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Abstract

Image processing is faced with a number of challengagimg from unequal resolutions,
format variations, non uniform illuminations, distortions and eoit is also affected b
orientation and contrast differences. In view of thesdlehges, most digital image processing
applications or devices employ enhancement procedure pribetuse of the captured image
for intended purposes. This paper reports on the reviewnoé &6 the existing digital imag
enhancement methods with emphasis on methodologies, streligitagjons and applicatio
areas. The specific application of some of these odlstby different authors is also present
Keywords: Image Processing, algorithms, noise and aetsif image digitization, image
enhancement.

1 Introduction

An image is a representation or general impression obgatt. It is also an artifact which depicts
or records visual representation in any two-dimensiorabp with similar appearance to living
object or any physical structure such as map, graph, chalistract painting. An image may be
rendered manually by drawing, painting or carving while aatanrendering of image includes
printing and computer graphic. During the process of capgturitorage, modification and
viewing, an image must be converted to a set of numlmees process called digitization or
scanning. Once an image has been digitized, computer can be usetit@, examine, alter,
display, transmit, or print it. Commonly known images includey-gcale (black and white),
colour, binary or bi-level and index colour (multi speqgtfat2]. The process of the enrolment or
capturing of images faces a number of challenges ranfgorg unequal resolutions, format
variations, non uniform illuminations, distortions and no{Sther external issues are variations in
orientation and contrast [3-11]. In most cases, these ogalleprompt the implementation of
enhancement algorithms prior to usage. A noisy image aedliignced version are shown in Fig.
1. Most image enhancement algorithms tend to be simpletativediand improvised while their
performance levels vary from application to application.

*Corresponding author: lwasokunGB@tut.ac.za;



British Journal of Mathematics & Computer Scien¢&6), 2251-2277, 2014

(b)
Fig. 1. () original and noisy image, (b) Enhanced image

Section 2 of this paper discusses some recently formuilatzge enhancement techniques while
the review of some recent research works on digital imalganeement is presented in Section 3.
Sections 4 and 5 focus on some notable application areasagfei enhancement and the
conclusion drawn respectively.

2 Image Enhancement Techniques

Some of the existing image enhancement techniques szesdied in the following sub-sections
[12-19]:

2.1 Interpolation

Interpolation is a primary technique for image scalingeosciences studies, astronomy, facial
reconstruction, multiple-description coding, resolution enhancearghgeographical information
systems. It involves the generation of a new resolutionrergthand sharper version of an image.
Existing interpolation techniques include adaptive Sub-Pix€], [@@h-frequency sub-band by
discrete wavelet [21], bi-linear/bi-cubic [20], VectQuantisation [22] and dual tree-complex
wavelet [23]. In most cases, the image is enlarged tala factor derived from the mean, median
or maxima of its neighbouring pixels. As shown in Fig. 2, aagenis expanded to size (2n-1) x
(2m-1) and the defined pixels are marked with ‘X’ whhe undefined pixels are filled by taking
the average values of the neighbouring pixels. Primantgrpolation algorithms map pixels from
successive low-resolution frames onto a single high resoldteame with the sub-pixel shift
information. The resulting non-uniformly filled virtulames are also interpolated to an enlarged
frame with evenly-spaced pixels. Each pair of neighbgufiames generates magnified and
enhanced image frame [24].
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Fig. 2. (a) Original image of sizem x n, (b) Expanded image of size 2m-1 x 2n-1

The zooming of an image is an important task in many apjgiicgtincluding the World Wide

Web (WWW), digital videos (DVDs) and scientific imagings]2 When zooming, pixels are

inserted into the image in order to increase its sind, the interpolation of the new pixels from
the surrounding and original pixels is performed. Similesbfem requiring interpolation by

weighted medians is interlacing progressive video conversiontelevision systems [26].

Interpolation promotes edge preservation and a less “pléotk to edges.

2.2 Contrast Stretching (CS)

Contrast refers to the difference between the inten$itwo adjacent pixels in an image. Low-
contrast images emerged from non-uniform lighting @k, non-linearity or small dynamic
range of the imaging sensor. Contrast stretching focusespoving the contrast in an image by
“stretching' its range of intensity values to span arekbor permissible range. It equalizes the
contrast throughout the image via simultaneous adjustoiezdch gray value at the darkest and
lightest portions, thereby promoting the visualization ofdails and structure of the very light
or dark regions. It differs from the other algorithmghat it only applies a lineacaling function

to the image pixel values resulting in a less harsh treBubr to stretching, it is necessary to
specify the upper and lower pixel value limits over whichithage is to be normalized. Often,
these limits are assumed to be the allowable minimum amdmae pixel values for the image
type. For example, in 8-bit level images, the lower angeoudimits are set to 0 and 255
respectively. An image contrast stretching transformnatnay be obtained from [27-28]:

S(f(i,j, k) forO < f(i,j, k) <x
C(i,j, k) =1 p(f(i,j,k) —x)+C(@,j, k) *x forx < f(i,j, k) <y €))
o(f( ) k) —y)+CUjk)* yfory <f(ijk)<W
Where * is a multiplication operatot,= W /3, y= 2W /3, C(i,j, k) = %* x=6x*x,C3,j,k) =

%* y=ply—x)+C(~,j k) +x, for a dark region§ > 1 while p > 1 at mid region. W is the
number of levels.
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In recent years, digital video cameras have been emplayeadnly for video recording, but also
in a variety of image-based technical applications suchlissal tracking, surveillance and
amplifier. Although, the trend of effort at capturing is dimhing, the images taken from a
camera usually suffer from noises, low dynamic range (LPB)r contrast, colour distortion and
SO on. As a result, contrast stretching is often usedliminate or reduce these problems for
improved visual quality. Though contrast stretching has proved sigtable for applications in
GIS and medical images, it is currently seeking improvenienthe area of computational
complexity for real-time video applications [29].

2.3 Histogram Equalization (HE)

HE is a point operation that maps an input image (with ualelgvel intensities) to its output
image (with equal level intensities). The ultimate otiyecis to standardize the intensities in the
output image to a level that is close to the form presentEd). 3(b) as much as possible.
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Fig. 3. (a) I ntensity curve of input image (b) Intensity curve of output image

Due to its computational simplicity and comparatively drefterformance, HE is mostly used in
computer vision to obtain improved colour images [30-33] el &s higher brightness of gray
scale medical images [32, 34-35]. Generally, HE preseheesnage details such that both global
and local contrasts are enhanced with minimum distortiorthén image appearance. The
histograms of a noisy image (Fig. 1(a)) and its enhameeslon obtained through HE (Fig. 1(b))
are presented in Fig. 4(a) and 4(b) respectively. Hlg. shows adjustment of the intensity values
such that there is improved distribution of intensity betwéendark and light regions. In most
HE, consideration is given to discrete variable V at ldvetith the distribution functiorD”
(histogram)D{T is also considered as the occurrence,dével whered < L, <L — 1. If ¢V and

C{T are the cumulative density function of V ahydrespectively theﬂ{r is derived from [36]:

Lr
¢ = z DY, )

Ly=o
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Fig. 4. (a) Histogram of the noising image shown in Fig. 1(a); (b) Histogram of the noising
image shown in Fig. 1(b)

Based on Equation (2), HE sets the uniform distribuBrover the entire image and produces an
aggregate (cumulative) density function that monotonically increases linearly. Given that O and E
are the original and equalized images respectively, then the Vglugs =0, 1, 2,...,L—-1 are

set for histogran®¥ and cumulative density functiatt. If DE is the desired uniform histogram,

then each frame of an image of height, A and width, B has the same density (amount of pixels)
defined by:

D, =7 (A x B) ®)

The cumulative density functiaff is then obtained from:

Lg
Lp+1
cE =) DF, =124 xB) @

Lg=0
If L turned out to be the smallest valueCéffor whichCf, — CLOO > 0, thenLg is taken as the

output equalized level which corresponds to the input leyelhis implies that the output level
Ly can be computed as the transformation fundii¢fL,| given by:

L*Dp _,
= FO = e
LE—FlLo|—<—><(AxB)> )

<(*) represent the function that returns the nearest integer. This technique is easily extended for
colour image enhancement by separate application of the equalization process to each of the RGB
channels.

The histogram equalization algorithm has proved to be a very reliable way for the integration of

colour and brightness information extracted from salient local features of colour images. It also
does well in the attenuation of noise, blurriness and poor contrast. Regrettably, it experiences
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failure with inappropriate parameter selections, requigesgre complexity of time and space and
susceptible to failure in unrecoverable corrupted imagemns [37-38].

2.4 Dynamic Range Compression

Dynamic range compression is used to represent a largé dypamic range by its relatively
small output equivalent. It is expressed as the differencatio between the brightest intensity
and the darkest intensity of an image or scene whichbe compressed via the logarithmic
transformation when it is very large [29]. It is generdelieved that human vision system
involves a number of complex activities and various adaptiechanisms that positioned it to
capture a scene with large dynamic range through varigestise mechanisms. This is not the
case in images produced by video cameras which are withddimneaenhancement processing
and cannot produce good visual contrast at all ranges mdildigvels. Consequent to this, local
contrast often suffers at regions with low or high signarages. Dynamic range compression is
therefore used to improve local contrast at all redicignal average levels within the 8-bit
dynamic range of most video cameras so that image ésaturd details are clearly visible at the
dark and light zones. When the dynamic range of an imagésdegay large, it is compressed by
using a typical logarithmic transformation as follows:

C@,j, k) =k logyo(1 + If(i, j, K| (6)

w

S logea W) «
This method adjusts the intensity for effective compogssif the dynamic range of the image
towards ensuring effective mapping of the high to thellstiyaamic range scenes. This helps to
avoid sundry artifacts and loss of local contrast. Dysaminge compression, like contrast
stretching and histogram equalization, is also noted figfaetiory removal of noise, blurriness
and poor contrast in medical (digital X-ray, digital mammapy, CT Scans and MRI),
surveillance and satellite images. Its suitability for oihgage applications such as biometrics is
still in contention [39].

2.5 Partial Differential Equation (PDE) Method

Various PDE methods have been developed over the years fge inestoration, filtering,
segmentation and object tracking. With PDE, invariancesofiezed with respect to classical
techniques alongside re-interpretation of traditional negres such as convolution, filtering and
morphological operations of dilati@rosion under a novel unifying framework [40]. It has gyeatl
improved mathematical modelling, connection with physical phrema and approximation to the
geometry of the problem as well as performing shape retmgnstructure-preserving filtering
and object segmentation in a stronger and more intuitiveefreomk. The use of average, median,
Gaussian and other form of filters helps reduce noiseeatdst of smoothing the image and hence
softening the edges. PDE-based image enhancement methbid$, are premised on the
assumption that the intensity of illumination on edges vdikesgeometric heat flow are used to
solve this problem. For an image |, a typical second orDé&r lBased on heat diffusion equation is
defined as follows [10,41]:
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al . .
=7 @08 = p(c@ ) VI, ) D)) (8

1G,,0) = Iy (i, ) ©)

V is the gradient operatoc(i, j, t) is the diffusion factor, angis the divergence operator. Two
different equations for the diffusion factor are as follow:

-2

. Y
c(i,j,t) VT VI (10)
i |vi[? "
c(i,j,t) =exp 277 11

y is a constant for controlling the diffusion factowhich changes at different points in the image
and has small value for points (mostly around the edges) wik radient. The fourth order
PDE uses thé? — curvature gradient flow method as follows:

al
Frin —V2[c(V2D)V2I] (12)

V2 represents the Laplacian of the image and Equation (1&8%sisciated with the following
energy functional for a given image support

E(l) = j (V2D 0x 0y (13)

The existing PDEs-based image enhancement techniquegrgrgood for image filtering and
restoration in computer vision and other related applicatibhey are also suitable for solving
image quality problems arising from shape evolution, monul optical flow estimation and
shading which are all governed by (partial) differentialagpns [42]. Current issues against this
method include lack of discretization schemes for the nuntegitalysis of continuous PDE
models, performance degradation when subjected to imadesigitificant noise energy [10,43]
as well as demand for high mathematical skills and good insighe problems.

2.6 Alpha Rooting

Alpha rooting is a combined frequency and spatial domainneeiaent technique, wherein the
frequency domain technique complements the spatial doreimigue in order to optimize the
advantages and minimize the limitations of both technigues.usually used to accentuate the
high frequency content of the image by using power law and &sforms to map a narrow
range of input gray levels to a wider output range thenepyaving contrast and at the same time
retaining the subtle information and perceivable detdilss also used to augment the high
frequency content in the image by applying Fourier, disaregine or Hartley transforms. The
visual result presents a higher emphasis on detail suelges and fine distinguishing features.
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The application of orthogonal transform makes the high freguenefficients of an image to
have smaller magnitudes than low frequency coefficientsaBjng the magnitude of an image to
some valueg, where 0 <5 < 1, the higher valued lower frequency components are recnoesl

in proportion to the lower valued higher frequency componertis groportional reduction of
magnitudes leads to emphasizes on high frequency content of ge. iklpha rooting has long
been used for enhancing high contrast edge informatiorsiaawgh features in images where the
inverse orthogonal transform is firstly applied to geé tbutput image followed by the
computation of the magnitude and phase difference. A dypibase difference formula is
presented as follows [44];

(e, f) = |0(e, D]e™*D (14)

@(e,f) represents the orthogonal transform of the ima@ée,f)| is the magnitude of the
transform and(e, f) is the phase angle of the transform. Alpha rooting is epgls follows:

|o(e,H)]?, 0<a<1 (15)

The phase angle and the alpha rooted magnitude are conblyimsthg the formula:

3(e,f) = |0(e, )| %emoED (16)

To return from frequency to spatial domain, inverse orthogtmalsform is applied and the
obtained image is subjected to logarithm transfornoboas:

f=kxlog(l+g) 17

g andf are the gray level of the input and output pixels retspely andk is the scaling constant.
Power law transformation, which produces the enhanced imdgenigpplied by using:

p=sxg’ (18)

p is the output gray leved,is the scaling factor arid is the power to which the input gray level is
raised. Alpha rooting is simple in theory and implementatioth ia capable of eliminating the
shortcomings of the conventional domain transform techniqueasighaying, tonal changes and
artifacts in colour images. It is also used for improvimgges with low contrast and unbalanced
distribution of gray levels [44].

2.7 Céellular Neural Networks (CNN)

Cellular neural network (CNN) is currently a very aggmiate computing model for providing
solution to numerous image processing problems. It is basedulti-valued neurons [45] and
universal binary neurons [46] which both work with complexdedl weights and complex
internal arithmetic. CNNs based on these complex-vahedons can be combined with noise
removal to implement image enhancement with high and medium fregseamplifiers [36].
Cellular Neural networks are well known for their good panfance in classification and function
approximation. They have been used with success in medicgé isrghancement and analysis,
particularly in the case of signal classification in suppbriagnosis, filtering, compression and
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restoration [47]. It is also used in resonance imagerifig, edge detection as well as character
and object recognition. Due to the parallelism of its aechitre, it can be applied to problems
such as video signal processing where traditional methods tcdelner fast throughput [48]. It
can be defined over any dimension though it is much easigsualize them in 1-D or 2-D. A 2-

D CNN defined over a 3 x 3 lattice is illustrated in Fg.

I(1,1) I(1,2) I(1,3)
1(2,1) 1(2,2) 1(2,3)
1(3,1) 1(3,2) 1(3,3)

Fig. 5. 2-D CNN defined over a 3 x 3 square lattice

Shunting Inhibitory Cellular Neural Network (SICNN) is aloigically inspired system of image
processing that provides contrast and edge enhancement ardiclyange compression. It is an
efficient way to achieve lightness-colour constancy by ernihgribe dark region and at the same
time retaining the colours in the bright. With this approdiel,neighbouring neurons exert mutual
inhibitory interactions of the shunting. The dynamicdR Df this technique include range
compression, colour constancy and rendition which are usedbi@ining improved colour
complementary metal-oxide semiconductor (CMOS) imadése dynamic range is used to
compare the maximum signal lewat,, with the minimum rms noise leval}, in an image and is
obtained using integer constant k as follows [49]:

VW
DR =k * logloﬁ (19)
m

Generally, colour images are susceptible to colour constamggh is the spectral distribution of
the non-luminance changes. Hence, given kthist the normalized contrast or reflectance and
represents the total input, then:

I =11, (20)

n
=) I @1
k=1

Based on the approximation of the convolution term to the iopuent sources, the steady state
solution is given by:
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Iy
Xi=l—t 22)
YT at Dyl

If the total activity is not perturbed by the activityafe cell, then:

21“21,(_4 (23)

Hence, Equation (22) becomes:

Iy
Xp = Iy a+tl, (24)
The total activity of the network is then computed from:
n
era+1t a-lflt (25)

i=1

Equation (22) converges to 1 as mean intensity (backgroundases resulting in brightness
contrast.

CNN is good for compressing an image's dynamic rangeefterbcontrast and for enhancing the
spatial edges as well as elimination of Fixed PatterrséN@rPN). It however lacks the strength
for handling automatic gain and exposure control or whitenbalavhich results in a wide gap in
its handling of CMOS and Charge-Coupled Device (CCDpinmqquality [49].

2.8 Algebraic Reconstruction Method (ARM)

An image with high resolution (HR) has a high pixel density apdetbre can offer more details
that may be critical in various applications. Unfodtely and in several cases, the image
resolution is limited by the aperture response and fanymapplications greater resolution is
desired, leading to interest in image reconstruction and remoletihancement algorithms. ARM
makes a pixel responsible for the error it produced bygusack projection and is greatly used in
non-uniform interpolation, microwave remote sensors, apsensors and gridded images [50-
51]. Under normal circumstances, ARM provides improved resolutiages by taking advantage
of oversampling and the response characteristics of theuspdrtinction to reconstruct the
underlying surface function sampled by the sensor. Givenh fthaepresents the obtained
solution,d; ; is the weight of thg-th pixel values when calculating the projection onithie ray
and Grepresents the jth projection ray, the projection ergonn that ray is derived from [8]:

¢ = i Z dfi |- ¢ (26)
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A=) d; @7)

A is the aggregate of the weights on the jth ray andHercorrection of the errog is back
projected on the pixels hit by the ray based on the pixel weightss, the new imaggé will have
the pixel values defined by:

fi=fi+dns. . . fa=fe+dp® (28)

The method is repeated ray by ray, iteratively, untiéitninates with the error on the given ray
equals zero while it may rise on others.

Discrete Algebraic Reconstruction Technique (DART) hasnbdeveloped for discrete image
reconstruction by using image thresholding obtained by a continuous rectinst method. This
provides simpler discrete image reconstruction based orathéhfat result from thresholding is
often exclusively inaccurate along the object boundaries. Quesdy, modification of the
boundary pixels is iteratively carried out prior to aitial thresholding of a continuous result.
Firstly, an initial continuous reconstruction is compubgdusing a variant of ART followed by
thresholding of the actual imagg.; through known discrete values which can be used to obtain
f'of the image pixels. The set Z of non-boundary pixels is therpetad paving way for the
composition of a new image by taking the pixel value fiifithe pixel is located in Z and from
face if otherwise. The ART iteration is performed on the boundary pixels of the composed
image followed by smoothening of the boundary pixels. Fipdlthe termination criterion is met,
then a final thresholding is performed, otherwise, the oper&t repeated. ARM is strong for the
removal of unwanted effect of salt and pepper-like noise andtieduc the number of iterations
and projections needed for an acceptable image reconstruttimwever experiences difficulty
in finding the proper parameter values for the filter [8]

2.9 Directional Wavelet Transform (DWT)

DWT is an enhancement technique that is majorly used fdniregeall the beneficial properties
of wavelets and at the same time provides directionatrirdtion decomposition in an image. Its
notable examples include 2-D Gabor wavelets, the steemphmid, the directional filter bank,
2-D directional wavelets, complex wavelets, curveledgalets [52] and contourlets [53]. Its
major strength is its ability to represent the siagties of the signal efficiently. For 2-D

implementation, usually separable wavelets are used tosegpirgertical and horizontal edges
[54]. DWT is mostly used in image processing applicatidnsluding feature extraction,

enhancement, denoising, classification, and compression {Bbject-Based Scalable Video
Coding [56], low bit-rate compression [57-58] as well as dreugation and removal of

directional trends [59]. The directional wavelet transf¢DWVT) of a discrete image I(i, j) may be
obtained from ([56,60]):

R-1S5-1
1
L,(B,6,9,0) = z — 1)) G(o)Lg(S — 1,9 — J) (29)

i=0 j=0 B
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f is the scale parametds; (i, ;) is the 2-D wavelet kernel and R and S represent tmekesize.
G (o) rotates the kerneounter clockwise by an angle Ly is obtained from:

Lp(i, ) = Bg()),  i€[0,R—1] (30)

The directional filter algorithm is defined by using IMexican Hat function given by:

2 <ﬁ_1)e(§) (31)
no.zs\/3_y y?

A typical Mexican Hat wavelet is shown in Fig. 6. Thavelet is derived without scaling from a
function that is proportional to the second derivative of thagSian probability density function.

A(t) =

Fig. 6. Mexican Hat Wavelet

The strength of Directional Wavelength Transform (DW&$ in its robustness and accuracy with
effective enhancement of regions in the neighbourhood of migsificant singularities of an
image. Its weak points remain its high directional infdiora cost and computational
complexities [56,60].

2.10 Spatially Adaptive Iterative Filtering

The use of spatial neighbourhood in image processing teflee fact that geometrically close
pixels belong to the same structure or details, highly aiaéland fall into the same cluster of the
local histogram belonging to the central pixel. In orderexract the local histogram and
overcome the drawback of blurring edges in most digital imagestially adaptive iterative
filtering techniques were developed. They hinged on noiostaly image models and utilized
local statistics of the image to improve its form [81-6These techniques operate in the spatial
domain and apply some local operations to perform noise smgothithout any specific
assumption about signal and noise models. Their commorerctnare the suppression of noise
corruption and the preservation of image details in teeoded observation. Spatially Adaptive
Iterative Filtering also uses the non-parametric rasitom framework with spatially adapted
transform through optimized iteration which is implemented Ipatise to carry out automatic
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adjustment of the local smoothing strength accordingdal Isignal-to-noise ratio (SNR). A block
diagram of a typical spatially adaptive iterative filterialgorithm is presented in Fig. 7 [63-64].

M 7
Noisy * De-noised
Image Image

v

Pre-filtering by -
Kernel Base Aggregation
A
z 2
\ 4
Patch Filter _ Patch
Computation > Filtering
A
{wi}
Optimal
»| Iteration Est. Py
k,

Fig. 7. Diagram of SAIF Algorithm

Starting from the noisy image Y and splitting it iftooverlapping patchegy;},, each noisy
patchy; , is de-noised separately. To calculate the local fif@chi;, an estimated imag2
filtered by the standard kernel baseline is used amdttie estimation of the Mean Square Error
(MSE) for the two iteration approaches (diffusion and bings for each patch is performed. By
comparing their values, the optimal iteration method amsequently the iteration numberis
selected, generating the filtered patZh Since these filtered patches are overlapped, an
aggregation method is finally carried out to compute theaised imageZ. The algorithm is
suitable for use in GIS with its strong point lying inatsility to boost the performance of spatial
domain filters in terms of percentage SNR (MSE) andestilve visual quality to near state-of-
the-art through optimized iteration methods.

2.11 Multi-Frame Super -Resolution

Multi-frame super-resolution is used to remove the mamputational bottleneck associated with
some other algorithms. It uses a known vectorized sceneaizedfN x 1 and a given registration
vectord® to generate a vectorized low-resolution ima§e with M pixels through a system
matrix W %, Gaussian noise with precisi@ris then added tg® as follows [65]:

y® = oW (8®) x + pélo +e® (32)
e®@~N(0,p7'1) (33)

Photometric parameteps and Py are used to provide a global affine correction for shene
iIIumination.pB is simply an M x 1 vector filled out with the vaIueprWhiIe each row of W(k)
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constructs a single pixel y®, and the row’s entries are the vectorized and point-sprewdtidn
(PSF) response for each low-resolution pixel, in the frambeofuper-resolution image. The PSF
is usually assumed to be an isotropic Gaussian on thgirimglane, though for some motion
models (such aglanar projective) this does not necessarily lead tows$an distribution on the
frame of x. For an individual low-resolution image, givegistations and X, the data likelihood
is obtained from:

0.5M
p(y®1x, 80, p®) = < 2_[1 ) (05l 0o (60) x—p{113} (34)

When the approximation of the registration is determinedjnistance by pre-registering inputs,
the uncertainty can be modelled as a Gaussian perturbationtabauean estimat&® for each
image’s parameter set. This techniqgue was developed akeamative approach for Bayesian
image super-resolution with several advantages over sgristing methods such as Tipping and
Bishop's algorithm [66]. The use of a much more realistiage prior also reduces computational
speed and memory efficiency relating to the smaller daoen

3 Some | mage Enhancement Works

Several proven and established works that are based olgdhnighans presented in Section 2 have
been done on digital image enhancement. They include meandgeam-based iterative
method [67]; iterative, adaptive and non-parametric regred§i®]y iterative guided filtering
[63,69], maximum a priori (MAP) and Bayesian Integration [7&hd Space-Invariant
Deconvolution [71]. The authors in [39] applied range compress@ntrast stretching, histogram
equalization and noise smoothing algorithms for the enhanceafecdmmon digital images
while Far Distance Filter (FDF) and Near DistandéeFi(NDF) with (5 x 5) kernel were used for
the enhancement of abnormal image pixels in [72]. A tecienfor improving the image quality
of complementary metal-oxide semiconductor (CMOS) nagnsor is presented in [49]. The
techniqgue compresses the image dynamic range, reorgaitézaignal to improve visibility,
suppresses noise, identifies local features and perfoemdition of colour constancy and
lightness.

An image resolution enhancing technigue based on extracted 1-chrmedrsharacteristic curves
from frames and sub-pixel displacement values is gimd24]. Through sub-pixel mapping and
adaptive interpolation, high-resolution image is obtained fseweral low-resolution frames. A
digital image enhancement algorithm that is based on theepo of histogram equalization and
contrast stretching is presented in [73]. The algorithns déerent procedures which encompass
locally varying enhancement techniques for optimum displagliféérent feature classes in an
image. Different spectral bands were selected frtorage of a priori knowledge in geographic
information system (GIS) and context based image infoomahrough segmentation process.
The authors in [74] formulated a generalized iterative fualgorithm that is based on the
statistical features of the gray-level histogram nbance degraded and inaccurate image edges
while a spatial domain technique that is based on fuzzyept®such as histogram distribution
analysis and smoothing techniques is proposed for imageeaiment in [75]. A colour image
enhancement technique based on the equalization of thbe@digograms built with the RGB
colour channels is proposed in [37]. The technique has squanplexity of time and space
irrespective of the number of levels in each channel. The tpebhnproposed in [38] uses
parameter-controlled virtual histogram distribution method sndriven by global and local
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processes on luminance and chrominance components of an imegeedses the visibility of
specified portions of an image with good maintenance of colour

The authors in [76] introduced a directional wavelet tramsfbased image enhancement
technique that uses scale and directional informatiorddoompose an image into four-
dimensional space and augments. Multi-scale singularitgctien is also used with adaptive
threshold whose value is calculated via maximum entropypuneaTransform and spatial domain
techniques of image enhancement were presented by thersaun [44] for addressing the
limitations of the former. A technique which combines hithanic and power law transforms with
alpha rooting algorithm for robust contrast enhancemeatsis presented. The authors in [77]
proposed a Laplacian like image-scale pyramid—based meathashtiancing a fingerprint image.
The method decomposes the original fingerprint into 3 smaflagés corresponding to different
frequency bands and contextual filtering was performgdusing pyramid levels and 1-D
Gaussians. A screen mammogram image denoising andaarhant technique that is based on
Orthogonal Polynomial Transformation (OPT) is proposed if. [VBe technique scales a set of
OPT edge coefficients to an inverse transformed set tairobontrast improved image. In [11],
the authors presented a curvelet transform for resolvieg avd under illumination problems in
dimensional images through morphological transformatérgsclosing through reconstruction.

The effect of noise on images is reduced by using AddeReconstruction Technique (ART) and
its variant discrete methods in [8]. The authors in [79] psep an algorithm that is based on no-
reference metric Q and singular value decomposition of Igratient matrix for image
enhancement. The algorithm provides cheap and rapid respamsputation for quantitative
measure of true sharpness and contrast in visualgnsaeometric features such as edges in the
presence of noise and other disturbances. A platform for ceunfeconstruction and image
enhancement via L1-minimization is presented with intgumnt algorithm for solving the
associated linear programming problem in [80]. The autho®lihgroposed a new technique that
is based on statistical differencing for contrast enhanoerof satellite images. The technique
controls the sharpening effect by using two constants in awelly that enhancement occurs in
intensity edges and uniform areas. A clustering-basaedénde-noising technique that uses locally
learned dictionaries of the clusters of similar georoestructure is presented in [82]. The
technigue uses local weight functions with great inforamaéind robustness to convey image local
structure even in the presence of significant amounts ©en&ach region (or cluster) was
modelled using principal components analysis by “learnihg” liest basis which describes the
patches within the cluster. Kernel regression-basedodaies were also used for the optimal
estimation of the underlying pixel values.

The authors in [43] presented an anisotropic diffusiotiddifferential Equation (PDE) model
with Perona—Malik equation technique for the preservation ancheetrent of image edges. The
technique uses self-organizing maps and Bayesian iferéo obtain accurate definition of
difficult textural edge probabilities. A fuzzy measure tlyefor representing human subjectivity
aggregated with objective criteria by fuzzy integralpiesented in [83]. Dempster aggregation
rule was used to define the degree of compromise with ay fuate-based approach for
constructing an aggregation matrix that allows the generafienhanced quality of portal images
used in radiation therapy. Imaging geometry was useddpope an enhancement method for
colour retinal images, with emphasis on contrast improverdewbid of artifacts in [6]. Non-
uniform sampling was used to estimate the degradation and derceerection factor from a
single plane. A scheme for applying the derived factoertbancing all the colour planes of a
given image was also proposed. An image de-blurring techrigeed on Regularized Locally
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Adaptive Kernel Regression (RLAKR) is proposed in [84]. Téehnique uses kernel regression
for image enhancement and performs de-noising and derglusimultaneously based on an
effective and novel image prior.

A Bayesian image resolution enhancement technique that mi@giaver the unknown
registration parameters which relate with the sehpifii low-resolution views is presented in [65].
lllumination components were introduced into the generativéeito handle changes in lighting
as well as motion. A framework for image enhancementakbrated Lens Simulations (CLS)
and Point Spread Function (PSF) is presented in [85]. Aradith model computes the PSF for
any desired setting of lens parameters for a scene dejittgut additional measurements or
calibration. The authors in [86] addressed the problem ofrpocating user preference in
automatic image enhancement by formulating active sensmtisel and distance metric learning-
based method for observing user preferences on training sehemdearn a model of these
preferences to personalize enhancement of unseen images/stem for scanning and
enhancement of the visual quality of the content on a wtatebis presented in [7]. The system
automatically locates the boundary of a whiteboard, coopsnd rectifies its region and corrects
the board to completely white. A feature-based techniqueaditomatically stitching multiple
overlapping images arising from insufficient single imageduced with low-resolution camera
from large whiteboard is also proposed. Table 1 shawthdr, the summary of some of these
works.

Table 1. Summary of some existing works on digital image enhancement

Resear ch M ethodology Strength Weakness
Cristobal and « Gabor and * Removal of degradation ¢ Performance
Navarro, 1994 pyramidal due to large amount of  diminishes with
[4] representation space and frequency images with
variant fractal noise in substantial amount
medical images of noise
Koo and Kim, * Extraction of 1- * Upgrades low resolution * Unable to handle
1999 [24] dimensional digital image to high images in
characteristics resolution, consumer and
curve, sub-pixel « Applicable in real-time ~ medical
interpolation processing applications
Hamid and * Fuzzy and Dempster * Reliably enhanced portal « Unable to handle
Bernd, 1999 [83] aggregation rules images used in radiation additive or fusion
therapy images
» Computational
complexities
Hammadou an < Shunting inhibiting  * Efficiently enhanced « It failed with other
Bouzerdoum, cellular neural images from CMOS modules such as
2001 [49] networks sensors automatic gain and
exposure control
Menoti et al., « 2-D histogram * Good for colour image < Requires square
2006 [37] equalization enhancement complexity of time
and space.
Heric and « Directional Wavelet e It uses multi-scale * Failed with images
Potocnik, 2006 Transform singularity detection whose adaptive
[76]
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with adaptive threshold
for enhancing images

threshold is not
determinable

Pickup et al.
2007[65]

* Bayesian
marginalization
within the super-
resolution model

* Maximum a prior
estimate

* Significantly improved
fixed-registration
approach in terms of

* Its performance
with domain-
specific image

computational speed and prior is uncertain

memory efficiency

Nadernejad et » Second, fourth and

« Strong for de-noising

* Failed with image

al., 2008 [10] complex order almost all types of with unpredictable
Partial Differential digital image noise level
Equation
Karras and « Partial Differential  * Very good for image » Computationally
Mertzios, 2009 Equation, self- filtering and restoration  expensive
[43] organizing feature applications
map and Bayesian
inference
Zhengya etal. < Virtual histogram * Speedy and * Its performance
2010 [38] equalization simultaneous depends on
enhancement of image  parameters whose
overall contrast and determination are
sharpness complex
Preethi and * Range compression, * Good for enhancement e It experiences
Rajeswari, 2010  contrast stressing, of colour and gray scale failure with image
[39] histogram medical images containing highly
equalization corrupt regions
Hantos and * Median filters, * Enhances images * Finding proper
Balazs, 2010 [8]  algebraic typically degraded by filter parameter

reconstruction

salt and pepper-like
noise

strictly dependent
on the type of
image

Ahmed, 2011
[72]

« Spatial filters

* Image de-noising
through removal of
abnormal pixels

* Its lacks the
threshold and
kernel cardinality
constraints

Arun etal., 201. « Alpha rooting

[44]

Seo and » Guided filter kernel
Milanfar, 2012 * Nonlinear

[69] anisotropic and

reaction diffusions

« Efficiently enhance low
contrast images arising

from graying, tonal
changes and artifacts
* Suitable for use in
flash/no-flash image
denoisingand
deblurring,

* Strictly rely on
parameters whose
computation is
complex

« Strictly rely on the
use of guided
filters

* Yields outputs that
preserve fine details of

the flash image and the

ambient lighting of the
no-flash image.
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Zhu and
Milanfar, 2013
[71]

* Geometric
deformation through
B-spline-based non-
rigid registration.

» Regression process

* A blind de-
convolution
algorithm

« Corrects geometric

distortion and reduces
space and time-varying

blur

» Uses a number of
parameters which
are determined
through
computationally
expensive
processes.

Talebi and
Milanfar, 2013
[64]

« Iterative filtering of
local image content
using base filter

« Significantly relax the
base algorithm’s

Sensitivity to its tuning
(smoothing) parameters

* Greatly boost the
performance of other
denoising filters.

* Its performance
diminishes for
images with varied
noise level across
the whole image.

Talebi and
Milanfar, 2014
[63]

« Spectral (principal)
components
estimation using the
Nystrom extension.

« Effectively eliminate the

issues of diminishing
returns associated to
increased patches in

» Computationally
complex,

* Strictly based on
exploiting

other patched based
algorithms

similarity between
a relatively modest
number of patches

4 Notable Specific Applications of Digital lmage Enhancement

The following are some of the specific applications oigital
[37,72,75,77,87].

image enhancement

4.1 Geographic Information System (GIS)

Geographic images are extensively used in several nerightand mapping software packages
including Google Earth and Microsoft Virtual Earth. These pge&agrovide very rich geospatial
or satellite images on transportation, traffic, terrplaces and so on. One of the several issues
militating against effective and adequate utilization of éhiesages is discrepancy in colour tone
arising from inconsistencies in brightness, saturationotwuc imbalance between images that
represent adjacent areas [67]. The main effect of timesmsistencies is significant difference in
the appearance of adjacent areas. Image enhancement éfortheconsequently applied to
eliminate these effects and for easier interpretationmafge data. Commonly known image
enhancement techniques in GIS include contrast stressilyg, enhancement and derivation of
new data from the difference estimates ratio and othditiggdrom reflectance values in two or
more bands, among several others. Physical and psycholegiariments have shown that
images with enhanced edges experienced visual satisfaetinrinhages from exact reproduction
[81].
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4.2 Medical

Identifying the edges of low contrast structure is on¢hefsalient tasks in the interpretation of
medical images. Low contrast structures need to be resalveomputed tomography (CT),
magnetic resonance (MR), digital mammography, ultrasoand angiography and nuclear
medicine images. Getting a high contrast image direatly fthe imaging devices is in most cases
expensive in examination time or X-ray. For instance,lthv contrast in CT is merely increased
by raising the number of photons absorbed in each voxel, whjmtoportional to the X-ray dose
[3]. Therefore, while most medical images posses®itapt structures with low natural contrast
with the surrounding structures, the production of these imgeesrally involves a compromise
between the need for enhanced contrast and the various costsaifingpbit. In this case,
enhancement via digital post processing is often employed.

4.3 Patter n Recognition and M atching

Most of the existing pattern recognition and matching systeequire robust automatic

identification and verification mechanisms that relm @ccurate image acquisition and
enhancement. In view of the fact that it is practicaipossible to acquire noise free images at
most times, the problem of poor quality consistently ememgcessitating the inclusion of

preprocessing step of enhancement as a prelude to qualityefeakiraction.

4.4 Visualization

It is noted that still images and video systems are tipidianited in use with poor visibility
conditions such as rain, fog, smoke and haze which sevimatythe range, soundness and
effectiveness of imaging systems. Several visual infaomgrocessing groups including Space
Research Centers, Weather Forecasters and Air Tr@fiittrollers have therefore developed
image enhancement technologies of different concepts wigbtdipplications on the problem of
poor visibility conditions.

4.5 Security

Different dimensions have been taken towards ensuring suggbtems for securing lives and
properties at private and public places across the worldurAber of human traffic control and
monitoring devices had been developed and equipped witheimalgancement components for
optimal performance. For instance, most surveillance mgstdiave image enhancement
capabilities as a measure for timely analysis and irg&fpon of recorded images in all
conditions of weather and atmosphere. The latent fingeerpnrolled at crime scene is also
enhanced for reliable feature extraction and pattern matching.

5 Conclusion

The review of several of the existing methods for digiteage enhancement has been presented.
The methods include Directional Wavelet Transform, AlgebiReconstruction Model, Partial
Differential Equation, Histogram Equalization and CelliN&ural Networks. Others are Adaptive
Interpolation Method, Contrast Stretching, Range CompressiophaAlRooting, Spatially
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Adaptive Iterative Filtering and Multi-Frame Super ResolutiThe application areas, strengths
and weaknesses of these methods were discussed atitinefe that determine their suitability for
one application or the other. A review of some reamaige enhancement works that are premised
on these methods as well as some specific application effregital image enhancement were
also presented. Future research aims at using the erp¢ainstudy and integration of some of
these methods as bases for obtaining an image enhanceantengue with greater performance
and acceptability in several applications.

Appreciations

The authors express their sincere appreciations to theymwoos reviewers for their very
objective comments and suggestions which contributed imryetasienproving the quality of this
article.

Competing I nterests
Authors have declared that no competing interests exist.

References

[1] Sachs Jonathan. Digital Light & Colour, Digital Image Bas (http://www.dl-
c.com/basics.pdf). 1999. Accessed 15/10/2013.

[2] McAndrew Alasdair. An Introduction to Digital Image Proseg with Matlab,
Unpublished Notes for Image Processing; 2004.
Available;(http://visl.techn)ion.ac.il/labs/anat/An%20Introtdan%20T0%20Digital%20I
mage%20Processing%20With%20Matlab.pdf.Accessed 21/04/2010

[3] Jain Anil K, Jianjiang F, Karthik N. Fingerprint MatchindbEE Computer Society.
2010;36-44. Available: _http:www.google.com/ the atm_of john_ shdpbaron.pdf/
Accessed 02/04/2011

[4] Cristobal Gabriel, Navarro Rafael. Space and Frequencgntdmage Enhancement Based
on a Gabor Representation, Pattern Recognition letters. 1B943-277.

[5] Kininen Henri. Evaluation of Automatic Image Enhancement Mishfor Reporters’
Images, Finish Centre for Science and Technology andvétiom in the field of ICT,;
2010.

Available http://virtual.vtt.fifvirtual/nextmedia/Deliverables-
2010/D3.2.2.1%20Hyperlocal%20Automatic%20image%20enhance et pdf,
Accessed 12/03/2013

[6] Gopal Datt Joshi, Jayanthi Sivaswamy. Colour Retinal é&ngBghancement Based on
Domain Knowledge, Proceedings of Sixth Indian Conference on QGemplision,
Graphics & Image Processing; 2008.

2270



British Journal of Mathematics & Computer Scien€g6}, 2251-2277, 2014

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Zhengyou Zhang, Li-wei He. Notetaking with a Camera: Winiggd Scanning and Image
Enhancement; 2005. Unpublished

Available: http://research.microsoft.com/en-us/um/peahkng/Papers/TR03-39.pdf)
Accessed 18/07/2011

Hantos Norbert, P’eter Balazs. Image Enhancement by Nefilters in Algebraic
Reconstruction Methods: An Experimental Study, G. Bebis.gfEals.): ISVC Springer-
Verlag Berlin Heidelberg, Part Ill, LNCS 6455. 2010;339-348.

Barbara BariSic, Mirjana Bonkovic, Rudera BoSkovica, SptkaeBovan, Simple Iterative
Algorithm for Image Enhancement, Proceeding of th® Ilernational Conference on
Automation and Information, USA. 2009;157-162.
Available:http://www.wseas.us/e-library/conferences/20G{pe/ICAI/ICAI24.pdf,
Accessed 05/07/2011

Nadernejad Ehsan, Hamidreza Koohi, Hamid Hassanpour. BBf&d Method for Image
Enhancement, Applied Mathematical Sciences. 2008;2(200981-

Muthu Selvi Roselin, Kavitha. A Hybrid Image Enhancemeathhique for Noisy Dim
Images Using Curvelet and Morphology, International Jourh&ngineering Science and
Technology. 2010;2(7):2997-3002.

Tang CW, Hang HM. A Feature-Based Robust Digital ImageeWwharking Scheme, IEEE
Transaction on Signal Processing. 2003;51:950-959.

Fisch B, Schowart EL. Learning an Integral Equation Approdonato Nonlinear
Anisotropic Diffusion in Image Processing; 2013. Availabitp://open.bu.edu/xmlui/
bitstream/handle/2144/ 2210/95.033.pdf?sequenciedessed 10/10/2013

Lysaker M, Lundervold A, Tai X. Noise removal using foudider partial differential
equation with applications to medical magnetic resonanceeisnimgspace and time. IEEE
Transaction on Image Processing. 2003;12(12):1579 —1590.

You Y, Xu W, Tannenbaum A, Kaveh M. Behavioural analysiaraotropic diffusion in
image processing. IEEE Transaction on Image Proces$886;5(11):1539-1553.

Batenburg KJ, Sijbers J. DART, A Fast Heuristic AlgabrReconstruction Algorithm for
Discrete Tomography, Proceedings of the IEEE Intéonat Conference on Image
Processing (ICIP), San Antonio, Texas, USA. 2007;4:133-136.

Salem Saleh, Kalyankar NV, Khamitkar SD. Linear and-imar contrast enhancement
image. International Journal of Computer Science and Nkt®ecurity. 2010;10:2.

Giraldi GA. Image Enhancement, LNCC-National Laboratfmy Scientific Computing-
A.V. Getulio Vargas, 333, 25651-070, Petropolis, RJ, Bragil4.

Krell G, Tizhoosh HR, Lilienblum T, Moore CJ, Michaelis Buzzy Image Enhancement

and Associative Feature Matching in Radiotherapy, MRudiogs of International
Conference on Neural Networks (ICNN '97), Houston, Texas; 1997

2271



British Journal of Mathematics & Computer Scien€g6}, 2251-2277, 2014

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Parth Bhatt, Ankit Shah, Sachin Patel, Sanjay Patel. Ingadncement Using Various
Interpolation, Methods, International Journal of Computer ri@eieand Information
Technology & Security (IJCSITS). 2012;2:4.

Harikrishna O, Maheshwari A. Satellite image resolutienhancement using dwt
technique. International Journal of Soft Computing and Engimgpe2012;2:5.

Paul Cockshott W, Sumitha L. Balasuriya, Irwan Prasetya WamaPaul Siebert J. Image
enhancement using vector quantisation-based interpolatiacedttings of the British
Machine Vision Conference, University of Warwick; 2007.

Jagadeesh P. Image resolution enhancement based oriredgeddnterpolation using dual
tree-complex wavelet. Proceedings of International f€emce on Recent Trends in
Information Technology, 3-5 June Chennai, Tamil Nada. ZEPL763.

Koo Yido, Wonchan Kim. An image resolution enhancing techniggiag adaptive sub-
pixel interpolation method. IEEE Transactions on Consumetrtrglgcs. 1999;45(1):118-
123, Available:_http://ieeexplore.ieee.org/stamp/ stamp.ispBaber=00754426Accessed
19/10/2012

Gonzalo R. Arce, Jan Bacca, José L. Paredes. Nonlikearing for Image Analysis and
Enhancement; 2009.
Availablewww.eecis.udel.edu/~arce/Courses.../Essencial%20G @iaas F. pdf
Accessed 16/05/2014.

Yin L,Yang R, Gabbouj M, Neuvo Y. Weighted median filtes: Tutorial. IEEE
Transaction on Circuits System. 1996;2(41):157-192.

Jaspreet Kaur, Amita Choudhary. Comparison of severdtasi stretching techniques on
acute leukemia images. International Journal of Engimgeand Innovative Technology
(IJEIT). 2012;2:1.

Sos Agaian, Blair Silver, Karen Panetta. Transform foeht Histogram Based Image
Enhancement Algorithms using Contrast Entropy; 2005. TIP-01603;2Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45%3&rep= repl&type=pdf,
Accessed 16/05/2013

Chi-Yi Tsai, Chien-Hsing Chou. EURASIP Journal on Image &fideo Processing.
2011;6. Available; http://jivp.eurasipjournals.com/content/208]/Atcessed 15/02/2014

Nikoletta Bassiou, Constantine Kotropoulos. Color Imagdobiam equalization by
absolute discounting back-off. Computer Vision and Imagdeldstanding. 2007;107:108—
122.

Kai-Qi Huang, Qiao Wang, Zhen-Yang Wu. Natural color gmaenhancement and

evaluation algorithm based on human visual system. CompuigonVand Image
Understanding. 2006;103:52-63.

2272



British Journal of Mathematics & Computer Scien€g6}, 2251-2277, 2014

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Sim KS, Tso CP, Tan YY. Recursive sub-image histogramliggtian applied to gray
scale images. Pattern Recognition Letters. 2007;28:1209-122

Bonghyup Kang, Changwon Jeon, David K. Han, Hanseok Ko. Adapgight-modified
histogram equalization and chroma correction in ycbcr cqlaces for fast backlight image
compensation. Image and Vision Computing. 2011;29:557-568.

Francois Pitie, Anil C. Kokaram, Rozenn Dahyot. Automateldur grading using colour
distribution transfer. Computer Vision and Image Understan@®g7;107:123-137.

Soong-Der Chen, Abd. Rahman Ramli. Preserving brightmesgstogram equalization
based contrast enhancement techniques. Digital Signal Prage2804;14:413-428.

Shahzad Muhammad, Shiraz Latif, Quratulain Akhter, dgarBibi. Efficient image
enhancement techniques. Journal of Information & CommtioicaTechnology.
2009;3(1):50-55.

Menoti D, Melo AP, De Albuquerque Aradjo A, Facon Bafi EM. Colour image
enhancement through 2-D histogram equalization. Proceedirig3tolfWSSIP, Budapest,
Hungry. 2006;235-238.

Zhengya Xu, Hong Ren Wu, Xinghuo Yu, Bin Qiu. Colour image enha@cthby virtual
histogram approach. IEEE Transactions on Consumer Electr@0it8;56(2):704-712.

Preethi SJ, Rajeswari K. Image Enhancement Techniguebnproving the Quality of
Colour and scale Medical Images, International JournalComputer Science and
Engineering (IJCSE). 2010;18-23.

Chan T, Shen J, Vese L. Variational PDE Models in Imaged3sing, Not. AMS J.
2003;50:14-26.

Perona P, Malik J. Scale-Space and edge detection ausiswgiropic diffusion. Proceedings
of IEEE Computer Society workshop on Computer Vision. 208727.

Zhouchen Lin, Wei Zhang, Xiaoou Tang. Designing Partial Diffeaé Equations for
Image Processing by Combining Differential Invariants; 200

Available:
http://www.cis.pku.edu.cn/faculty/vision/zlin/Publications/MSR-P009-192. pdf

Karras DA, Mertzios GB. New PDE-based Methods for ImBghancement Using SOM
and Bayesian Inference in Various Discretization SchenmMeasurement Science
Technology Volume. 2009;20:1-8.

Arun R, Madhu S. Nair, R. Vrinthavani, Rao Tatavarti. Apha rooting based hybrid
technique for image enhancement. Engineering Letters. 2083;19

2273



British Journal of Mathematics & Computer Scien€g6}, 2251-2277, 2014

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Aizenberg N, Aizenberg I. CNN Based on Multiple-Valued teu ASA Model of

Associative Memory for Gray-Scale Images, Proceedofgthe 2nd IEEE International
Workshop on Cellular Neural Networks and their Applicati@NNA, Munich, Germany,
IEEE-CS Press, Silver Springs. 1992;36—-41.

Aizenberg N, Aizenberg |. Fast converging learning algorithiors multi-level and
universal binary neurons and solving some image processiideprs. Lecture Notes in
Computer Science 686, Springer, Berlin. 1993;230-236.

Aizenberga |, Aizenberga N, Hiltnerb J, Moragab C, bfegu Bextenc E. Cellular neural
networks and computational intelligence in medical imagegssing. Image and Vision
Computing. 2001;19:177-183.

Murali Madan Mohan Gogineni. Contrast Enhancement ofatBwound Images Using
Shunting Inhibitory Cellular Neural Networks, M. Enginieg Thesis, Submitted to School
of Engineering Mathematics, Edith Cowan University; 2004.

Available: ro.ecu.edu.au/cgi/viewcontent.cgi?article=1804&ext=theses

Hammadou Tarik, Abdessalem Bouzerdoum. Novel image enhanteewhnique using
shunting inhibitory cellular neural networks. IEEE Transatwion Consumer Electronics.
2001;47(4): 934-940.

Sung Cheol Park, Min Kyu Park, Moon Gi Kang. Super-resmiutinage reconstruction: a
technical overview. IEEE Signal Processing Magazine; 2003.
Available;http://www.sipl.technion.ac.il/new/Teaching/Projéstsmter2007/SR_Overview.
pdf, Accessed 25/04/2014

David S. Early, David G. Long. Image reconstruction and mcdth resolution imaging
from irregular samples. IEEE Transactions on Geosciert@®amote Sensing; 2001;39:2.

DO MN. Directional Multiresolution Image RepresentatiorBhD Thesis; 2002.
infoscience.epfl.ch/record/ 32976/files/EPFL_TH2500.pdtessed 18/03/2014

CANDES E. Ridgelets: Theory and Applications, PhD Thesis, Degat of Statistics,
Stanford University; 1998. statweb.stanford.edu/~candegg#pesis.ps.

Arian Maleki, Shirin Jalali. Directional Lifting-Basl Wavelet Transform, EE398 final
project report; 1998.
Available:http://scien.stanford.edu/pages/labsite/203%@projects/reports/Jalali%20Mal
eki%20-%20Project%20Report%20-%20DIRECTIONAL%20LIFTING-
BASED%20WAVELET.PDF, Accessed 14/04/2014

Yue Lu, Minh N. Do. The finer directional wavelet transfio Unpublished; 2006.
Available: http://www.ifp.illinois.edu/~ minhdo/publications/fdwcassp.pdf Accessed
16/08/2013

Yu Liu, King Ngi Ngan, Feng Wu. 3-D Shape-Adaptive DirectioVavelet Transform for
Object-Based Scalable Video Coding, IEEE TransactionCiocuits and Systems for
Video Technology. 2008;18:7.

2274



British Journal of Mathematics & Computer Scien€g6}, 2251-2277, 2014

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Ramin Eslami, Hayder Radha. New Image Transforms Usigbrid Wavelets and
Directional Filter Banks: Analysis and Design; 2005.

Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tprdmber=1529855 Accessed
11/01/2014

Pier Luigi Dragotti, Vladan Velisavljevic, Martin VetterliBaltasar Beferull-Lozano.
Discrete Directional Wavelet Bases and Frames forggm@ompression and Denoising;
2003. Available; www.commsp.ee.ic.ac.uk/~ pld/publicatiquie®3 2.pdf.pdf

Maurizio Fedi, Giovanni Florio. Decorrugation and Removal ofeEtional Trends of
Magnetic Fields by the Wavelet Transform: Application techfeological Areas,
Geophysical Prospecting. 2003;51(4):261 —-272.

Witkin A. Scale Space Filtering, Proceeding of Internatidimht Conference on Atrtificial
Intelligence, Espoo, Finland; 1983.

Kober VI, Mozerov MG, Alvarez-Borrego J, Ovseyevich Rank Image Processing Using
Spatially Adaptive Neighborhoods, Pattern Recognition andagém Analysis.
2001;11(3):542-552.

Steven SO. Choy, Yuk-Hee Chan, Wan-Chi Siu. Adaptive Imdgise Filtering Using
Transform Domain Local Statistics, Optical Engineerirzfa.
Available: www.eie.polyu.edu.hk/~enyhchan/c_98oe.pdf, Acces8415/2014

Hossein Talebi, Peyman Milanfar. Global image denoisiB&HE Transactions on Image
Processing. 2014;23(2):755.

Hossein Talebi, Xiang Zhu, Peyman Milanfar. How to SAIFboost denoising
performance. IEEE Transactions on Image Processing; 2043

Lyndsey C. Pickup, David P. Capel, Stephen J. Roberts, Andigsgrman. Overcoming
registration uncertainty in image super-resolution: méze& or marginalize? EURASIP
Journal on Advances in Signal Processing; 2007.

Tipping ME, Bishop CM. Bayesian Image Super-Resolutiorgrivtional S., Thrun, S.
Becker, and K. Obermayer, Editors, Advances in Nelmfarmation Processing Systems,
Cambridge, MA, MIT Press. 2003;15:1279-1286.

Available: http://research.microsoft.com/pubs/67152/bishop-nigsP2rres.pdfAccessed
15/03/2012.

Hossein Talebi, Peyman Milanfar. Improving Denoising Eltey Optimal Diffusion;
2012. Available:_users. soe.ucsc.edu/~milanfar/pubtinatconf/ICIP2012.pdfAccessed
11/10/2013.

Erik Matlin, Peyman Milanfar. Removal of Haze and Noisarfra Single Image; 2012.
Available;users. soe.ucsc.edu/~milanfar/publications/cétEHaze2012.pdf

2275



British Journal of Mathematics & Computer Scien€g6}, 2251-2277, 2014

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

Hae-Jong Seo, Peyman Milanfar. Robust flash Denoisinigidity by iterative guided
filtering, EURASIP Journal on Advances in Signal ProcegsBpringer; 2012. Available:
asp.eurasipjournals.com/content/pdf/1687-6180-2012-3Autfessed 15/04/2013

Lyndsey C. Pickup, David P. Capel, Stephen J. Roberts Andisgerman. Bayesian
Image Super-resolution; 2008. Available: http://papers.riffgaper/3037-bayesian-image-

super-resolution-continued.pdiccessed 09/12/2013

Xiang Zhu, Peyman Milanfar. Removing Atmospheric Turbulence Space-Invariant
Deconvolution, |IEEE Transactions on Pattern Analysis and hMac Intelligence.
2013;35:1.

Ahmed Raghad Jawad. Image Enhancement and Noise Remouilyy New Spatial
Filters, U.P.B. Science Bulletin, Series C. 2011;73:1.

Ehlers Manfred, Welch R, Ling Y. GIS and Context-Basedade Enhancement,
Unpublished; 2013.

Available: (http://www.isprs.org/proceedings/XXXV/congressitn4/papers/380.pdf),
Accessed 16/07/2013

Dong-liang, Peng, An-ke, Xue. Degraded image enhanceméntapplications in robot
vision. proceedings of ieee international conference on sgstdtan and Cybernetics.
2005;2:1837-842.

Suneetha A, Sri Krishna A. A new method of image enhaeag in spatial domain using
histogram equalization. Smoothing and Fuzzy Technique, Internbtidbmarnal of
Computer Science & Technology. 2011;2(1):77-79.

Heric D, Potocnik B. Image enhancement by using directioaakelet transform. Journal
of Computing and Information Technology. 2006;14(4):299-305.

Fronthaler H, Kollreider K, Bigun J. Pyramid-based gm@eé&Enhancement of Fingerprints,
unpublished; 2008.

Available: (www2.hh.se/staff/josef/publ/publications/frontm@i&alghero.pdf), Accessed
08/01/2014

Krishnamoorthy R, Amudhavalli N, Sivakkolunthu MK. An adaptimeammographic
image enhancement in orthogonal polynomials domain. Interstdournal of Computer
and Information Engineering. 2010;4:2.

Xiang Zhu, Peyman Milanfar. Automatic parameter selectiandienoising algorithms
using a no-reference measure of image content. |IEEE dctmss on Image Processing;
2010.

Veselin Dobrev, Jean-Luc Guermond, Bojan Popov. Surface Recdimsirand Image

Enhancement Via L1-Minimization, SIAM Journal of Scienti@@muputing, Society for
Industrial and Applied Mathematics; 2010.

2276



British Journal of Mathematics & Computer Scien€g6}, 2251-2277, 2014

[81]

[82]

(83]

[84]

[85]

[86]

[87]

Brad R. Satellte Image Enhancement by Controlled StalstiDifferentiation,
Unpublished; 2006. Available: (http://remus.ulbsibiu.ro/pulbiizes/papers/cisse2007.pdf).
Accessed 23/08/2013

Priyam Chatterjee, Peyman Milanfar. Clustering-based isi@go with locally learned
dictionaries. IEEE Transactions on Image Processing.; 2800

Hamid R. Tizhoosh, Bernd Michaelis. Image enhancement basedzay &ggregation
techniques. Proceedings of 16th IEEE IMTC'99, Venice,.|te999;3:1813-1817.

Hiroyuki Takeda, Sina Farsiu, Peyman Milanfar. Deblurrimging regularized locally
adaptive kernel regression. IEEE Transactions on Imagee§sing. 2008;17:4.

Yichang Shih, Brian Guenter, Neel Joshil. Image Enhancemeamy @Galibrated Lens
Simulations; 2007.
Availablehttp://people.csail.mit.edu/yichangshih/lensEnhancemes#i¢ingEccv_came
ra_readypdf, Accessed 25/04/2014

Sing Bing Kang, Ashish Kapoor, Dani Lischinski. Personaltirabf Image Enhancement;
2010. Available:research.microsoft.com/en-us/.../persoeddinhancement-cvpr2010.pdf
Accessed 19/03/2014

Martin R. Kaehler, Ruediger Tauch. Integration of @il Methods for Digital Image Map
Production; 1986. Available: www.isprs.org/proceedirgig/congress/part4/688 XXIX-
part4.pdf, Accessed 24/03/2014

© 2014 Iwasokun & Akinyokun; This is an Open Acaasile distributed under the terms of the Creattemmons
Attribution License Http://creativecommons.org/licenses/by)3.Qvhich permits unrestricted use, distribution, and
reproduction in any medium, provided the originalrlvis properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)

www.sciencedomain.org/review-history.php?iid=567&id=6&aid=4935

2277



