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Abstract 
 

Two fairly useful notions to support some commutativity conditions for non commutative rings 
are symmetry and reversibility. Our aim in this note is to study ∗- symmetric rings, where ∗ is an 
involution on the ring. A ring R with involution ∗ is called ∗- symmetric if for any elements 
a,b,c∈R, abc=0 ⇒ ac�∗=0. Every ∗- symmetric ring with 1 is symmetric but the converse need 
not be true in general, even for the commutative rings. We discussed some characterizations in 
which these two notions and the notions of reversibility and ∗- reversibility coincide. We have 
extended ∗- symmetric rings to factor polynomial rings that are isomorphic to rings of Barnett 
matrices. 

 

Keywords: ∗-symmetric rings; ∗-reversible rings; ∗-rigid rings. 
 

1 Introduction 
 
In ring theory several notions were introduced to facilitate some commutativity conditions for non-
commutative rings. Among them two fairly useful notions are symmetry and reversibility. In [1] 
Lembak defined that a ring � with 1 is symmetric if for any elements �, �, � ∈ �, ��� = 0 ⇒ ��� = 0 
and in [2] a ring � is called reversible if for any pair of elements �, � ∈ �, �� = 0, then �� = 0. On 
the other hand Shin in [3] used the same definition for rings without 1. For rings with 1, if ��� =
0 ⇒ ��� = 0, then it also implies that ��� = ��� = ��� = ��� = 0. While for rings without 1, the 
other equalities may not occur. For instance, for a ring without 1, if (i) ��� = 0 ⇒ ��� = 0, there is 
no guaranty that any one of the remaining four, ���, ���, ���, ���, is zero and same is the case for 
(ii)  ��� = 0 ⇒ ��� = 0. Such rings may be termed as right and left symmetric rings, respectively 
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(see details in [4]). Straight forward calculations show that if 1 ∈ �, and if � satisfies either (i) or (ii), 
then � is symmetric. Moreover, if � (even without 1) satisfies both (i) and (ii) then � is symmetric. 
Note one more interesting fact that there are rings they do satisfy (iii) ��� = 0 ⇒ ��� = ��� = 0, but 
they are neither right nor left symmetric, so are not symmetric as well. For instance, see Example 
2.10 below. Conversely, a right or left symmetric ring does not satisfy the condition (iii). Every 
symmetric ring holds (iii) but conversely (iii) does not give a symmetric ring even though if the ring 
is with 1. On the other hand every reversible ring satisfies (iii) and if 1 ∈ �, and � satisfies (iii), then 
� is reversible. 
 
One may also be interested to investigate such properties for rings with involutions. In [5], it is 
defined that a ring � with an involution ∗ is called ∗-reversible, if for any pair of elements �, � ∈
�, �� = 0, then b�∗ = 0. We extend this definition for ∗-symmetric rings on the same lines: 
 
Definition 1.1. A ring � with involution ∗ is called ∗-symmetric if for any elements �, �, � ∈ �, 
��� = 0 ⇒ �c�∗ = 0. 
 
As in the case of ∗- reversibility, there is no ambiguity between left and right ∗-reversible rings [5], 
same is the case for left and right ∗-symmetric rings. Quick calculations reveals that if for any 
elements �, �, � ∈ �, ��� = 0 ⇒ ���∗ = 0, then �∗�� = 0. Moreover, with the same condition one 
may also get ��� = 0 and ��� = 0. Every ∗-symmetric ring which is left or right symmetric or 
possesses 1, is symmetric, but the converse in general need not be true. We pose in the section of 
examples that there are non ∗-symmetric commutative rings with 1 as well. 
 
For an endomorphism � on a ring �, left (or right) α- symmetric rings were introduced and studied 
in [6], but definitely, these are different than ∗-symmetric rings, as a right � − symmetric ring is, in 
general, different than its left version (see examples in [6]). 
 
In the study of rings with involutions many interesting and useful results can be obtained by 
involving rigidity: A ring � with the involution ∗ is called ∗-rigid, if for any � ∈ �, ��∗ = 0, then � = 0. 
In literature, the terms isotropic and anisotropic are also used for such involutions (see [7]). 
 
Along with ∗-rigidity we will study some properties of ∗-symmetric rings, along with reduced and 
semicommutative rings, etc. A ring � is reduced if it has no non-zero nilpotent elements and it is 
called semi-commutative [8] if for any pair of elements �, � ∈ �, �� = 0, then ��� = 0. 
 
In Section 2 we will list several examples and counter examples and in Section 3 some elementary 
properties are investigated along with ∗-rigid, reduced, and ∗- Armendariz rings. Some extensions 
of ∗-symmetric rings for polynomial rings in the form of rings of Barnett matrices are discussed in 
Section 4. 
 
All rings considered here may not necessarily be with 1. If a ring possesses a 1, then we will 
specifically mention it. By (�,∗), we mean a ring � with an involution ∗. If an involution is induced by 
an involution ∗ on the elements of �, then the induced involution will also be referred to as ∗. For 
instance, if (�,∗) is a ring with involution ∗, then (�[�],∗) is the polynomial ring with the involution ∗ 
defined on the elements �(�) = �� + ��� + ⋯ + ���ⁿ, by  (�(�))∗ = ��

∗ + ��
∗� + ⋯ + ��

∗ �ⁿ. 
 
A few facts about ∗- symmetric rings that we have mentioned above are listed as under: 
 
Lemma 1.2. Let (�,∗) be � ∗-symmetric ring. 
 
    (1) If for any �, �, � ∈ �, ��� = 0, then �∗�� =0, c�∗a=0, ��� = 0, and ��� = 0. 
    (2) If � is left or right symmetric, then � is symmetric. 
    (3) If 1 ∈ �, then � is symmetric.  
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Remarks 1.3. From above observations we have following conclusions: 
 

(a) In case � is a ring with 1, then 
(a₁) If � is right or left symmetric, then � is symmetric. 
(a₂) If � is symmetric then � is reversible. 
(a₃) If � is ∗- symmetric then � is ∗- reversible. 

(b) In case � is a ring without 1, then 
(b₁) If � is right and left symmetric, then �is symmetric. 
(b₂) If � is symmetric then � may not be reversible.  
(b₃) If � is ∗- symmetric then � may not be ∗- reversible. 

 

2 Examples 
 
2.1  Every Commutative Ring is Symmetric and Reversible. In General it May 

not be ∗-Symmetric or ∗ -Reversible with Some Involution ∗. 
 
For example, for any prime �, consider the ring (ℤ�⨁ℤ�,+,∙) with component-wise addition and 

multiplication. Clearly  ℤ�⨁ℤ� is symmetric and reversible. 

 
Define the exchange involution ∗ on ℤ�⨁ℤ� by (�, �)∗ = (�, �), ∀ (�, �) ∈ ℤ�⨁ℤ�. For any 

�, �, �, � ∈ {1, ⋯ , � − 1}, consider the following products of non-zero elements of ℤ�⨁ℤ�. 

 
(�, 0)(0, �)(�, �) = 0, 
(�, 0)(�, �)(0, �)∗ = (�, 0)(�, �)(�, 0) = (��, 0) ≠ 0. 

 
Hence ℤ�⨁ℤ� with the exchange involution ∗ is neither ∗-symmetric nor ∗-reversible. It is also not 

∗-rigid.  
 

2.2 Let R be a Ring and Set 
 

���(�) = ��
� 0
� �

�:�, � ∈ ��. 

 
Note that � is commutative if and only if ���(�) is commutative. If ���(�) is a domain, then 
���(�) becomes symmetric. 
 
Let � be commutative. Define an involution on ���(�) by setting 
 

�
� 0
� �

�
∗

= �
� 0

−� �
�, ∀�, � ∈ �. 

 
If � is a domain, then simple calculations show that ���(�) is ∗-symmetric but not ∗- rigid. 
 

If �  is not a domain then the situation may change. For instance, take  � = ℤ��. Let  � = �
3 0
1 3

�.  

 
Then  �� = 0, but  ���∗ ≠ 0. So there is no chance for (ℤ��,∗) to be ∗-symmetric, ∗-reversible, or ∗-
rigid. 
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2.3 Let us Consider the Ring of Strictly Upper Triangular Matrices of Order 
Four in the Form 

 

����(�) = ��

0 �  
0 0
0 0
0 0

   ��� ���

� ���

0   �
0    0

� | �, ���, ���, ��� ∈ �� 

 
Where � is any ring. If ∗ is an involution on R, then with the induced involution (SUT₄(R),∗) is ∗-
symmetric if and only if (�,∗) is ∗-symmetric.  
 

2.4 All Domains with Some Involution ∗ are ∗-symmetric.  
 
For instance, the ring of real quaternions  is ∗-symmetric with the natural involution ∗ defined on 
its elements by (� + �� + �� + ��)∗ = � − �� − �� − ��. The involution ∗ as defined on  is an ∗-
rigid involution, as if � = � + �� + �� + �� ∈ ℍ ,  with ��∗ = 0. Then 
 

��∗ = |��|= �� + �� + �� + �� = 0 ⟹ � = 0. 
 

2.5 For the Non-commutative Quaternion Algebra �(��) (see [7; p.25]) Over 
any Field � with Char(�) ≠ 2 and with a Basis {1,i,j,k}, 
 
�(��) ≔ {� = � + �� + �� + ��:  �, �, �, � ∈ �, ��, �� ∈ �× , �� = � = −��}, 

 
and with the involution defined by  �∗ = � − �� − �� − �� is not ∗-symmetric, in general. For 
instance, if � = ��, and  �� = �� = 2, then, �(1 + � + �)(1 + 2� + 2�) = 0  but  �(1 + � + �)((1 + � +
�≠0. 
 
Similarly (1 + � + �)(1 + � + �) = 0 but (1 + � + �)(1 + � + �) = � + � + � ≠ 0. From these 
computations we conclude that ��(��) is neither symmetric, nor reversible and nor ∗-reversible. 
Also  (1 + � + �)(1 + 2� + 2�) = 0  and (1 + � + �) ≠ 0 implies that ��(��) is not ∗-rigid.  
 

2.6 Now Consider �� = {�, ���, ��, ���, ��, ���, ��, ���} 

   
The group ring ℤ�(Q₈), as discussed in [9; Example 7], is reversible and is not symmetric. Let us 
define an involution on its elements, 
 

� = �� + ����� + ���� + ����� + ���� + ����� + ���� + �����, ∀�� ∈ ℤ� 

 
by 

 
�∗ = �� + ����� + ����� + ���� + ����� + ���� + ����� + ����, ∀�� ∈ ℤ�. 

 
Then ��∗ = 0 if and only if  ∑ ��

� = 0�
��� . This holds even though � ≠ 0. For instance, if � = 1 + �� +

�� + ��, then one calculates that ��∗ = 0. Hence ℤ�(��) is not ∗-reversible and it is not rigid under ∗ 

as well. Hence it is not ∗-symmetric. In fact, ℤ�(��) cannot be ∗- symmetric for any involution ∗ on 
it (because of Lemma 1.2(3). Because ℤ�(��)) is reversible and has identity, it satisfies condition 
(iii).  
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2.7 [10; Example 2] Consider the Group Ring ℂ[��], where �� = {1, �, ��, �, ��, ���} 
is the Symmetric Group on Three Letters. ℂ[��] Adhere to an Involution ∗ 
Defined by 

 

� � ���

�∈��

�

∗

= � � �����

�∈��

�. 

 
Assume that 
 

� =
1

6
� � ���

�∈��

� , � =
1

6
(1 + � + �� − � − �� − ���), � =

1

3
(2 − � − ��). 

 
Then {�, �, �} form a complete set of orthogonal elements of C[S₃], so 
 

[��] = ℂ[��]�⨁ℂ[��]�⨁ℂ[��]�. 
 
Note that ℂ[��]� and ℂ[��]� are anisotropic and ∗-reversible while ℂ[��]� is isotropic and not ∗- 
reversible, so the ring is neither ∗-rigid nor ∗-reversible. Hence it is not ∗- symmetric. 
 

2.8 The left Klein 4-rings ��� as Defined in [4] are Left Symmetric 
 
These are neither symmetric, nor reversible. It is not possible to define an involution on them, so 
there is no chance for them to be ∗-symmetric or ∗-reversible. Similarly, ���

��
 are only right 

symmetric. 
 

2.9 Let (��,∗�) and (��,∗�) be Two Rings. A Natural Way to Induce an 
involution on their Direct Sum is Following: 

 
Let �� ∈ �� and  �� ∈ ��. Then the induced involution on ��⨁�� is defined by 

 
(��, ��)∗ = (��

∗�, ��
∗�) 

 
If {(��,∗�):� ∈ �} is an indexed family of rings, then the induced involution ∗ on ⨁� ∈ �, �� is defined 
as above. Hence we conclude that: ∀� ∈ �, �� �� ∗�-symmetric if and only if ⨁� ∈ �, �� is ∗- 
symmetric.  
 

2.10  The Ring ℤ�(��) as Discussed in Example 2.6. is a Reversible Ring with 
1, and is Neither Symmetric nor ∗-Symmetric for any Involution ∗. The 
Strictly Upper Triangular Matrix Ring ����(ℤ�) as Defined by 
 

����(ℤ�) = ��
0 � �
0 0 �
0 0 0

� | �, �, � ∈ ℤ�� 

 
is noncommutative and is without 1. But clearly it is symmetric and ∗-symmetric for any involution 
∗. But both rings satisfy the condition (iii) that if for any elements a,b,c∈R, abc=0, then cab=0 and 
bac=0. So the direct sum 
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(�����(ℤ�)⨁ℤ���8�  , +,∙) 

 
is a ring with + and defined component wise. This ring clearly satisfies ��� = 0 ⇒ ��� = ��� = 0. It 
is neither symmetric nor reversible. It is also not ∗-symmetric and ∗- reversible for any involution ∗ 
defined on it.  
 

3 Some Elementary Results 
 
Proposition 3.1. For a ring � with involution ∗ the following hold: 
    (i)   If � is a reduced and ∗-symmetric, then � is ∗-reversible. 
    (ii)  If � is ∗-reversible, then � is symmetric if and only if � is ∗-symmetric. 
    (iii) � is ∗-rigid and ∗-symmetric if and only if � is reduced and ∗-reversible. 
    (iv) � is ∗-rigid and semi-commutative if and only if � is semi prime and ∗-symmetric. 
 
Proof:- (i) Let �� = 0. Then 
 

���∗ = 0 ⇒ �∗��∗ = 0 ⇒ �∗��∗�∗ = 0 ⇒ �∗��∗� = 0 ⇒ (�∗�)� = 0, 
 
which implies that �∗� = 0,  hence � is ∗-reversible.   
 
    (ii) Let R be a symmetric ring. Let for any �, �, � ∈ �, ��� = 0. Then 
 
      (��)� = �(��)∗ = ���∗ = 0. 
 
Hence � is ∗-symmetric. 
 
Conversely, let � be a ∗-symmetric ring. Then by the same argument as above, let 
��� = 0,  then  (��)�∗ = 0.  By ∗-reversibility of �,��� = 0.  Also   �∗(��)∗ = �∗�∗�∗ ⇒ ��� = 0. 
 
By repeating same steps we get ��� = 0  and ��� = 0,  and hence ��� = 0.  Thus � is a symmetric 
ring. 
 
    (iii) Let � be a ∗-rigid and ∗-symmetric ring. If a� = 0, then 
 

�∗��∗ = 0 ⇒ �∗��∗� = (�∗�)∗(�∗�) = 0 ⇒ �∗� = 0 ⇒ � = 0.     
 
Now let �� = 0.  Then 
 

(��∗)(��
∗
)

∗
= (��∗)(��∗) = (��∗)(�∗�

∗) = 0 ⇒ ��∗ = 0. 
 
Conversely, let � be ∗-reversible and reduced. If for any � ∈ �, ��∗ = 0,  then 
 

�� = 0 ⇒ � = 0. 
 
Now let, for any �, �, � ∈ �, �� ��� = 0, then 
 

��∗�∗ = 0 ⇒ (��∗���∗)�∗ = 0 ⇒ ���∗���∗ = 0 ⇒ ���∗ = 0. 
  
(iv) Let � be ∗-rigid and semi-commutative. Then for any � ∈ �, ��� = 0 

  
⇒ ��∗� = 0 ⇒ ��∗��∗ = (��∗)∗��∗ = 0 ⇒ ��∗ = 0 ⇒ � = 0. 
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Now we want to prove that � is ∗-symmetric. Let for any �, �, � ∈ �, ��� = 0. Then 
 
�∗(�∗�∗) = 0 ⇒ �∗�(�∗�∗) = 0 ⇒ �∗(��)�∗�∗ = 0 ⇒ (�∗��)(�∗�∗�) = 0 ⇒ �∗�∗� = 0. 
 

Again by semi-commutivity and ∗-rigidity, 
 

(�∗�∗�)(�∗��) = 0 ⇒ �∗�∗� = 0 ⇒ (�∗��∗)(��∗�) = 0 
⇒ ��∗� = 0 ⇒ (��∗�∗)(���∗) = 0 ⇒ ���∗ = 0. 

 
Conversely, let � be ∗-symmetric and semiprime. If for any � ∈ �, ��∗ = 0, then 
 

��∗� = 0 ⇒ ��� = 0 ⇒ � = 0. 
 
Now to prove � is semi-commutative, let for any �, � ∈ �, �� = 0, then ∀� ∈ �, 

 
�∗�∗� = 0 ⇒ ��∗� = 0 ⇒ ��∗���∗ = 0 ⇒ ��∗ = 0 ⇒ ��∗� = 0 ⇒ ��� = 0. 
 ■ 

 
Corollary 3.2. Let � be a ∗-rigid ring. Then the following are equivalent. 
    (1)  � is ∗-symmetric 
    (2)  � is symmetric 
    (3)  � is ∗-reversible 
    (4)  � is reversible 
 
    (1)⇒ (2) By Lemma 3.1(i) � is reduced, hence symmetric. 
    (2)⇒ (3) Let for any �, � ∈ �, �� = 0. Then 
 

 
 
Hence � is ∗-reversible. 
 
    (3)⇒ (4) Trivial. 
    (4)⇒ (1) Any reversible ring is semi-commutative, hence by Lemma 3.1(iv) it is ∗-symmetric.  
 
Proposition 3.3. Let R be a ring with 1 and with an involution ∗. If e is a central idempotent, then 
�� and (1 − �)� are ∗-symmetric if and only if � is ∗-symmetric. 
 
Proof: Suppose that eR and (1 − �)� are ∗-symmetric. Let ��� = 0 ��� �, �, � ∈ �. Then  

0 = ���� = �(��)�.  
Similarly 
 

(1 − �)��� = 0 = �((1 − �)�)�. 
 
By hypothesis we get 
 

0 = ��(��)∗ = (��)��∗ = �(��)�∗ 
 
and 
 

0 = ��((1 − �))∗ = ��(1 − �)∗�∗ = ��(1 − �)�∗ 
 

Thus 
 

���∗ = ����∗ + (1 − �)���∗ = 0, 
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and therefore � is ∗-symmetric. The converse is obvious.■ 
 
A ring � is called Armendariz in [11] if in the polynomial ring �[�], (∑ �����

��� )�∑ �����
��� � = 0, then 

all products of the form   ���� = 0, ∀� = 1, ⋯ , �, � = 1, ⋯ , �. 
  
Let us define that:  
 
Definition 3.4. A ring � is called ∗- Armendariz if in the polynomial ring �[�], 
 

�� ���
�

�

���

� �� ����

�

���

� = 0, 

 

then all products of the form ����
∗ = 0 (Equivalently ����

∗ = 0) ∀� = 1, ⋯ , �, � = 1, ⋯ , �. 

 
Lemma 3.5. Every ∗- Armendariz ring is ∗- symmetric and ∗- reversible.  
 
Proof: Let �, �, � ∈ � be such that ��� = 0. Then 
 

����� = (��)��� = 0 ⇒ (��)�∗ = 0 
             ⇒ ��(��∗)� = �(��∗)∗�� = 0 
   ⇒ ���∗ = 0. 
 

Hence � is ∗- symmetric. The other part is trivial. ■ 
 
Proposition 3.6. Let R be a reduced ring. Then the following are equivalent. 
 
    (i) � is∗-Armendariz. 
    (ii) � is ∗- symmetric. 
    (iii) � is∗-reversible. 
 
Proof: 
    (i)⇒(ii) & (iii) hold by Lemma 3.5. 
    (ii)⇒(iii). If for any �, � ∈ �, �� = 0, then 
 

�∗�� = 0 ⇒ �∗��∗ = 0 ⇒ ��∗��∗ = 0 ⇒ ��∗ = 0. 
 
Hence � is ∗-reversible. 
 

Now we prove (iii)⇒(i). Let in �[�],   �(�) = (∑ �����
��� )  and  �(�) = �∑ �����

��� � with �(�)�(�) = 0. 

Because � is reduced, so � is Armendariz. ∀ � = 1, ⋯ , �  and  ∀� = 1, ⋯ , �, ���� = 0. 

Because � is ∗- reversible, ∀ � = 1, ⋯ , � and ∀� = 1, ⋯ , �,   ����
∗ = 0. 

Hence � is ∗- Armendariz. ■ 
 

4 Extensions of ∗-Symmetric Rings 
 
Let � be a ring and � an (�, �) −bimodule. The well-known trivial extension of R by M is the ring 
�(�, �) = � ⊕ � with the usual addition and the following multiplication:  
 

(�₁, �₁)(�₂, �₂) = (�₁�₂, �₁�₂ + �₁�₂).  
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This is isomorphic to the ring of all matrices �
� �
0 �

�, where � ∈ � and � ∈ �. If we let � = �, then 

�(�, �) is isomorphic to the factor ring 
�[�]

〈��〉
 of the polynomial ring �[�]. 

 
Let ∗ be an involution on a ring �. An induced involution, again denoted by ∗, on the trivial 
extension �(�, �) of �, is given by: 
 

�
� �
0 �

�
∗

= �
�∗ �∗

0 �∗�. 

 
Note that the ring in Example 2.2 is a �(�, �) ring where we have a different involution. 
 
For a ∗-symmetric ring �, �(�, �) need not to be a ∗- symmetric ring as it is discussed in the next 
example. 
 
Example 4.1. Consider the ∗-symmetric ring (Example 2.2) 
 

� = ��
� �
0 �

� |�, � ∈ ℤ�, 

 
where∗ is defined by 
 

�
� �
0 �

�
∗

= �
� −�
0 �

�. 

 
For 
 

� = �
�

1 0
0 1

� �
0 0
0 0

�

�
0 0
0 0

� �
1 0
0 1

�
� ,   � = �

�
0 1
0 0

� �
−1 1
0 −1

�

�
0 0
0 0

� �
0 1
0 0

�
�, 

 

C = �
�

0 1
0 01

� �
1 1
0 1

�

�
0 0
0 0

� �
0 1
0 0

�
�,   �∗ = �

�
0 1
0 0

� �
1 −1
0 1

�

�
0 0
0 0

� �
0 1
0 0

�
� ∈ �(�, �). 

 
��� = 0  but  ���∗ ≠ 0. Thus �(�, �) is not ∗-symmetric. 
 
Proposition 4.2. Let � be a ∗-rigid ring. If � is a ∗-symmetric ring, then �(�, �) is also a ∗-
symmetric ring. 
 
Proof: Let ABC=0 for, 
 

� = �
� �
0 �

� , � = �
� �
0 �

� , C = �
� �
0 �

� ∈ �(�, �). 

 
��� = 0;                                                                                                                                                                      (1) 

 
and 
 

��� + ��� + ��� = 0.                                                                                                                                              (2) 
 
Note that � is reduced (by Proposition 3.1(iii)). So, for any �, � ∈ � if ��² = 0 (��, �²� = 0), then by 
Lemma 1.2, 
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��� = 0 ⇒ (��)² = 0 ⇒ �� = 0 ⇒ �� = 0.                                                                                                     (3) 
 
By (1) and Lemma 1.2, 
 

���� = 0 ⇒ ��(��) = 0 ⇒ �(��)� = 0 
 
and so 
 

�(��)(��) = 0 ⇒ (��)�(��) = 0 ⇒ ��(��)�∗ = 0 ⇒ ����∗�∗ = 0 ⇒ ����∗� = 0. 
 
From (2), we have. 
 

���� + ���² + ���² = 0. 
 
By (1) and Lemma 1.2, 
 

��� = 0 ⇒ ���� = 0 ⇒ (����)² = 0 ⇒ ���� = 0. 
 
Thus by (2) and (3) we get 
 

���² + ���² = ��� + ��� = 0. 
 
Hence 
 

�²�� + ���� = 0. 
 
Again by (1) and Lemma 1.2, 
 

���� = 0 ⇒ ���� = 0 ⇒ ����∗ = 0 
⇒ (��)(�∗)� = 0 ⇒ �(��)� = 0. 

 
So 
 

�²�� = 0 ⇒ ��� = 0. 
 
Hence by (2) 
 

��� + ��� = 0 
 
If we multiply last equation on the left side by a, we get: 

 
�²�� + ���� = 0, 
 

since  ���� = 0, it follows that �²�� = ��� = 0, hence ��� = 0. 
 
From (2) ��� = 0. 
 
Finally, since � is ∗ symmetric, ���∗ = 0, ���∗ = 0, ���∗ = 0 and ���∗ = 0. 
 
Hence we conclude that:  ���∗ = 0, and therefore �(�, �) is ∗-symmetric.  
 
Abusing notations, let us continue to use the same involution ∗ and the term ∗-symmetric for the 
ring R and simultaneously for its extension rings. 
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Example 4.3. We verify that if � is reduced and ∗- symmetric, then the ring 
 

� = ��
� � �
0 � �
0 0 �

�     ∶ �, �, � ∈ �� 

 
is also ∗- symmetric. 
 
Consider three elements 
 

� = �

� �� ��

0 � ��

0 0 �
� , � = �

� �� ��

0 � ��

0 0 �

� ,        � = �

� �� ��

0 � ��

0 0 �
� ∈ �    

 
If ��� = 0, then: 
 

(1)    ��� = 0 
(2)     ���₁ + ��₁� + �₁�� = 0 
(3)     ���₂ + ��₁�₁ + �₁��₁ + ��₂� + ��₂� + �₁�₁� + �₂�� = 0. 

 
Since � is ∗- symmetric, by (1) we get: 
 

��� = ��� = ���∗ = �∗�� = 0. 
 

Multiply (2) by �� 
 

������ + ������ + ������ = 0 ⇒ ������ = ��(��)� = 0 ⇒ ���� = ���� = ����∗ = 0. 
 
This means that 
 

���� + ���� = 0 ⇒ ������ + ������ = 0 ⇒ ���� = ����∗ = 0 & ����
∗ = 0. 

 
We conclude that 
 

(4)       ����
∗ + ����∗ + ����∗ = 0. 

 
Now multiply (3) by ��, 
 

������ + ��₁�₁�� + �₁��₁�� + ��₂��� + ��₂��� + �₁�₁��� + �₂���� = 0. 
 
This gives 
 

��(���)� = 0 ⇒ ���� = ����∗ = 0. 
 
Multiply the remaining terms in (3) by a from right and by � from left we get 
 

���₁�₁� + ��₁��₁� + ���₂�� + ���₂�� + ��₁�₁�� + ��₂��� = 0 
 
and simplify the terms we get: 
 

������� + ������ = 0 ⇒ ���� = 0 ⇒ ����
∗=0. 

 
Same technique is continued until we get 
 

�����
∗ = �����

∗ = ����∗ = 0. 
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Hence we conclude that, 

 
����∗ + �����

∗ + �����∗ + ����
∗ + �����

∗ + �����
∗ = 0 

 
so,  ���∗ = 0, means that � is ∗- symmetric. 
 
Theorem 4.4. Let � be a reduced ring and n any positive integer. If � is ∗-symmetric, then 
�[�]/< �ⁿ >  is a ∗-symmetric ring where < �ⁿ > is the ideal generated by xⁿ. 

 
Proof: Let � = �[�]/〈��〉   For � = 0, �[�] = �. Because R is reduced, so R is Armendariz, and 

�[�] is ∗-symmetric. ��� � = 1, � =
�[�]

〈�〉
≅ � is∗-symmetric. ��� � = 2 �� 3, S is ∗- symmetric by 

Examples 2.2 & 4.4 and because of the fact that �[�]/〈��〉 has the Barnett matrix representation 
even for non-commutative rings without 1, 

 

�[�]

〈��〉
≅ ��

�� �� ⋯
0 �� ⋱
⋮ ⋮ ⋱
0 0 ⋯

��

����
⋮

��

� :��, �, � ∈ ��. 

 
Now let 
 

� = �� + ���̅ + ⋯ + �����̅���,   � = �� + ���̅ + ⋯ + �����̅���,   ℎ = �� + ���̅ + ⋯ + �����̅��� ∈ �  
 
Assume that ��ℎ = 0. 
 
    Hence, �������̅����� = 0 for all �, � ��� �, when � + � + � ≥ � 
    
Then we have 
 

(1)          a₀b₀c₀ = 0 
(2)          a₀b₀c₁ + a₀b₁c₀ + a₁b₀c₀ = 0 
(3)          a₀b₀c₂ + a₀b₁c₁ + a₀b₂c₀ + a₁bc₁ + a₁b₁c₀ + a₂bc₀ = 0 
                                                ⋮ 
 
(� − 2)         �������� + �������� + ⋯ �������� + �������� = 0 
(� − 1)      �������� + �������� + ⋯ �������� + �������� + �������� = 0 

 
By induction hypothesis, ������ = 0 for  � + � + � = 0, . . . , (� − 2) and from equ (� − 1) × �₀�₀  

gives,   �������� = 0 and so (� − 1) becomes 

 
(� − 1)′             �������� + �������� + ⋯ �������� = 0. 

 
If we multiply (� − 1)′   by �₁�₀ (on the left side we get,): 
 

������������ + ������������ + ⋯ +������������ = 0. 
 
Since ������ = 0,     � = 0, ⋯ , � − 1,  then �������� = 0. 
 
Again we multiply {(� − 1)�\��������} by �₀�₁, we find, �������� = 0. Next we multiply {(� − 1)�\
��−2�1�0+��−2�0�1  by �1�2 we get, ��−2�1�2=0. 
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Continuing in this way finally we get 
 

�������� = �������� = �������� = �������� = ⋯ = �������� = 0. 
 
The rest is trivial. 
 

5 Conclusion 
 
In this work we have extended a study of symmetric rings to ∗-symmetric rings where ∗ is some 
involution on the ring. We have invertigated some basic properties and have posed several 
examples and counter examples. 
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