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ABSTRACT 
 
In the recent years, the bi-level programming problem (BLPP) is interested by many researchers 
and it is known as an tool to solve the real problems in several areas such as economic, traffic, 
finance, management, and so on. Also, it has been proven that the general BLPP is an NP-hard 
problem. In this paper, we attempt to develop two effective approaches, one based on approximate 
approach and the other based on the hybrid algorithm by combining the penalty function and the line 
search algorithm for solving the non-linear BLPP. In these approaches, by using the Karush-Kuhn-
Tucker conditions the BLPP is converted to a non-smooth single problem, and then it is smoothed 
by Fischer-Burmeister functions. Finally, the smoothed problem is solved using both of the proposed 
approaches. The presented approaches achieve an efficient and feasible solution in an appropriate 
time which has been evaluated by comparing to references and test problems. 
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1. INTRODUCTION 
 
It has been proven that the bi-level programming 
problem (BLPP) is an NP-Hard problem 
[1,2].Several algorithms have been proposed to 
solve BLPP [3,4,11,12,13,21,25,31]. These 
algorithms are divided into the following classes: 
global techniques, enumeration methods, 
transformation methods, meta heuristic 
approaches, fuzzy methods, primal-dual interior 
methods. In the following, these techniques are 
shortly introduced. 
 

1.1 Global Techniques 
 
All optimization methods can be divided into two 
distinctive classes: local and global algorithms. 
Local ones depend on initial point and 
characteristics such as continuity and 
differentiability of the objective function. These 
algorithms search only a local solution, a point at 
which the objective function is smaller than at all 
other feasible points in vicinity. They do not 
always find the best minima, that is, the global 
solution. On the other hand, global methods can 
achieve global optimal solution. These methods 
are independent of initial point as well as 
continuity and differentiability of the objective 
function [9,10,11,12,33]. 
 

1.2 Enumeration Methods 
 
Branch and bound is an optimization algorithm 
that uses the basic enumeration. But in these 
methods we employ clever techniques for 
calculating upper bounds and lower bounds on 
the objective function by reducing the number of 
search steps. In these methods, the main idea is 
that the vertex points of achievable domain for 
BLPP are basic feasible solutions of the problem 
and the optimal solution is among them [14]. 
 

1.3 Transformation Methods 
 
An important class of methods for constrained 
optimization seeks the solution by replacing the 
original constrained problem with a sequence of 
unconstrained sub-problems or a problem with 
simple constraints. These methods are interested 
by some researchers for solving BLPP, so that 
they transform the follower problem by methods 
such as penalty functions, barrier functions, 
Lagrangian relaxation method or KKT conditions.  

In fact, these techniques convert the BLPP into a 
single problem and then it is solved by other 
methods [3,4,22,23,32,34,35]. 
 

1.4 Meta Heuristic Approaches 
 

Meta heuristic approaches are proposed by 
many researchers to solve complex 
combinatorial optimization. Whereas these 
methodsare too fast and known as suitable 
techniques for solving optimization problems, 
however, they can only propose a solution near 
to optimal. These approaches are generally 
appropriate to search global optimal solutions in 
very large space whenever convex or non-
convex feasible domain is allowed. In these 
approaches, BLPP is transformed to a single 
level problem by using transformation methods 
and then meta heuristic methods are utilized to 
find out the optimal solution [15-19,25,36-39].  
 

1.5 Fuzzy Methods 
 

Sometimes crisp values to the variables are not 
appropriate. Therefore, the fuzzy approach is as 
uitable tool to describe them. In this category, 
membership functions can be leader, follower or 
both of objective functions. Also it can be define 
with constraints and variables. There are so 
many researchers using this method 
[5,6,7,8,24,40]. 
 

1.6 Interior Pointmethods 
 
The interior point methods formulate many large 
linear programs as nonlinear problems and solve 
them with various modifications of nonlinear 
algorithms. These methods require all iterates to 
satisfy the inequality constraints in the problem 
strictly. The primal-dual method is a class of 
these methods which is the most efficient 
practical approach. The interior point methods 
can be strong competitors to the simplex method 
on large problems [13]. 
 

The remainder of the paper is structured as 
follows: in Section 2, basic concepts of the linear 
BLPP are introduced. We provide a smooth 
method to BLPP in Section 3. The first presented 
algorithm is proposed in Section 4. We will 
present the second proposed algorithm in 
Section 5 and computational results are 
presented for both approaches in Section 6. 
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Finally, the paper is finished in Section 7 by 
presenting the concluding remarks. 
 

2. The NON-LINEAR BLPP AND 
SMOOTHING METHOD 

 

The BLPP is used frequently by problems with 
decentralized planning structure. It is defined as 
[20]: 

min
�

�(�, �) 

�. � min
�

�(�, �) 

�. ��(�, �) ≤ 0, 
�, � ≥ 0. 

 
Where  

 

(1) 

 �: ��×�
.

→ ��, �: ��×�
.

→ ��, 
�: ��×�

.
→ �� , � ∈ ��, � ∈ ��. 

 
 

Also F and f are objective functions of the leader 
and follower respectively.  
 
The feasible region of the non-linear BLP 
problem is 
 
� = {(�, �)|�(�, �) ≤ 0, �, � ≥ 0}    (2)  
 
On using KKT conditions the problem (1) can be 
converted into the following problem:  
 

min
�,��

�(�, �, �) 

�. �∇��(�, �, �) = 0, 

��(�, �) = 0,  
�(�, �) ≤ 0, 
� ≥ 0. 

 (3) 

 
Where L is the Lagrange function and  
�(�, �, �) = �(�, �) + ��(�, �). 
 
Because problem (3) has a complementary 
constraint, it is not convex and it is not 
differentiable. Fortunately Facchinei et al, 1999 
proposed smooth method for solving problem 
with complementary constraints and we use this 
method to smooth problem (3). 
 
In general the BLPP is a non-convex optimization 
problem therefore there is no general algorithm 
to solve it. This problem can be non-convex even 
when all functions and constraints are bounded 
and continuous. 
 
A summary of important properties for convex 
problem as follows, which f: S

.
→ R�  and S is a 

nonempty convex set in R�.   

(1) The convex function f is continuous on the 
interior of S. 

(2) Every local optimal solution of f over a 
convex set � ⊆ �   is the unique global 
optimal solution. 

(3)  If     ∇f(x�) = 0, then x�  is unique global 
optimal solution of f over S.  

 
Since in problem (3), most of the equality 
constraints are not linear then it concerns that 
the above problem is a non-convex programming 
problem, which indicates there are local optimal 
solutions that are not global solutions. Therefore 
solving the problem (3) will be complicated. 
 
2.1 Definition 
 

Fischer – Burmeister is the following function, 
 

ϕ: R� → R , ϕ(a, b) = a + b − √a� + b�orϕ: R� → R,

ϕ(a, b, ℇ) = a + b − √a� + b� + ℇ  , where � ≥ 0, 
� ≥ 0, then �� = 0 ↔ ϕ(a, b, ℇ) = 0. 

 
Using Fischer–Burmeister functionϕ(a, b, ℇ) = a +

b − √a� + b� + ℇ   in problem (3) we obtain the 
followingproblem: 
 

min
.

�(�, �, �) 

�. �∇��(�, �, �) = 0, 

�� − ��(�, �) − ���
� + ��

�(�, �) + � = 0, �

= 1,2, … , �, 
�, �, �� ≥ 0, � = 1, … , �. 

(4)  

 
Which   g�(x, y) =  ��x + ��y − r , and ��, �� are i-th 
row of A, B respectively, and � = µ

�
≥ 0, � =

− ��(�, �) ≥ 0. 
 
Let:  

G(x,y,µ)=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ µ

�
− g�(x, y) − �µ

�
� + g�

�(x, y) + ℇ

µ
�

− g�(x, y) − �µ
�
� + g�

�(x, y) + ℇ

⋮

µ
�

− g�(x, y) − �µ
�
� + g�

� (x, y) + ℇ
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ,

H(x, y, �) = ∇��(�, �, �).                 (5) 

 

Problem (4) can be written as follows, 
 

min
.

�(�, �, �) 

�. �H(x, y, �) = 0, 
�(�, �, �) = 0,  
�, �, � ≥ 0. 

(6) 

Where  � = (x, y, µ) 
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3. HYBRID ALGORITHM (HA)  
 
Penalty functions transform a constrained 
problem into a single unconstrained problem or 
into a sequence of unconstrained problems. The 
constraints are appended into the objective 
function via a penalty parameter in a way that 
penalizes any violation of the constraints. In 
general, a suitable function must incur a positive 
penalty for infeasible points and no penalty for 
feasible points. Also, the penalty function method 
is a common approach to solve the bi-level 
programming problems. In this kind of approach, 
the lower level problem is appended to the upper 
level objective function with a penalty. We use a 
penalty function to convert problem (6) to an 
unconstraint problem. 
 
Consider problem (6); we append all constraints 
to the upper level objective function with a 
penalty for each constraint. Then, we obtain the 
following penalized problem. 
 

min �(�, �, �) + µ
�

H(x, y, �) + ∑ µ
�
(��(�))�

�      (7)  

 
Which ��(�)  is � th row of matrix �(�)  and µ

�
 is 

taken as the penalty coefficient. 
 
Now we solve problem (7) using our line search 
method. The line search method is proposed as 
follows: 
 
Given a vector � , a suitable direction �  is first 
determined, and then �  is minimized from �  in 
the direction �. Our method searches along the 
directions (��, ��, … , ����)  where ��, � =

1,2, … , � − 1 is a vector of zeros except at the �th 

position which is 1 and�� = �
�

√�
,

�

√�
, , … ,

�

√�
�. 

 
Clearly, all directions have a norm equal to 1 and 
they are linearly independent search directions. 
In fact, the proposed line search method uses 
the following directions as the search directions: 
 

�� = (1,0, … ,0), �� = (0,1, … ,0), … , ���� 

= (0, … ,1,0), �� = �
�

√�
,

�

√�
, , … ,

�

√�
�    (8) 

 
Therefore, along the search direction ��, � =

1,2, … , � − 1 , the variable �� is changed while all 

other variables are kept fixed. We summarize 
below the proposed line search method for 
minimizing a function of several variables. Then, 
we show that, if the function is differentiable then 
the proposed method converges to a stationary 
point. 

Step 1: Initial step 
 
Choose a scalar ℇ > 0to be used for terminating 
the algorithm, and let ��, ��, … , ����  be the 

coordinate directions and ��  be a vector of 
�

√�
 . 

Choose an initial point ��  let �� = ��. � = � = 1, 
and go to the next step. 
 
Step 2: Main step 
 
Let µ

�
 be an optimal solution to the problem to 

minimize(�� + µ��) , and let ���� = �� + µ
�
�� 

If � < �   replace � by � + 1 , and repeat step1. 
Otherwise, if � = �, go to the next step. 
 
Step 3: Termination 
 
Let  ���� = ����  if  ‖���� − ��‖ < �   then stop, 
otherwise, let �� = ���� and � = 1 , replace �  by 
� + 1 and repeat step 2.  
 
We now propose a theorem which establishes 
the convergence of algorithms for solving a 
problem of the form: minimize �(�)  subject to 
� ∈ �� . We show that an algorithm that 
generates n linearly independent search 
directions, and obtains a new point by 
sequentially minimizing f along these directions, 
converges to a stationary point. The theorem 
also establishes the convergence of algorithms 
using linearly independent and orthogonal search 
directions.  
 
same optimal solution according to the following 
theorem. 
 

3.1Theorem  
 

Consider the following problem: 
 

min
�

�(�) 

�. ���(�) ≤ 0,  i=1,2,…,m, 
ℎ�(�) = 0,  j=1,2,…,l, 

(9) 

 

where �, ��, … , ��, ℎ�, … , ℎ�   are continuous 
functions on  ��  and  �   is a nonempty set in ��.  
Suppose that the problem has a feasible 
solution, and �  is a continuous function as 
follows: 
 

�(x) =  � ∅[��(�)]

�

���

� ∅[ℎ�(�)]

�

���

 (10) 

Where 
 

∅(�) = 0  if  y ≤ 0,  (11) 
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∅(�) > 0  ��� > 0. 
 

∅(�) = 0  if  y = 0,   
∅(�) > 0  ��� ≠ 0. 

(12) 

 Then,  
 

inf{�(�): �(�) ≤ 0,   ℎ(�)
= 0, � ∈ �}
= inf{�(�)µ�(�): � ∈ �} 

(13) 

 
Where µ is a large positive constant (µ → ∞). 

 
4. TAYLOR METHOD (TA) 
 
Because functions G, H in (6) is always 
continuous everywhere and it is possible to use, 
Taylor Theorem for them in (6) and F should be 
continuous too. 
 
4.1 Theorem (Taylor Theorem) [30] 
 
Suppose that � has � + 1 continuous derivatives 
on an open interval containing �. Then for each� 
in the interval, 
 

f(x) = ��
f�(a)

k!

�

���

(x− a)�� + R���(x) 

 
where the error term R���(x),  for some � 
between � and �, satisfies 
 

R���(x) =
f(���)(c)

(n + 1)!
(x − a)��� 

 
This form for the error ����(�) is called the 
Lagrange formula for the reminder. 
 
The infinite Taylor series converge to f, 
 

 f(x) = ��
f�(a)

k!

∞

���

(x − a)�� 

 
If and only iflim�→∞ ����(�) = 0. 
 
Proof 
 
The proof of this theorem was given by [28,29]. 
 
In mathematics, an approximation of a k-times 
differentiable function near a point is given by 
Taylor’s theorem. Taylor’s theorem is one of the 
fundamental tools in pure mathematics and it is 
the starting point of advanced asymptotic 
analysis, also it is usually used in applied fields 

of mathematics. If a real-valued function f is 
differentiable at the point “a” then it has a linear 
approximation at the point “a”. This means that 
there exists a function g such that 
 

  f(x) = f(a) + f′(a)(x − a)
+ g(x)(x − a),   lim

�→�
g(x) = 0. 

Here 
P�(x) = f(a) + f′(a)(x − a) 

 
Which P�(x)  is the linear approximation of �  at 
the point “a”. 
 
By applying Taylor theorem at “a” feasible point 
such as �� for function G, H, F and take only two 
linear part of them, the following linear functions 
is constructed:  
 

G��t�� + ∇G��t���t − t�� = 0,    i = 1,2, … m. 

H��t�� + ∇H��t���t − t�� = 0,    i = 1,2, … m(14) 

F��t�� + ∇F��t���t − t�� = 0,    i = 1,2, … m 

 
Because the obtained problem by using Taylor 
theorem is linear programming, it can be solved 
using simplex methods. 
 
The steps of the proposed algorithm are as 
follows:  
 
Step 1: Initialization 
 
The feasible point    t�  is created randomly, error 
ℇ� is given and suppose k=1. 
 
ℇ�  is a small and appropriate given error and 
finishing the algorithm depends to ℇ� such that it 
is finished whenever difference between 
produced solutions by the algorithm in two 
consecutive iterations is less than ℇ�. 
 
Step 2: finding solution 
 
According to the step 1, k=1 and feasible 
solution t�   has been defined. Using these 
assumptions and Taylor theorem for 
G(t), H(t)����(�) at t� , we obtain following 
problem: 
 
min       F��t�� + ∇F��t���t − t�� 

s. t H��t�� + ∇H��t���t − t�� = 0,    i

= 1,2, … m 

G��t�� + ∇G��t���t − t�� = 0,    i = 1,2, … m. 

x, y, μ
�

≥ 0, i = 1, … , m. 

(15) 
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Solve the problem (15) using simplex method (by 
MATLAB 7.1). By solving this problem, an 
optimal solution such as  t���  is obtained.  
 
Step 3: Keeping the present best solution. 
 
Because (15) is an approximation for (6) by 
Taylor theorem, therefore optimal solution for 
(15) is an approximation of optimal solution for 
(6). Thus  t��� can be a good approximation of 
problem (6) optimal solution. Therefore let   
t∗ = t���    and go to next step. 
 
Step 4: Termination 
 

If  d(F�t����, F�t��) < ℇ�   then the algorithm is 

finished and t∗   is the best solution by the 
proposed algorithm. Otherwise, let k=k+1 and go 
to the step 2. Which d is metric and, 
 

d �F�t����, F�t��� = (∑ (����
���� − �(��

�))�����
��� )

�

�. 

Following theorems show that proposed 
algorithm is convergent. 
 

4.2 Theorem  
 
Every Cauchy sequence in real line and complex 
plan is convergent. 
 
Proof: 
 
Proof of this theorem is given in [34]. 
 

4.3 Theorem  
 
Sequence {��} which was proposed in above 
algorithm is convergent to the optimal solution, 
so that the algorithm is convergent.  
 
Proof: 
 

Let  (��) = ��(��)� = ��(��
� ), �(��

� ), … , �(�����
� )�=  

(��
(�)

, ��
(�)

, … , �����
(�)

). 
 
According to step 4 
 

�(����, ��) = d �F�t����, F�t��� = ( � (����
���� − �(��

�))�

����

���

)
�

� < ��                                                     (21) 

 

There for (∑ �����
���� − ����

���
�

����
��� ) < ��

� . There is large number such as N which k+1>k>N and 

j=1,2,…,2m+n we have:  
 

(��
(���)

− ��
(�)

)� < ��
� , therefore  ���

(���)
− ��

(�)
� < �� 

������� = � + 1, � = ��ℎ����ℎ��� 

∀��������
(�)

− ��
(�)

� < ��. 

 

This shows that for each fixed j, (1 ≤ j ≤ 2m + n),  the sequence  (F�
(�)

, F�
(�)

, … )  is Cauchy of real 

numbers, then it converges by theorem 4.6. 
 

Say,  ��
(�)

→ ��  as� → ∞. Using these 2m+n limits, we define � = (��, ��, … , �����).From (21) and 

m=k+1, r=k,  
�(��, ��) < �� 

 
Now if  r → ∞, by�� → F we have �(��, �) ≤ ��. 
 
This shows that F is the limit of (��) and the sequence is convergent. 
 

4.4Theorem  
 

If sequence {f(t�)} is converge to f(t) and f be linear function then {t�} is converge to t. 
Proof 
 

 Proof of this theorem is given in [34]. 
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5. COMPUTATIONAL RESULTS  
 
5.1 Example 1 [30] (Solving by Hybrid Algorithm (HA)) 
 
Consider the following linear bi-level programming problem: 
 
 
 
 
 
 
 
 
 
 
 
Using KKT conditions the following problem is obtained: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the Fischer – Burmeister function, the above problem as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using (7) we obtain an unconstraint problem as follows: 
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We solve this problem using the proposed line search algorithm and we present the optimal solution  
inthe Table 1. Behavior of the variables in the Example1 using HA method has been show in Fig. 2 
 

5.2 Example 2 [30] (Solving by Hybrid Algorithm (HA)) 
 
Consider the following linear bi-level programming problem.  
 
 
 
 
 
 
 
 
 
After applying KKT conditions and smoothing method, and then proposed penalty function in(7)above 
problem will be transformed to the following problem: 
 
 
 
 
 
 
 
 
The optimal solution is obtained using our line 
search method according to the Table 2. 
Behavior of the variables in this Example using 
HA method has been show in Fig. 4. 
 

According to the Table 3, the best solutions by 
our algorithm are better than the best solution by 
the references. 
 

More problems with different sizes have been 
solved by our approach and computation results 
have been proposed in Table 3.  References of 
the examples inTable3 are as follows: 
 

The algorithm is feasible and efficient according 
to the Tables. Example 3 [30], Example 4 [32], 
Example 5 [31], Example 6 [33] which both of 
them are minimization problems. 
 

5.3 Example 1 [4] (Solving by TAYLOR 
Algorithm (TA)) 

 

Consider the following non-linear bi-level 
programming problem:  
 
 
 
 
 
 
 
 

Using KKT conditions and the Fischer – 
Burmeister function, the following problem is 
obtained: 
 
 
 
 
 
 
 
 
 
 
 
We solve this problem using the proposed line 
search algorithm and we present the optimal 
solution in Table 4. By solving this problem the 
best solutions are found according to Table 4. It 
declares that the best solutions by the proposed 
algorithm are better than the best solution by the 
references in appropriate time. 
 

Behavior of the variables in Example 1 has been 
show in Fig. 1 that variables x and y will be 
stable after 5000 and 4850 iterations 
respectively. 
 

5.4 Example 2 [4] (Solving by Taylor Series 
Approach (TA)) 

 

Consider the following linear bi-level 
programming problem.  
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After applying KKT conditions and smoothing 
method, and then proposed penalty function 
above problem will be transformed to the 
following problem: 
 
 
 
 
 
 
 
 
The optimal solution is obtained using our 
method according to Table 5. 

Behavior of the variables using TA algorithm for 
Example 2 has been show in Fig. 3 that variables 
will be stable after 3000 iterations respectively. 
 

More problems with different sizes have been 
solved by our approach and computation results 
have been proposed in Table 6. According to this 
Table, the best solutions by our algorithm are 
better than the best solution by the references. 
The algorithm is feasible and efficient according 
to the Tables. 
 

We make program with MATLAB 7.1 and use a 
personal computer (CPU: Intel (R) Celeron(R) 
1000 M @ 1.8 GHz, RAM:4 GB) to execute the 
program. References of the examples in Table 3 
as follows: 
 

Example 3 [3], Example 4 [7], Example 5 [26], 
Example 6 [27]. Finally we have compared two 
proposed algorithms in Table 7. 

 
Table 1. Comparison optimal solutions in HA- example 1 

 

Best solution by our 
method 

Best solution according to 
reference[30] 

Optimal solution 

      

(2.601,1.611) -77.14 (2.600,1.613) -77.10 (2.600,1.612) -77.11 

 
Table 2. Comparison optimal solution in HA example 2 

 
Best solution by our method Best solution according to 

reference [4] 
Optimal solution 

      

(0.51,0.51,0.49,0.50) -1.590 (0.5,0.5,0.5,0.5) -1.5 (0.51,0.51,0.51,0.51) -1.598 
 

Table 3. Comparison optimal solutions with deferent examples 3-6by HA 
 

 Best solution 
according to 
reference 
[3,7,26,27] 

Best solution by 
our method 

Iterations Time Optimal solution 

Example 3 (1.883,0.891,0.003) (1.887,0.889,0.001) 8250 3.57 s  

Example 4 (0,0) (0,0) 3500 2.30 s (0,0) 
Example 5 (1,0) (1,0) 6700 3.20 s (1,0) 
Example 6 (0,0.75,0,0.5,0) (0.001,0.73,0,0.54,0) 8500 4.10 s (0,0.75,0,0.5,0) 

 
Table 4. Comparison optimal solutions in TA - example 1 

 

Best solution by our 
method 

Best solution according to 
reference [30] 

Optimal solution 

(�∗, �∗) �∗ (�∗, �∗) �∗ (�∗, �∗) �∗ 
(2.6,1.61) -77.12 (2.600,1.613) -77.10 (2.600,1.612) -77.11 
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Table 5. Comparison optimal solution in TA example2 
 

Best solution by our method Best solution according to 
reference [32] 

Optimal solution 

      

(0.52,0.51,0.53,0.51) -1.583 (0.5,0.5,0.5,0.5) -1.5 (0.51,0.51,0.51,0.51) -1.598 
 

Table 6. Comparison optimal solutions with deferent examples 3-6 by TA 
 

 Best solution 
according to 
reference  
[3, 7,26, 27] 

Best solution by 
our method 

Iterations 
 

Time Optimal 
solution 

Example 3 (1.883,0.891,0.003) (1.88,0.87,0) 7100 3.05 s  
Example 4 (0,0) (0,0) 2800 1.46 s (0,0) 
Example 5 (1,0) (1,0) 5000 2.51 s (1,0) 
Example 6 (0,0.75,0,0.5,0) (0,0.76,0,0.51,0) 7300 3.15 s (0,0.75,0,0.5,0) 

 
Table 7. Comparison of TA and HA 

 
 Example 1 Example 2 
 Gap of optimal 

solution 
Iterations Time Gap of optimal 

solution 
Iterations Time 

TA 0                                   4000 2.16 s 0.006                            2000 1.37 s 
HA 0.1                                  7000 3.05 s 0.04                             7000 2.54 s 

 

 
 

Fig. 1. The transient behavior of the variables using TA in example 1 
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Fig. 2. The transient behavior of the variables using HA in example 1 
 

 
Fig. 3. The transient behavior of the variables using TA in example 2 
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Fig. 4. The transient behavior of the variables using HA in example 2 
 

7. CONCLUSION AND FUTURE WORK 
 
In this paper, we used the KKT conditions to 
convert the problem into a single level problem. 
Then, using the Fischer-Burmeister function, the 
problem was made simpler and converted to a 
smooth programming problem. The smoothed 
problem was been solved, utilizing the first 
proposed algorithm based on Taylor theorem. 
Also, it was solved using the second proposed 
hybrid algorithm by combining the penalty 
function and the line search algorithm. 
Comparing with the results of previous methods, 
both algorithms have better numerical results 
and present better solutions in much less times. 
The best solutions produced by proposed 
algorithms are feasible unlike the previous best 
solutions by other researchers. 
 
In the future works, the following should be 
researched: 
 

(1) Examples in larger sizes can be supplied 
to illustrate the efficiency of the proposed 
algorithms. 

(2) Showing the efficiency of the proposed 
algorithms for solving other kinds of BLP. 
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