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ABSTRACT 
 
Scale formation and deposition is a recurring problem in many oil producing fields leading to 
operational problems, problems in reservoirs, pumps, valves and topside facilities. Scale is 
described economically as a menace to an oil-field because its build-up clogs the flow lines and 
causes loss of millions of dollars yearly. The ability to predict the onset and amount of scale 
formation has been a major challenge in the oil industry. Previous models for predicting scale 
formation have focused mainly on thermodynamics and limited solubility data, and can predict only 
the potential or tendency to form scale. However, no studies have considered the influence of kinetic 
and transport factors. In this paper, a comprehensive and robust model incorporating other factors 
that have been ignored in past studies is developed using the technique of artificial neural network 
(ANN).  
Field data on two types of scale namely Barium and Calcium sulphate were obtained, processed, 
trained and tested with Artificial Neural Network. The model obtained was validated with actual   
data. Results show that at constant pressure, the neural network structure with optimum 
performance for BaSO4 was ANN {1,2,1} with the lowest Mean Square Value (MSE) of 0.0025                                            
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and the highest correlation determination (R2) of 0.9966 while at constant temperature, it was 
ANN{1,1,1} with MSE of 0.0017 and R

2
 of 0.9956. The neural network structure with optimum 

performance for CaSO4 precipitation kinetics with temperature and pressure was ANN{2,5,1} with 
MSE of 8.7745e-005 and R2 of 0.8206 while at constant flow rate it was ANN{1,4,1} with MSE of 
2.3007e-006 and R

2
 of 0.9953. This gave a very close agreement with actual data in terms of 

prediction and performance. The results of this study therefore will greatly help to reduce the 
amount of risk incurred (such as NORM, etc.) due to the deposition and formation of scale in an oil-
field, the cost of stimulating an oil flow line and also improve the productivity of an oil well, hence, 
increase  revenue to the  oil industry.  
 

 
Keywords: Flow assurance; scale; artificial neural network; oilfield; modelling; deposition. 
 

NOMENCLATURES 
 
T   = Temperature (OF), (OK) 
P   = Pressure (psia) 
ΔP  = Pressure Drawdown 
K          =  Kinetic rate of reaction constant 

(m/min) 
Q  = Flow rate (cc/min) 
Xi  = Amount of X standardized 
Xmax  = Maximum amount in all data 
Xmin  = Minimum amount in all data 
R2  = Correlation determination 
MSE  = Mean Square Error 
T-test    = Statistical hypothesis test with t-

distribution 
F_cal  = Fischer calculation 
AIC  = Akaike Information Criterion 
SIC  = Schwarz Information Criterion 
NIC  = Network Information Criterion 
Tansig  = Tangent Sigmoid 
BaSO4 = Barium Sulphate 
CaSO4 = Calcium Sulphate 
 

1. INTRODUCTION  
 
Oilfield scale formation represents a very 
significant flow assurance challenge to the oil 
and gas industry, with increasing water 
production worldwide. When producing oil and 
gas, there will in most cases also be produced 
some water, which contains dissolved inorganic 
salts. These salts may precipitate out of solution 
and tend to deposit on surfaces. Deposition of 
inorganic minerals from brine is called SCALE, 
and its formation causes flow reduction or             
even blocking of pipes, valves and other 

equipment [1-3]. Barium sulfate (�����) is the 
most insoluble scale that can be precipitated 
from oilfield waters. It forms a hard scale which is 
extremely difficult to remove. The solubility of 
barium sulfate is about a thousand times less 

than that of calcium sulfate (�����), at surface 
conditions. Barium sulfate scale (barite) in oil 

fields can be precipitated easily on the basis of 
already available information relating to 
thermodynamic conditions and the kinetics of 
precipitation [1,4]. Calcium sulfate, which is 
important in desalination, geochemistry and 
petroleum engineering, is complicated by the fact 
that it can crystallize from aqueous solutions in 

three forms: gypsum ( �����. 2�� O), 

hemihydrate ( �����
1

2� �� O) and anhydrite 

(�����) [2,5].
 
 These compounds may be stable 

depending on temperature, pressure and on ionic 
strength and they have decreasing solubility with 
increasing temperature above 40ºC. Some other 
authors have also investigated other ways of 
predicting BaSO4 and CaSO4 oilfield scale, which 
include mathematical modeling, experimental 
studies, as well as development of oilfield scale 
software [1-5]. Mineral scale formation and 
deposition on downhole and surface equipment 
is a major source of concern because of the high 
cost incurred in removing the scale and the 
reduction in oil production. Cost effective scale 
control should be one of the primary objectives of 
any efficient water injection and normal 
production operation in oil and gas fields [2,4]. 
 
Artificial Neural Network (ANN) is a fast-growing 
method which has been used in different 
industries in recent years. The main idea for 
creating ANN, a subset of artificial intelligence is 
to provide a simple model of human brain in 
order to solve complex scientific and industrial 
problems [6]. ANNs are high-value and low-cost 
tools used in modelling, simulation, control, 
condition monitoring, sensor validation and fault 
diagnosis of different systems including different 
kinds of rotating equipment. They learn from the 
data obtained from a system instead of learning 
from a specific program. ANNs can solve a 
variety of problems in optimization, pattern 
recognition, clustering, function approximation, 
time series analysis, prediction and validation. A 
neural network model is a group of 
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interconnected artificial units (neurons) with 
linear or nonlinear transfer functions. Neurons 
are arranged in different layers including input 
layer, hidden layer(s) and output layer [6-8]. 
 
Neural Networks were first formalized in a 1943 
paper by McCulloch and Pitts [9]. Later in the 
1960s, Rosenblat developed the perceptron 
convergence theorem in 1962, [10] and Minsky 
and Papert in [11] showed the limitation of a 
simple perceptron. Their results dampened the 
enthusiasm of most researchers in neural 
network research for 20 years.  However, interest 
was renewed in the early 1980s. Major 
development behind this resurgence include (i) 
Hopfield’s energy approach in 1982, [12] (ii) 
Werbos’ back-propagation learning algorithm for 
multilayer Perceptron which was first proposed in 
1974, [13] (iii) re-invention of Werbos’ work on a 
number of occasions, which was then 
popularized by Rumelhart et al. [14] in, and          
(iv) detailed historical account of ANN 
development by Anderson and Rosenfeld in   
[15].

 

 
The statistical neural network (hereinafter, SNN) 
model was used in the analyses of the impact of 
the variables on the two dependent variables in 
this study. The choice of neural networks is 
because it is a very flexible and powerful model 
estimation which can estimate data that may fail 
in estimation procedure with other statistical 
methods.  SNN has been found to be powerful in 
estimating imprecise and noisy data set. It has 
been found applicable in all fields that use data, 
both qualitative and quantitative. 
 
In this study, we used the Multilayer Perceptron 
(MLP) model of the SNN because it provides a 
better basis for statistical inference.  The simple 
model used is as proposed by Anders             
[16]. 
 

1.1 Theoretical Background of Artificial 
Neural Network 

 
A neural network is a massively parallel 
distributed processor made up of simple 
processing units that have a natural tendency for 
storing experiential knowledge and making it 
available for us. ANNs have the ability to model 
linear and non-linear systems without the need to 
make assumptions implicitly as in most traditional 
statistical approaches. They have been applied 
in various aspects of science and engineering 
[17]. ANNs can be grouped into two major 
categories: Feed-forward and feedback 

(recurrent) networks. In the former network, no 
loops are formed by the network connections, 
while one or more loops may exist in the latter. 
The most commonly used family of feed-forward 
networks is a layered network in which neurons 
are organized into layers with connections strictly 
in one direction from one layer to another [18]. 
 

MLPs are the most common type of feed-forward 
networks. Fig. 1 shows an MLP which has three 
types of layers: an input layer, an output layer 
and a hidden layer. 
 

 
 

Fig. 1. A Multi-layered perceptron (MLP) 
network 

 

Neurons in input layer only act as buffers for 
distributing the input signals xi (i=1, 2 …n) to 
neurons in the hidden layer. Each neuron j (Fig. 
2) in the hidden layer sums up its input signals xi 
after weighting them with the strengths of the 
respective connections wji from the input layer 
and computes its output yj as a function f of the 
sum.  
 

�� = ��∑ ���
�
�� � ���                        (1) 

 

f can be a simple threshold function or a 
sigmoidal, hyperbolic tangent or radial basis 
function. The output of neurons in the output 
layer is computed similarly. The back 
propagation algorithm, a gradient descent 
algorithm, is the most commonly adopted MLP 
training algorithm. It gives the change Δwji the 
weight of a connection between neurons i and j 
as follows: 
 

∆� ��= ɳ ����             (2) 

 
where η is a parameter called the learning rate 
and δj is a factor depending on whether neuron j 
is an input neuron or a hidden neuron. For output 
neurons, 
 

�� = ��� �����⁄ � ���
(�)

− ���          (3) 

 
and for hidden neurons 
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�� = ��� �����⁄ ��∑ ���� ���          (4) 

 
In Eq. (3), netj is the total weighted sum of input 
signals to neurons j and yj

(t)
 is the target output 

for neuron j. 
 
As there are no target outputs for hidden 
neurons, in Eq. (4), the difference between the 
target and actual output of hidden neurons j is 
replaced by the weighted sum of the δq terms 
already obtained for neurons q connected to the 
output of j. 
 

 
 

Fig. 2. Detail of the perceptron process 
 
The process begins with the output layer, the δ 
term is computed for neurons in all layers and 
weight updates determined for all connections, 
iteratively. The weight updating process can 
happen after the presentation of each training 
pattern (pattern-based training) or after the 
presentation of the whole set of training patterns 
(batch training). Training epoch is completed 
when all training patterns have been presented 
once to the MLP. 
 
A commonly adopted method to speed up the 
training is to add a “momentum” term to Eq. (5) 
which effectively lets the previous weight change 
influence the new weight change: 
 

∆� ��(� + 1) = ɳ ���� + �∆� ��(�)          (5) 

 
where Δwij (I + 1) and Δwij (I) are weight changes 
in epochs (I + 1) and (I), respectively, and μ is 
“momentum” coefficient [19]. 
 

1.2 Objective of Study 
 
The objective of this research work is to predict 
the formation of BaSO4 and CaSO4 oilfield scale 
using Artificial Neural network and The Statistical 
Neural Network taking into considerations the 
effect of thermodynamic, transport, and kinetic 
factors. This is achieved through the 
development of a neural network model that 
trained, tested and validated the obtained             
data using Neural Network toolbox in Matlab 
R2009a. 

1.3 Limitation of Study 
 
Other types of oilfield scale were not considered 
in this work. These include; Calcium carbonate, 
Strontium Sulfate, Ferrous carbonate, Ferrous 
Sulfide etc. This is due to lack of sufficient data 
on these types of scale.  
 

2. MATERIALS AND METHODS  
 
2.1 Implementation of ANN Model  
 
Designing ANN models follows a number of 
systemic procedures. In general, there are five 
basics steps: (1) collecting data, (2) 
preprocessing data, (3) building the network, (4) 
train, and (5) test performance of model. 
 

2.2 Data Collection 
 
Collecting and preparing sample data is the first 
step in designing ANN models. Measurement 
data of temperature, amount of BaSO4 and 
CaSO4 precipitated, pressure, kinetic rate of 
reaction constant and flow rate was collected 
from published literature. 
 

2.3 Data Pre-processing 
 

After data collection, three data preprocessing 
procedures were conducted to train the ANNs 
more efficiently. These procedures are: (1) solve 
the problem of missing data, (2) normalize data 
and (3) randomize data. The missing data are 
replaced by the average of neighboring values 
during the same week. Normalization procedure 
before presenting the input data to the network is 
generally a good practice, since mixing variables 
with large magnitudes and small magnitudes will 
confuse the learning algorithm on the importance 
of each variable and may force it to finally reject 
the variable with the smaller magnitude [20]. 
 

2.4 Building the Network 
 

At this stage, the designer specifies the number 
of hidden layers, neurons in each layer, transfer 
function in each layer, training function, 
weight/bias learning function, and performance 
function. In this work, a multilayer perceptron 
(MLP) network was used. 
 

2.5 Training the Network 
 

During the training process, the weights were 
adjusted in order to make the actual outputs 
(predicated) close to the target (measured) 
outputs of the network. A total of 24 data sets 



 
 
 
 

Falode et al.; AIR, 7(6): 1-13, 2016; Article no.AIR.27008 
 
 

 
5 
 

were used for the amount of BaSO4 precipitated 
while 20 data sets were used to generate kinetic 
rate of reaction constant of precipitation of 
CaSO4. The iterations time was 1000 (i.e epoch 
= 1000) MATLAB provides built-in transfer 
functions which are used in this study; linear 
(purelin), Hyperbolic Tangent Sigmoid (logsig) 
and Logistic Sigmoid (tansig).  
 

2.6 Testing the Network 
 
The next step was to test the performance of the 
developed model. At this stage unseen data 
were exposed to the model. In order to evaluate 
the performance of the developed ANN models 
quantitatively and verify whether there is any 
underlying trend in performance of ANN models, 
statistical analysis involving the coefficient of 
determination (R2), the root mean square error 
(RMSE), and the mean bias error (MBE) were 
conducted. RMSE provides information on the 
short term performance which is a measure of 
the variation of predicated values around the 
measured data. The lower the RMSE, the more 
accurate is the estimation. MBE is an indication 
of the average deviation of the predicted values 
from the corresponding measured data and can 
provide information on long term performance of 
the models; the lower MBE the better is the long 
term model prediction.  
 

2.7 Data Acquisition and Analysis 
 
2.7.1 CASE 1: Prediction of amount of BaSO4 

precipitated 
 

a) Twelve (12) data sets used in this work 
were obtained from OLI scalechem 
software [4]. The range of data are the 
following: Temperature (78 to 210°F), 
BaSO4 precipitated (18.0 to 20.0 mg/l). 
Pressure was kept constant at 4800 psia 
[4]. 

 
Precipitation is mathematically expressed as: 
 

BaSO4 precipitation = f (T) 
 

where: T = Temperature (degree fahrenheit) 
 

b) Another set of data (12) were obtained 
from OLI scalechem software [4]. The 
range of these sets of data are the 
following: Pressure (0 to 5000 psia), 
BaSO4 precipitated (15.5 to 17.0 mg/l). 
Temperature was kept constant at 210°F 
[4]. 

Precipitation is mathematically expressed as: 
 

BaSO4 precipitation = f (P) 
 

where: P = Pressure (psia) 
 
A total of 24 data sets for predicting BaSO4 
precipitation were used. In each case, the 
iteration time was 1000 (i.e epoch = 1000) and 
the Neural network formulation is:  
 

(1-1-1), (1-2-1), (1-3-1), (1-4-1), (1-5-1),        
(1-6-1), (1-7-1), (1-8-1), (1-9-1), (1-10-1) for 
the input, hidden and output layers, 
respectively for each of the cases [7,8]. 

 
2.7.2 Case 2: Caso4 Kinetic Rate of Reaction 

Constant  
 

a) 12 data sets used in this work were 
obtained from Arhenius mathematical 
model [5] and were subsequently used to 
generate kinetic rate of reaction constant 
for CaSO4 precipitation kinetics at different 
temperature and pressure. The ranges of 
the data are the following: Temperature 
(323 to 353°K), Pressure drawdown (100 
to 200 psig) and Kinetic rate of reaction 
constant (0.00357 to 0.0652 m/min). 
 

Kinetic Rate of Reaction Constant is 
mathematically expressed as: 
 

K = f (T, ΔP) 
 

where:  
 

T = Temperature (degree kelvin) 
 ΔP = Pressure drawdown (psia) 
 K = Kinetic rate of reaction constant(m/min)  

 
b) 8 data sets used in this work were 

obtained from Arhenius mathematical 
model (Merdhah et al 2008). The ranges 
of the data are the following Flow rate 
(10.01 to 28.14 cc/min) and Kinetic rate 
of reaction constant (0.00357 to 0.0652 
m/min). 

 
Kinetic Rate of Reaction Constant is 
mathematically expressed as: 

 
K = f (Q) 

 
For CaSO4 prediction, a total of 20 data sets 
were used. In each case, the iteration time was 



 
 
 
 

Falode et al.; AIR, 7(6): 1-13, 2016; Article no.AIR.27008 
 
 

 
6 
 

1000 (i.e epoch = 1000) and the Neural network 
formulation is  
 

(2-1-1), (2-2-1), (2-3-1), (2-4-1), (2-5-1),      
(2-6-1), (2-7-1), (2-8-1), (2-9-1), (2-10-1) for 
the input, hidden and output layers, 
respectively for each of the cases [5,7]. 

 

All input variables were standardized, that is, 
converting them to range (0, 1) before feeding 
them into the network. This is to avoid the 
application of extremely small weighting factors 
in the case of large input values. 
 

X    =  0.8  ( 
 �������

���������
) + 0.1          (6) 

 
Xi      = amount of X standardized  
X max = maximum amount in all data 
X min  = minimum amount in all data  

 

Similarly, the output values were 
“destandardized” to provide meaningful results 
since all values leaving the network are in a 
standardized format. This is done by simply 
reversing the standardization algorithm used on 
the input nodes. 
 

The Analysis Of The Artificial Neural Network 
(Ann) and The Statistical Neural Network           
(Tsnn) Using Neural Network Toolbox In Matlab 
R2009a was done and results were obtained    
[6-8]. 
 

2.8 Model Selection 
 

The mean square error (MSE), and criteria such 
as Akaike information criterion (AIC), Schwarz 
information network (SIC), network information 
criterion (NIC), were used in model selection 

while the coefficient of determination (��) was 
used in determining the goodness of fit of the 
models [21]. The significance of the model was 
determined by computing the student’s T  test, 

Fisher statistic,� , and its �-value.  The model 
with the least MSE, AIC or NIC is considered as 
the best.  This coincides with the model that has 

the highest ��. 
 

3. RESULTS AND DISCUSSION 
 
The neural network model used in predicting the 
amount of BaSO4 precipitated and kinetic rate of 
reaction of CaSO4 in this work is the multilayer 
perceptron model using tangent sigmoid 
(TANSIG) transfer function after one thousand 
(1000) iterations; i.e epoch = 1000. This model 

was chosen because it indicated the least Mean 
Square Error (MSE) and correlation of 
determination (R²) [7]. 
 
The tangent sigmoid (TANSIG) transfer function 
is given by [7]: 
 

������ = ��(�) =
�

������ − 1          (7) 

 

3.1 CASE 1a: Amount of BaSO4 
Precipitated versus Temperature at 
Constant Pressure (4800 psia) 

 
The artificial neural network was run for hidden 
neurons ranging from 1 to 10 (i.e; ANN {1-1-1} to 
ANN{1-10-1). It was observed that hidden 
neurons ANN{1-3-1}, ANN{1-4-1}, ANN{1-7-1} 
and ANN{1-8-1} have correlation determination 
(R

2
) values greater than one(1) and negative 

values of  mean square error (MSE) which 
indicated over fitting so they cannot be 
considered. Table 1 indicates their values. 
 
After one thousand{1000} iterations (i.e 
epoch=1000), the neural network structure that 
has the optimum performance was ANN{1,2,1} 
with the lowest Mean Square Value (MSE) of 
0.0025 and the highest correlation determination 
(R

2
) of 0.9966. Other statistical criteria include 

T_test = 0.0023, F_cal = 1.1890e+003, AIC= 
0.0033, SIC= 0.0031, NIC= 0.0799. Figs. 3 and 4 
below show the comparison between ANN{1-2-1} 
and Actual BaSO4 precipitation against 
temperature and also plot of the ANN{1-2-1} 
against Actual BaSO4 precipitation. In Fig. 1, R2 

= 0.9789 for ANN{1-2-1)} which is greater than 
that of the actual (R

2
 = 0.977). ANN{1-2-1} is 

better. Fig. 4 shows the comparison between the 
predicted ANN{1,2,1} and the actual BaSO4. 
 

3.2 CASE 1b: Amount of BaSO4 
Precipitated versus Pressure at 
Constant Temperature (210°F) 

 
The artificial neural network was run for hidden 
neurons ranging from 1 to 10 (i.e ANN{1-1-1} to 
ANN{1-10-1). It was observed that hidden 
neurons ANN{1-6-1}, ANN{1-7-1}, ANN{1-8-1} 
and ANN{1-10-1} have correlation 
determination(R

2
) values greater than one(1) and 

negative values mean square error (MSE) which 
indicated over fitting so they cannot be 
considered. Table 2 shows the results. 
 
After one thousand{1000} iterations (i.e; 
epoch=1000), the neural network structure that 
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has the optimum performance was ANN{1,1,1} 
with the lowest Mean Square Value (MSE) of 
0.0017 and the highest correlation determination 
(R

2
) of 0.9956. Other statistical criteria seen 

include T_test = 6.1751e-007, F_cal = 911.5173, 
AIC= 0.0021, SIC= 0.0020, NIC= 0.1605. Figs. 5 

and 6 below show the comparison between 
ANN{1-1-1} and actual BaSO4 precipitation with 
pressure change and plot of the ANN{1-1-1} 
against Actual BaSO4 precipitation. In Fig. 5, R

2
 

= 0.9949 for ANN{1-1-1) higher than that of the 
actual(R

2
= 0.9821). 

 
Table 1. Amount of baso4 precipitated using temperature with constant pressure (4800psia) 

 
ANN 
structure 

Alpha Beta R2 MSE T_test F_cal AIC SIC NIC 

ANN  
(1-1-1) 

21.3732 -0.0155 0.9543 0.0346 0.0023 83.5960 0.0450 0.0419 0.0868 

ANN 
(1-2-1) 

21.3732 -0.0155 0.9966 0.0025 0.0023 1.1890e+003 0.0033 0.0031 0.0799 

ANN 
(1-3-1) 

21.3732 -0.0155 1.0037
  

-0.0028 0.0023 1.0761e+003 -0.0037 -0.0034 0.0400 

ANN 
(1-4-1) 

21.3732 -0.0155 1.0032 -0.0024 0.0023 1.2613e+003 -0.0031 -0.0029 0.2479 

ANN 
(1-5-1) 

21.3732 -0.0155 0.9839 0.0122 0.0023 244.7309 0.0158 0.0148 0.0232 

ANN 
(1-6-1) 

21.3732 -0.0155 0.9831 0.0128 0.0023 233.1706 0.0166 0.0155 0.0238 

ANN 
(1-7-1) 

21.3732 -0.0155 1.0141
  

-0.0107 0.0023 287.7032 -0.0139 -0.0130 0.0058 

ANN 
(1-8-1) 

21.3732 -0.0155 1.0019 -0.0014 0.0023 2.1413e+003 -0.0018 -0.0017 0.1147 

ANN 
(1-9-1) 

21.3732 -0.0155 0.9893 0.0081 0.0023 369.6636 0.0105 0.0098 0.0644 

ANN 
(1-10-1) 

21.3732 -0.0155 0.9786 0.0162 0.0023 183.0286 0.0211 0.0196 0.0369 

 

 
 

Fig. 3. Comparison between ANN{1-2-1} and actual BaSO4 precipitation versus temperature 
R

2
 = 0.9789 for ANN{1-2-1} while R

2 
=0.977 for the actual 

y = -0.0155x + 21.373
R² = 0.977
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Table 2. Amount of BaSO4 precipitated using pressure at constant temperature (210°F) 
 

 Alpha Beta R
2
 MSE T_test F_cal AIC SIC NIC 

ANN  
(1-1-1) 

17.0619 -2.9143e-004 0.9956 0.0017 6.1751e-007 911.5173 0.0021 0.0020 0.1605 

ANN 
(1-2-1) 

17.0619 -2.9143e-004 0.9524 0.0180 6.1751e-007 80.0058 0.0234 0.0218 0.1161 

ANN 
(1-3-1) 

17.0619 -2.9143e-004 0.9954 0.0017 6.1751e-007 865.5135 0.0023 0.0021 0.0763 

ANN 
(1-4-1) 

17.0619 -2.9143e-004 0.9816 0.0069 6.1751e-007 213.7944 0.0090 0.0084 0.0397 
 

ANN 
(1-5-1) 

17.0619 -2.9143e-004 0.9642 0.0136 6.1751e-007 107.6048 0.0176 0.0164 0.0624 

ANN 
(1-6-1) 

17.0619 -2.9143e-004 1.0096 -0.0036 6.1751e-007 420.1406 -0.0047 -0.0044 0.0819 

ANN 
(1-7-1) 

17.0619 -2.9143e-004 1.0370 -0.0140 6.1751e-007 111.9807 -0.0182 -0.0170 0.0350 
 

ANN 
(1-8-1) 

17.0619 -2.9143e-004 1.0311 1.0311 6.1751e-007 132.6493 -0.0153 -0.0143 0.0409 
 

ANN 
(1-9-1) 

17.0619 -2.9143e-004 0.9690 0.0117 6.1751e-007 124.8418 0.0153 0.0142 0.1896 

ANN 
(1-10-1) 

17.0619 -2.9143e-004 1.0175 -0.0066 6.1751e-007 232.5165 -0.0086 -0.0080 0.0309 
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Fig. 4. ANN {1-2-1} versus actual BaSO4 precipitation 
 

 
 

Fig. 5. Comparison between ANN{1-1-1} and Actual BaSO4 precipitation against pressure 
R2 = 0.9949 is for ANN{1-1-1} while R2 = 0.9821 is for the actual 

 

3.3 CASE 2a: CaSO4 Kinetic Rate of 
Reaction Constant Using Temperature 
and Pressure 

 

The artificial neural network was ran for hidden 
neurons ranging from 1 to 10 (i.e ANN {2-1-1} to 
ANN {2-10-1). 

After one thousand {1000} iterations (i.e; 
epoch=1000), the neural network structure that 
has the optimum performance was ANN{2,5,1} 
with the lowest Mean Square Value (MSE) of 
8.7745e-005 and the highest correlation 
determination (R

2
) of 0.8206, other statistical 

criteria seen include: T_test_1 = 2.1130e+003, 

y = 0.9974x + 0.0523
R² = 0.9982
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T_test_2 =  -1.6877, T_test_3 = 50.7243  F_cal = 
18.2984, AIC= 1.1394e-004, SIC= 1.0630e-004, 
NIC= 0.0215. Fig. 7 shows the plot of ANN {2-5-

1} against Actual CaSO4 Kinetic rate of reaction 
constant. R

2
 = 0.839 for the plot. 

 

 
 

Fig. 6. ANN {1-1-1} versus actual BaSO4 precipitation 
 

 
 

Fig. 7. ANN {2-5-1} Vs actual CaSO4 kinetic rate of reaction constant 
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3.4 CASE 2b: CaSO4 Kinetic Rate of 
Reaction Constant Using Flow Rate 

 
The artificial neural network was ran for hidden 
neurons ranging from 1 to 10 (i.e ANN {2-1-1} to 
ANN {2-10-1). 
 
After one thousand{1000} iterations (i.e; 
epoch=1000), the neural network structure that 
has the optimum performance was ANN{1,4,1} 
with the least Mean Square Error value (MSE) of 
2.3007e-006 and the highest correlation 
determination (R2) of 0.9953, other statistical 
criteria seen include: T_test =  0.0013, F_cal = 
846.4236, AIC =  2.9874e-006, SIC =  2.7871e-
006, AIC= 2.9874e-006, SIC= 2.7871e-006, 
NIC= 0.0020. Fig. 7 shows the plot of ANN {1-4-
1} against Actual CaSO4 kinetic rate of reaction 
constant. The R

2
 value obtained was 0.9896 

which indicated a good performance. 
 
4. DISCUSSION 
 
Fig. 3 is a temperature plot of the precipitation of 
Barium sulphate. The predictions from ANN {1-2-
1} fits well with the actual precipitation data with 
increase in temperature. R2 of 0.9789 for ANN{1-
2-1} compared with R

2 
of 0.977 for the actual 

shows a better prediction with ANN since it is 
higher. This was confirmed in Fig. 4 with the 
regression of ANN against actual giving R2 of 

0.9982. However with change in pressure, the 
ANN fits well with the actual data at lower 
pressures, As pressure increased, the model 
slightly deviates from the actual data as 
observed in Fig. 5. This most likely is caused by 
equipment or human error when carrying out the 
experiment at higher pressures. The results of 
ANN{1-1-1} predictions for BASO4 precipitation 
gave R

2 
of 0.9722 in Fig. 6 compared to R

2
 of 

0.9982 for ANN{1-2-1}. This regression result 
show that the ANN{1-2-1} model is of better fit. 
The MSE compares the variations in the errors 
generated by the different models. The model 
with the smallest MSE in this case ANN{1-2-1} is 
considered a better model. To confirm model fit, 
AIC and SIC was considered.  The AIC and SIC, 
like the MSE, for ANN{1-2-1} is less than the 
other model under comparison and thus adjured 
to be a better model.    
 
The kinetic rate constant prediction obtained was 
less accurate for ANN {1,4,1} at higher values 
while it was more accurate for ANN{2,5,1} as 
observed in Figs. 7 and 8 respectively. Some 
outliers on the ANN {1,4,1} plot at higher kinetic 
rate constants represent overestimation in the 
model. The result of the entire analysis shows 
that as the hidden neurons increases, the values 

of the ���, ��� and ��� decreases, while those 

of ��  increases as also reported in previous 
studies [21]. 

 

 
 

Fig. 8. ANN {1-4-1} Vs Actual CaSO4 Kinetic rate of reaction constant 
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The Artificial Neural Network (ANN) and The 
Statistical Neural network (TSNN) developed 
here present a new and unique way in estimating 
the amount of Barium Sulphate (BaSO4) 
precipitated, and also the rate of precipitation of 
Calcium Sulphate (CaSO4) from the Kinetic rate 
of reaction constant. It has been established in 
literature that for precipitation of a compound to 
occur, the solubility of the compound must have 
been exceeded and this is caused by changes in 
the thermodynamic, kinetic and transport factors.   
 
Previous models that have been utilised in 
predicting precipitation of oilfield scales have 
failed to account for the influence of kinetic and 
transport factors. This study has employed the 
technique of ANN to predict scaling while 
incorporating kinetic and transport factors and it 
has found the ANN model to be more 
comprehensive and robust than other models.  
The power of ANNs can be attributed to several 
features they possess, namely: ability to 
recognize and learn the underlying relationships 
between input and output without explicit 
physical consideration, regardless of the 
problem’s dimensionality and system 
nonlinearity, and the ability to tolerate data 
containing noise and measurement errors due to 
distributed processing within the net- work.  

 
5. CONCLUSION 
 
Artificial neural network was successfully applied 
to estimate oilfield scale formation in this study. 
In this study, it was demonstrated that any range 
of input variables can be used in the predictions 
thus making Artificial Neural Network more 
robust than other prediction methods. Comparing 
the ANN (obtained results) with the actual results 
for each of the cases, it is seen that the obtained 
results from the network gave a better match 
than needed results and as such the network can 
be used to predict the amount of BaSO4 
precipitation given temperature or pressure. Also, 
the kinetic rate of reaction constant was 
predicted for CaSO4 at given temperature, 
pressure drawdown and flow rate. The 
developed Artificial Neural Network model (ANN) 
and The Statistical Neural Network (TSNN), had 
good training and validating Results according to 
the data sets used in both of training and 
validation steps, and obtained good behavior 
after many trials reflecting high confidence in the 
prediction. Neural networks have been shown to 
be an efficient methodology to estimate natural 
gas production, utilization and flaring.   
Comparing model prediction in both cases show 

that TSNN performs better than TSRM. It is 
recommended that future work should consider 
predicting the critical value of precipitation of 
salts when they start posing problems in Oil and 
Gas Fields using ANN.  
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