al. (2009). Training this model is a nonlinear problem which,
compared to linear regression, is difficult.

Application to Harness Racing

This section studies an example in which there is a model for predicting
placement of horses in a trot race.

The induced probabilities will be compared to both the market odds and
to the probabilities obtained from logistic regression.

Models

Three predictive models are compared

(1) The two-step procedure
(2) Multinomial logistic regression
(3) The ranking and distribution induced by the odds

In the two-step procedure the training is done using ADMM. The two
models are ridge regression and the neural network from Section 3.2.
The distribution is obtained using the attached code from Figure 4. The
Multinomial logistic regression problem is solved using MATLAB. The odds
induce a ranking used as a benchmark: The horse with the lowest odds is
ranked first, the horse with second lowest odds is ranked second and so on.

Description of Data

The data are the same as was used in Josefsson and Hellander (2014). It
comprises over 900 races from 2009 to 2012. Features of the data are described
in Appendix A. The data are divided into two parts, calibration and validation.
Several experiments with different divisions of the data are made, see Table 1.

Consider three metrics: the first is the accuracy or the amount of correct
predictions of the winners. The second is the mean absolute deviation
(MAD) from the predicted order against the observed order for each of the
three predictions. Finally, consider the MAD for the winner. The odds has
the smallest MAD for the winner since the ranking predicts a single horse
while the other methods will always give a distribution over all the horses.

Table 1. Experiments.
Experiment Initial Calibration Online update

1 50%
2 10%
3 10% True
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The data are described in the Appendix. Factors which should be taken
into account have been studied, for instance Entin (2007) concludes that
gender does make a difference. The genetic trend is examined in Gaffney and
Cunningham (1988).

Factors for which there are no data in this study have been examined by
others. For instance, Pfau et al. (2009) show that the riding style is important
for the performance and Ratzlaff et al. (2005) study hoof-acceleration pat-
terns in detail.

Method

The data consist of nearly a thousand races and a number of features
described in the appendix. The data are divided into two parts: calibration
and validation. In the two-step procedure ridge regression is used for esti-
mating the model; the tuning parameter λ is set to 0:01.

The induced distribution is found using ADMM; both the tuning para-
meter and the tolerance are set to 0:001. Substituting CVX for ADMM
improves the metrics, but by less than one percent.

MATLABs function for ordinal logistic regression is used to fit the logistic
model. Sorting the odds from highest to lowest gives a ranking which is used
as their prediction.

Three experiments were conducted and are presented in Table 1. The first
experiment is a crossvalidation where 50% of the data are used to calibrate
the model and the other half to validate. The second experiment is done in
the same way but only 10% of the data are used for calibration. The third
experiment differs from the other two. Initially the model is calibrated
against 10% of the data but then, as new data become available, the model
is recalibrated. In forecasting this is referred to as backtesting and simulates
how the model works in practice.

Results

The results are presented in Table 2. The two-step procedure is implemented in
two versions: 2-ridge and 2-neural. The two-step procedure ridge surpasses the
Multinomial logistic with respect to all three metrics. The neural network excels
with respect to the MAD-metric while having poor performance on the other
metrics. Clearly the odds are superior to the other methods when it comes to
finding the winner but for the other positions it performs worse.

In Figures 1 and 2 the crossvalidations described in the experiments are
presented. The correct prediction ratio is plotted with its exponential moving
average, Holt (1957). In Figure 3 the result of the backtest, starting with 10%
of the observed data are given. The induced distribution is computed using
regression. The neural network is not in the figures.
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The ADMM-solver is much faster than both the CVX and the calibration
of the Multinomial logistic model. It is implemented such that the probabil-
ities are not required to be smaller than 1. This restriction is imposed by the
implementation in CVX resulting in a minor improvement in the metrics but
it is not included in the table.

Table 2. Results from prediction.
Method Experiment %Accuracy MAD MAD-winner

2-Ridge 1 0.3866 3.3281 0.1424
2-Neural 1 0.3048 3.3146 0.1729
Logistic 1 0.3755 3.3329 0.1572
Odds 1 0.3717 3.3438 0.1104
2-Ridge 2 0.4008 3.2761 0.1453
2-Neural 2 0.1840 3.2402 0.1828
Logistic 2 0.3476 3.3245 0.1597
Odds 2 0.3947 3.2728 0.1121
2-Ridge 3 0.3967 3.2784 0.1416
2-Neural 3 0.1472 3.0927 0.1885
Logistic 3 0.3906 3.2906 0.1585
Odds 3 0.3947 3.2728 0.1121

May Jun Jul Aug Sep
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Crossvalidation with 50% of the data: EMA of correct prediction ratio
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Figure 1. Cross validation 50%.
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Comments

It should be noted that ordinal logistic regression was implemented but
performed worse than multinomial logistic regression with respect to all
three metrics. It was therefore discarded from the study.

A drawback of logistic regression is that the model is nonlinear and
therefore difficult to train; another drawback is that the interaction between
inputs is restricted to be linear. This in contrast to the two-step procedure
where a very complex model can be trained in the first step and in the second
step extract the probabilities independently of how the model was estimated.
An advantage of the multinomial logistic regression is that once it is cali-
brated it can produce predictions fast. However, this advantage is obliterated
since estimation of the probability distribution in the two-step procedure can
be done very fast using ADMM.

Calibration of the ridge regression executes in less than one millisecond;
the logistic regression is more than 6000 times slower. Experiments suggest
an increase in execution time by the square root of the size of the data. This
means that ridge regression would be 60; 000 times faster if the size of the

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
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Crossvalidation with 10% of data: EMA of correct prediction ratio
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Figure 2. Cross validation 10%.
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data were a hundred times larger. These figures depend on the implementa-
tion and can possibly be improved but never reconciled.

Discussion

In this paper a two-step procedure for estimating a probability distribution
induced by a ranking is presented. The clear advantage compared to logistic
regression is the ease and speed of calibration. Furthermore, it allows more
freedom and more sophisticated modeling of the data while keeping the
probability distribution describing the ranking non-parametric. Another
interesting attribute is that the method can accept any ranking as input
and can, therefore, be more intuitive for humans. It is easier to imagine
one horse finishing first, one in place 1.5 one in 2 and the rest in lower places
than to think of the implied probabilities.

With this framework it might be tempting to use the method for more
general classification; however, the idea is based on the fact that there is an
ordering between the different classes. The probabilities must be computed
in relation to each other which is a limitation.

Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

0.35

0.4

0.45

0.5

0.55
Backtest with 10% of the data: EMA of correct prediction ratio

Months: 2011−2012

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200
Sum of correct predictions

Race number

 

 

Odds

Induced

Logistic

Figure 3. Backtesting 10%.
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Interesting future work would be to benchmark or combine the method
with other ranking engines.

The method is preferable to logistic regression when the problem is large
or when frequent re-estimation of the model is needed. This is for instance
definitely the case in e-commerce problems.

The method is easy to use and the results are good. The field of ranked
events is becoming increasingly important and we consider the proposed
method a relevant addition to the field.

Acknowledgments

The authors are grateful to Martin Hellander and Jonas Josefsson for their work with data
collection. Jonas Hallgren and Timo Koskis funding was provided by the Swedish Research
Council (Grant Number 2009- 5834).

References

Adelman, M. L. 1981. The first modern sport in America: Harness racing in New York city.
Journal of Sport History 80 (1): 5–32.

Aldous, D. 2015. Data science for everyone, and probability models meet player ratings.
Bernoulli News 220 (1):0 6–7.

Beck, M., and D. Pixton. 2003. The Ehrhart polynomial of the Birkhoff polytope. Discrete &
Computational Geometry 300 (4):0623–637. doi:10.1007/s00454-003-2850-8.

Birkhoff, G. 1946. Three observations on linear algebra. University Nac Tucumán Revista A
5:0 147–151.

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2011. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends® in Machine Learning 30 (1):01–122.

Bradley, R. A., and M. E. Terry. 1952. Rank analysis of incomplete block designs: I. The
method of paired comparisons. Biometrika 390 (3/4):0324–345.

Breese, J. S., D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for
collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in
artificial intelligence, 43–52, Madison, Wisconsin: Morgan Kaufmann Publishers Inc., 1998.

Carroll, L. 1883. Lawn tennis tournaments. St. James’s Gazette 1: 5–6.
Coleman, L. 2004. New light on the longshot bias. Applied Economics 360 (4):0315–326.

doi:10.1080/00036840410001674240.
Davoodi, E., and A. R. Khanteymoori. 2010. Horse racing prediction using artificial neural

networks. Recent Advances in Neural Networks, Fuzzy Systems & Evolutionary Computing,
2010:155–160.

Elo, A. E. 1978. The rating of chessplayers, past and present. New York: Arco Pub..
Elton, E. J., M. J. Gruber, S. J. Brown, and W. N. Goetzmann. 2014. Modern portfolio theory

and investment analysis. New Jersey: John Wiley & Sons.
Entin, P. 2007. Do racehorses and Greyhound dogs exhibit a gender difference in running

speed? Equine and Comparative Exercise Physiology 40 (3–4):0135–140.
Ferrucci, D., E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur, A. Lally, J.

William Murdock, E. Nyberg, J. Prager, et al. 2010. Building Watson: An overview of the
DeepQA Project. AI Magazine. 310(3):059–79. doi:10.1609/aimag.v31i3.2303.

APPLIED ARTIFICIAL INTELLIGENCE 185

http://dx.doi.org/10.1007/s00454-003-2850-8
http://dx.doi.org/10.1080/00036840410001674240
http://dx.doi.org/10.1609/aimag.v31i3.2303


Freund, Y., R. Schapire, and N. Abe. 1999. A short introduction to boosting. Journal-Japanese
Society For Artificial Intelligence 140 (771–780):0 1612.

Fukushima, M. 1992. Application of the alternating direction method of multipliers to
separable convex programming problems. Computational Optimization and Applications
10 (1):093–111. doi:10.1007/BF00247655.

Gabay, D., and B. Mercier. 1976. A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Computers & Mathematics with Applications
20 (1):017–40. doi:10.1016/0898-1221(76)90003-1.

Gaffney, B., and E. P. Cunningham. 1988. Estimation of genetic trend in racing performance
of thoroughbred horses. Nature 3320 (6166):0722–724. doi:10.1038/332722a0.

Gaines, S. D., and W. R. Rice. 1990. Analysis of biological data when there are ordered
expectations. American Naturalist 310–317. doi:10.1086/285047.

Glickman, M. E. 1999. Parameter estimation in large dynamic paired comparison experi-
ments. Applied Statistics 48:377–394.

Glowinski, R., and A. Marroco. 1975. Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires.
ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique Et
Analyse Numérique 90 (R2):041–76.

Grant, M., and S. Boyd. 2008. Graph implementations for nonsmooth convex programs. In
Recent advances in learning and control, lecture notes in control and information sciences,
ed. V. Blondel, S. Boyd, and H. Kimura, 95–110. New York: Springer-Verlag Limited.
http://stanford.edu/boyd/graph_dcp.html

Grant, M., and S. Boyd. CVX: Matlab software for disciplined convex programming, version
2.1. http://cvxr.com/cvx, March 2014.

Hastie, T., R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and R. Tibshirani. 2009. The
elements of statistical learning. New York: Springer-Verlag.

Herbrich, R., T. Minka, and T. Graepel. 2006. Trueskill: A Bayesian skill rating system. In
Advances in neural information processing systems, 569–576. Vancouver, Canada: NIPS
2006.

Hoerl, A. E., and R. W. Kennard. 1970. Ridge regression: Biased estimation for nonorthogo-
nal problems. Technometrics 120 (1):055–67.

Holt, C. C. Forecasting seasonals and trends by exponentially weighted moving averages.
Technical report, DTIC Document, 1957.

Josefsson, J., and M. Hellander. Prediction of swedish harness racing. KTH Bachelor thesis,
OAI: oai: DiVA.org:kth-140703, 2014.

Ko, J., L. Si, and E. Nyberg. 2010. Combining evidence with a probabilistic framework for
answer ranking and answer merging in question answering. Information Processing &
Management 460 (5):0541–554. doi:10.1016/j.ipm.2009.11.004.

LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 5210 (7553):0436–444.
doi:10.1038/nature14539.

Lessmann, S., M.-C. Sung, and J. E. V. Johnson. 2009. Identifying winners of competitive
events: A SVM-based classification model for horserace prediction. European Journal of
Operational Research 1960 (2):0569–577. doi:10.1016/j.ejor.2008.03.018.

Luenberger, D. G. 1997. Optimization by vector space methods. New York: Springer-Verlag.
Nishihara, R., L. Lessard, B. Recht, A. Packard, and M. I. Jordan. 2015. A general analysis of

the convergence of ADMM. International Conference on Machine Learning, Volume 37,
pp. 343-352, Lille, France, 7-9 July 2015. arXiv preprint arXiv:1502.02009.

Pak, I. 2000. Four questions on Birkhoff polytope. Annals of Combinatorics 40 (1):083–90.
doi:10.1007/PL00001277.

186 F. ARMERIN ET AL.

http://dx.doi.org/10.1007/BF00247655
http://dx.doi.org/10.1016/0898-1221(76)90003-1
http://dx.doi.org/10.1038/332722a0
http://dx.doi.org/10.1086/285047
http://stanford.edu/boyd/graph_dcp.html
http://cvxr.com/cvx
http://dx.doi.org/10.1016/j.ipm.2009.11.004
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1016/j.ejor.2008.03.018
http://dx.doi.org/10.1007/PL00001277


Pfau, T., A. Spence, S. Starke, M. Ferrari, and A. Wilson. 2009. Modern riding style improves
horse racing times. Science 3250 (5938):0289–289. doi:10.1126/science.1174605.

Pieramati, C., L. Fusaioli, L. Scacco, L. Buttazzoni, and M. Silvestrelli. 2010. On the use of Elo
rating on harness racing results in the genetic evaluation of trotter. Italian Journal of
Animal Science 60 (1s):0189–191.

Ratzlaff, M. H., P. D. Wilson, D. V. Hutton, and B. K. Slinker. 2005. Relationships
between hoof-acceleration patterns of galloping horses and dynamic properties of the
track. American Journal of Veterinary Research 660 (4):0589–595. doi:10.2460/
ajvr.2005.66.589.

Schumaker, R. P. 2013. Machine learning the harness track: Crowdsourcing and varying
race history. Decision Support Systems 540 (3):0 1370–1379. doi:10.1016/j.
dss.2012.12.013.

Silverman, N., and M. Suchard. 2013. Predicting horse race winners through a regular-
ized conditional logistic regression with frailty. The Journal of Prediction Markets 70
(1):043–52.

Thaler, R. 1992. The winner’s curse. paradoxes and anomalies of economic life. Princeton, NY:
Princeton University Press.

Vaughan Williams, L. 2005. Information efficiency in financial and betting markets.
Cambridge, England: Cambridge University Press.

Von Neumann, J. 1953. A certain zero-sum two-person game equivalent to the optimal
assignment problem. Contributions to the Theory of Games 2:0:5–12.

Appendix A. Data Description

The features of the data are given in Table 3.

Table 3. Variable description.
Variable name Description Binary

Heavy track Stronger horses perform better True
Odds Odds given by the betting company
Autostart Car used for start
Gallop Leads to disqualification True
Shoes Front Helps on heavy tracks True
Shoes Back Helps on heavy tracks True
Age Age of horse
Stallion Male horse True
Gelding Castrated horse True
Starting number Lower starting number is better
Good start number Top half True
Starting score Based on the last five races.
Time Best historical time on the distance
Result Finishing position, last if failed to finish
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Appendix B. Conditions on the Expectations

The notation in this section is as before, but here repeated. That is, Xk denotes the finishing
position of horse number k and μk its expected position. The vector containing the expected
positions is denoted μ and its estimate by μ̂. The normalized expectations, obtained from
equation eq:normalization are denoted ~μ.

There is a total of n horses. The element pkj of the matrix P denotes the probability that
horse number k finishes in position j. That is, the k’th row of p gives the distribution of the
finishing position for the k’th horse while the j’th column gives the distribution for the j’th
position. Since P sums to 1 in all directions it is a stochastic matrix.

Proposition B.1.

• Given a set of estimated expectations μ̂ there exists a normalized estimate ~μ, given by (3),
which satisfies Xn

k¼1
~μk ¼

1
2
nðnþ 1Þ:

• For the set of normalized estimated expectations ~μ there exists a probability distribution
only if the sum of the expectations is equal to nðnþ 1Þ=2.

Proof.

• By (2) the sum of the expectations,
Pn

k¼1 μk, is equal to

1
2
nðnþ 1Þ:

That any normalized sum of expectations is equal to nðnþ 1Þ=2 follows from (4).
• For any probability distribution it must hold that

Xn
j¼1

j
Xn
k¼1

pkj ¼
Xn
j¼1

j ¼ 1
2
nðnþ 1Þ:

On the other hand, by definition every set of ordered expectations must satisfy

Xn
k¼1

~μk ¼
Xn
k¼1

Xn
j¼1

j pkj ¼
Xn
j¼1

j
Xn
k¼1

pkj:

Therefore, there exists a probability distribution for ~μ only if

Xn
k¼1

~μk ¼
1
2
nðnþ 1Þ:

□

Proposition B.2. If P is a stochastic matrix then all elements in μ must lie in the interval ½1; n�.
Proof. For each element μk in μ

μk ¼
Xn
j¼1

jpkj �
Xn
j¼1

pkj ¼ 1;

and

μk ¼
Xn
j¼1

jpkj �
Xn
j¼1

npkj ¼ n:
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The argument above can be used for columns of P in the same way. □

Proposition B.3. Let X be a random variable with distribution p taking values in 1; . . . ; n.

Denote its moments E½Xk� by μðkÞ. Then p is uniquely determined by its moments.
Proof. First observe that

μðkÞ ¼
Xn
j¼1

jpj � nk
Xn
j¼1
¼ nk

for all k. Thus, for every M

XM
k¼0

μðkÞjtjk
k!
�
XM
k¼0

ðn tj jÞk
k!
� en tj j

so the moment generating function gðtÞ ¼P1k¼0 μðkÞtk

k! exists and is differentiable for all t. The

kth moment is obtained by evaluating the kth derivative of g at the origin: gðkÞð0Þ ¼ μðkÞ. For
two distinct set of moments there would be two distinct set of derivatives of g. Therefore μ
uniquely determines g. By the uniquness of moment generating functions g determines p. We
conclude that μ uniquely determines p. □

Appendix C. MATLAB Code

The function described in Figure 4 estimates the distribution given a set of expectations.

Figure 4. MATLAB-function.
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