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Abstract

In a search for eclipsing white dwarfs using the Zwicky Transient Facility lightcurves, we identified a deep
eclipsing white dwarf with an orbital period of 10.4 hr and an undetected substellar companion. We obtained high-
speed photometry and radial velocity measurements to characterize the system. The white dwarf has a mass of
0.50± 0.02M☉ and a temperature of 10,900± 200 K. The companion has a mass of 0.059± 0.004M☉ and is a
brown dwarf. It has a radius of 0.0783± 0.0013 R☉, and is one of the physically smallest transiting brown dwarfs
known and likely old, 8 Gyr. The ZTF discovery efficiency of substellar objects transiting white dwarfs is limited
by the number of epochs and as ZTF continues to collect data we expect to find more of these systems.

Unified Astronomy Thesaurus concepts: White dwarf stars (1799); Eclipsing binary stars (444); Brown dwarfs
(185); Extrasolar gaseous giant planets (509)

1. Introduction

Low-mass, hydrogen-rich objects (brown dwarfs and giant
planets) that orbit a white dwarf in short orbital periods are rare.
There are currently 10 confirmed white dwarfs with brown dwarf
companions with measured orbital periods. These are: GD1400
(P= 9.98 hr; Farihi & Christopher 2004; Dobbie et al. 2005;
Burleigh et al. 2011), WD0137-349 (P= 116minutes; Burleigh
et al. 2006; Maxted et al. 2006; Casewell et al. 2015), NLTT
5306 (P = 101.9 minutes, Steele et al. 2013), WD0837+185
(P= 4.2 hr; Casewell et al. 2012), SDSS J141126.20+200911.1
(P= 121.73minutes; Beuermann et al. 2013; Littlefair et al. 2014),
SDSS J155720.77+091624.6 (P= 2.27 hr; Farihi et al. 2017),
SDSS J120515.80-024222.6 (P= 71.2minutes; Parsons et al.
2017a), SDSSJ123127.14+004132.9 (P= 72.5minutes; Parsons
et al. 2017a), EPIC212235321 (P= 68.2minutes; Casewell et al.
2018) and WD1032+011 (P= 2.21 hr; Casewell et al. 2020a).
Most of these systems have short orbital periods. This is a
detection bias: they have a higher eclipse probability, stronger
reflection effect, and the white dwarf has a higher radial-velocity
amplitude. For example, confirmation of GD1400 as a binary
requires the white dwarf radial velocity to be measured, which
requires a large telescope and high-resolution spectrograph, even
for a system as bright (G= 15.2) as GD1400 (Burleigh et al. 2011).

There have also been many searches to find exoplanets
(M 13 Mjup) orbiting white dwarfs, e.g., Faedi et al. (2011),
Fulton et al. (2014), van Sluijs & Van Eylen (2018), Dame
et al. (2019), Rowan et al. (2019), but none of them found
any candidates. The first white dwarf with a Jupiter-mass
companion, WD 1145+017, which has an orbital period of
≈10 days, was only recently discovered by Gänsicke et al.
(2019). The planet is slowly evaporating and this material is

accreted by the white dwarf. Soon after, Vanderburg et al.
(2020) discovered the first transiting giant planet orbiting a
white dwarf, WD J0914+1914, which has an orbital period of
1.4 days. After carefully analyzing optical and infrared lightcurves
of the grazing eclipse, they conclude that the companion is a giant
planet with a mass of 14Mjup.
Because the white dwarf went through a giant phase in the

past, the companion must have migrated or have been formed
after the giant phase. For brown dwarfs, common-envelope
evolution is the commonly accepted scenario (Ivanova et al.
2013). If a brown dwarf is close enough to a star that is
ascending the red giant branch (RGB) or asymptotic giant
branch (AGB) (≈200–1000 R☉, 1–5 au), the giant star engulfs
the brown dwarf and forms a common envelope. Depending on
the masses and initial orbital separation, the system can survive
this process and ends up as a short-period binary (Casewell
et al. 2018, 2020a, 2020b). However, the binary can also merge
during a common-envelope event or the companion gets
evaporated as soon as the hot white dwarf emerges from the
common envelope (Nelemans & Tauris 1998; Soker 1998;
Bear & Soker 2011). Particularly lower-mass objects (giant
planets) are expected to merge or evaporate during this process.
To form white dwarf–planet systems, alternative pathways
have been proposed. These are the formation of second-
generation planets from gas around the white dwarf (e.g.,
Perets 2010) or capture and/or inward migration of distant
planets (e.g., Stephan et al. 2020). In addition, recent work
suggests that giant planets can survive common-envelope
evolution (Lagos et al. 2021).
With the goal of studying the population of white dwarfs

with brown dwarf or giant planet companions in close orbits,
we searched for deep eclipsing white dwarfs using Zwicky
Transient Facility lightcurves (Bellm et al. 2019; Graham et al.
2019; Masci et al. 2019; Dekany et al. 2020). We used the
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combined PSF photometry and alert photometry lightcurves of
white dwarfs (Gentile Fusillo et al. 2019) using the box least
squares algorithm (Kovács et al. 2002). For more details, see
van Roestel et al. (2021).

In this paper, we present the first result, the discovery of
ZTFJ003855.0+203025.5 (ZTFJ0038+2030 see Table 1), an
eclipsing white dwarf with a brown dwarf companion
with an orbital period of 10 hr. ZTFJ0038+2030 shows
a complete eclipse in the ZTF g and r band with a short
eclipse duty cycle. It also showed no excess luminosity in the
Gaia observational H–R diagram and no infrared excess in
Pan-STARRS-y or WISE W1 and W2, which indicates the
companion is cold and either a brown dwarf or giant planet
and not an M dwarf. Because of these properties, we
prioritized it for follow-up observations to determine the
nature of the companion.

We obtained follow-up photometry and spectroscopy
(Section 2), which we used the characterize the system
(Section 3). We present the mass, radius, and temperature
measurements in Section 4. We compare this binary system
with other white dwarfs with substellar companions, and
discuss the implications of this discovery for future searches for
giant exoplanets around white dwarfs with ZTF (Section 5).
The final section summarizes the paper.

2. Follow-up Data

2.1. CHIMERA Fast Cadence Photometry

We obtained high-speed photometry in the g and z filters
using CHIMERA (see Table 2). CHIMERA (Harding et al.
2016) is a dual-channel photometer that uses frame-transfer,
electron-multiplying CCDs mounted on the Hale 200 inch
(5.1 m) Telescope at Palomar Observatory (CA, USA). The
pixel scale is 0 28 pixel−1 (unbinned). We used the conven-
tional amplifier and used 2×2 binning on most nights to reduce

the readout noise. Each of the images was bias-subtracted and
divided by twilight flat fields. We used the ULTRACAM
pipeline to do aperture photometry (Dhillon et al. 2007). We
used an optimal extraction method with a variable aperture of 1.5
the FWHM of the seeing (as measured from the reference star).
A differential lightcurve was created by simply dividing
the counts of the target by the counts from the reference
star. Timestamps of the images were determined using a GPS
receiver.

2.2. ESI

We used the Echellete Spectrograph and Imager (ESI,
Sheinis et al. 2002) mounted at Keck II to obtain medium-
resolution spectra (R≈ 6000). The wavelength range is from
4000 to 10000Å. CuAr arc exposures were taken at the
beginning of the night. The spectra were reduced using the
MAKEE10 pipeline following the standard procedure: bias
subtraction, flat-fielding, sky subtraction, order extraction, and
wavelength calibration. We did not attempt to flux-calibrate the
spectra.

2.3. Archival Photometry

To be able to study the spectral energy distribution, we
obtained photometry data from multiple other survey tele-
scopes (see Table 1): UV data from GALEX (Bianchi et al.
2017), optical data from Gaia eDR3 (Brown et al. 2020a) and
Pan-STARRS (Chambers et al. 2016), UKIRT Hemisphere
Survey J-band data (Dye et al. 2018), and far-infrared data
from WISE (Marocco et al. 2021). No near-infrared photo-
metry H and K data are available. We used zero-points for each
of the filters to convert the magnitudes to a flux.

3. Analysis

3.1. Ephemeris

We determine the ephemeris by measuring the mid-eclipse
time from the CHIMERA g lightcurve. We then use the best
model from the Chimera g data and use it to fit all ZTF data. In
addition, we noticed that there is one non-detection on 2012
November 01 in Palomar Transient Factory data (out of 94
observations). We add this epoch with half the eclipse duration
as uncertainty as a prior (BJDTDB= 2, 456, 232.8854±
0.0018). This results in an ephemeris of:

= +BJD TDB 2, 459, 045.985194 2 0.431 920 8 14
1

( ) ( ) ( )
( )

3.2. Spectral Energy Distribution

To determine the white dwarf and companion temperature,
we fit the observed spectral energy distribution with a model
that combines white dwarf spectral models with spectral
models of substellar companions (see Figure 1). We use a grid
of DA white dwarf models by Koester (2009) and use bilinear
interpolation to be able to generate a model for any temperature
and surface gravity value. For the companion, we use models
from Phillips et al. (2020) with =glog 5.5 and a fixed radius
based on the lightcurve result. We use the extinction law by
Fitzpatrick (1999) to account for any dust extinction. To
compare the model spectra with the data, we convolve the

Table 1
Observational Properties of ZTFJ0038+2030

R.A. 00h 38m55 0
Decl. 20°30′ 26 1
parallax 7.19 ± 0.11 mas
distance -

+138.3 1.9
1.7 pc

EB−V 0.03 ± 0.02
GV 17.70
BPV 17.76 ± 0.01
RPV 17.63 ± 0.01
GALEX FUV 20.37 ± 0.24
GALEX NUV 18.58 ± 0.06
ZTF-g 17.70 ± 0.02
ZTF-r 17.78 ± 0.03
ZTF-i 17.95 ± 0.03
PS-g 17.705 ± 0.005
PS-r 17.786 ± 0.002
PS-i 17.931 ± 0.006
PS-z 18.093 ± 0.005
PS-y 18.18 ± 0.02
UKIRT-JV 17.71 ± 0.06
WISE-W1V 17.87 ± 0.11
WISE-W2V 17.63 ± 0.29

Note. Gaia eDR3 data were used (Brown et al. 2020b) with the geometric
distance from Bailer-Jones et al. (2021). “V” indicates that the magnitudes are
in the Vega system; other magnitudes are in the AB system.

10 http://www.astro.caltech.edu~tb/ipac_staff/tab/makee/
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model spectra with the filter response curves11 (Rodrigo et al.
2012; Rodrigo & Solano 2020). We use Gaussian priors on the
parallax using the Gaia eDR3 data, the radius estimate from the
lightcurve, and an EBV value from Pan-STARRS extinction
estimates (Green et al. 2018). We again use emcee to estimate
the best-fit values and uncertainties.

3.3. Spectra and Radial Velocity Amplitude

The spectra show a typical DA white dwarf spectrum with
broad Balmer absorption lines (see the inset in Figure 1). No
features from the substellar companion can be seen. There are
also no Balmer emission lines due to irradiation (e.g., Parsons
et al. 2018), but these are not expected to be significant
given the white dwarf temperature and relatively long orbital
separation.

Radial velocities of the ESI spectra were measured by fitting
a Gaussian, Lorentzian, and polynomials to the Hα–Hδ lines to
cover the continuum, line, and line core of the individual lines
using the FITSB2 routine (Napiwotzki et al. 2004). The
procedure is described in full detail in Kupfer et al. (2020,
2017a, 2017b). We fitted the wavelength shifts compared to the
rest wavelengths using a χ2 minimization.

To determine the radial-velocity semi-amplitude of the white
dwarf (K1), we fit the radial-velocity measurements using a
sinusoid with a fixed period and zero phase based on the

ephemeris determined from the ZTF data. The two remaining
free parameters are the amplitude (K1) and a systematic
velocity (γ). We use the emcee (Foreman-Mackey et al. 2013)
to determine the best value and uncertainty: K1= 24.2± 1.4
km s−1 (Figure 2).

3.4. Lightcurve Modeling

We modeled the high-cadence lightcurves using the package
ellc (Maxted 2016). We use a spherical star to model the white
dwarf and use Roche-lobe geometry for the companion. The
free parameters for this model are the mid-eclipse time (t0),
inclination (i), mass-ratio (q), the radii divided by the
semimajor axis of both objects (r1,2≡ R1,2/a), the semimajor
axis (a), and the surface brightness ratio (Jg,z).
We used a number of fixed parameters in the binary model.

First, we use the orbital period obtained from the ZTF data
(Section 3.1). For limb-darkening of the white dwarf, we use
tabulated values by Claret et al. (2020) for T=10,000 K
and =glog 8.0( ) .
In addition, we imposed two restrictions on the white dwarf

based on the zero-temperature white dwarf mass–radius
relation by Eggleton as reported in Verbunt & Rappaport
(1988). The first is that it cannot be smaller than a zero-
temperature white dwarf. The second constraint is a Gaussian
prior with a relative size of 5% compared to a zero-temperature
white dwarf to limit the maximum size of the white dwarf. As a

Figure 1. The spectral energy distribution of the ZTFJ0038+2030. Markers show GALEX, Gaia DR3, Pan-STARRS, median ZTF gri, and WISE data. The best-fit
model is shown in gray, with the largest possible contribution by the companion as a dotted line. The substellar companion does not contribute significantly, even in
the WISE W1 and W2 bands in the infrared. We can therefore only derive an upper limit to the companion temperature. The inset shows the averaged and velocity-
corrected ESI spectra, showing from top to bottom: Hδ, Hγ, Hβ, and Hα.

Table 2
Summary of the Follow-up Observations

Date UT Tele./Inst. Nexp Exp. time (s) Wavelength

2020-07-15 11:22-11:57 P200/CHIMERA 400 5.0 g
2020-07-15 11:22-11:57 P200/CHIMERA 400 5.0 z
2020-07-21 12:18-12:39 Keck/ESI/Echellete 2 600 4000–10000 Å
2020-09-12 12:17-12:38 Keck/ESI/Echellete 2 600 4000–10000 Å
2020-09-12 14:16-14:37 Keck/ESI/Echellete 3 600 4000–10000 Å

11 http://svo2.cab.inta-csic.es/theory/fps/
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final constraint, we use a Gaussian prior on the radial velocity
amplitude (K1) of the white dwarf (see Section 3.3).

To find the most probable parameter values and uncertain-
ties, we again use emcee.

4. Results

We measured the binary properties by analyzing ZTF
lightcurves (Section 3.1, used to determine the orbital period),
the spectral energy distribution (Section 3.2, used to derive the
temperatures), phase-resolved spectroscopy (Section 3.3, used
to measure the white dwarf radial velocity semi-amplitude)
and high-cadence g- and z-band lightcurves (used to measure
the mass and radii of both components). The results are
summarized in Table 3 and the posterior of the lightcurve
modeling is shown in the Appendix.

The mass of the companion, which is mostly set by the radial
velocity semi-amplitude measurement, is M2= 0.0593± 0.004
M☉, and a radius of R2= 0.0783± 0.0012 R☉. The z-band
surface brightness ratio limits the temperature of the companion
to 1550 K and the spectral energy distribution constrains the
temperature further to 750 K.

The mass of the white dwarf is 0.50± 0.02M☉ and the
radius is R1= 0.01429± 0.00020 R☉. This is consistent with
the white dwarf M–R relation, which is what we enforced using
a prior. The temperature of the white dwarf is T1= 10,900±
200 K and a surface gravity is = glog 7.83 0.01. This is
slightly different than reported by Gentile Fusillo et al. (2019)

(10,290± 210 K, = glog 7.94 0.07) but is within two
standard deviations.
The orbital separation of the binary system is a=

1.987± 0.027 R☉ and the inclination of this system is i=
89°.71± 0°.13.

5. Discussion

5.1. The Nature of the Substellar Companion

In Figure 3, we plot the mass and radius of the companion
and compare it to models by Marley et al. (2018) and other
binaries with substellar objects. The measured mass and radius
agree with models of 10 Gyr old brown dwarfs with Z 0
abundances. The models predict a temperature of ∼800 K,
which is consistent with the limit we derived from the SED,
750 K (see Figure 1). If we assume a solar abundance or
lower, the age of the brown dwarf (and therefore the system)
is 8 Gyr.
The initial to final mass relation for the white dwarfs

suggests that the white dwarf progenitor was approximately
a 1–2M☉ main-sequence star. This corresponds to a main-
sequence lifetime of 2–10 Gyr (Catalán et al. 2008; Marigo
2013; Cummings et al. 2018). The cooling age of the white
dwarf is approximately ∼400Myr (Koester 2009). Given the
age of the brown dwarf, the white dwarf progenitor mass was
likely closer to the lower bound of the mass range, ≈1M☉.

Figure 2. The top left panel shows the ZTF gri data (green, red, purple) folded to the period. The ZTF data shows a deep, narrow eclipse in all three filters. The right
two panels show the CHIMERA g (top) and z data (bottom) with the best-fit ellc model overplotted. The bottom left panel shows the ESI radial velocity
measurements. The best-fit radial velocity curve is overplotted with the 1-standard deviation in gray and the dotted line indicates the systematic velocity. We modeled
the CHIMERA lightcurves combined with the measured radial velocity to measure the system parameters; see Section 3.4.
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Compared to other substellar objects that are eclipsing white
dwarfs, the mass and radius do not stand out and are similar to
other brown dwarfs. This object does stand out because of its
orbital period, which at 10 hr is an order of magnitude larger
than the three other known brown dwarfs orbiting white
dwarfs. This means that the amount of irradiation by the white
dwarf is relatively low. Using a simple blackbody approx-
imation (Littlefair et al. 2014), we estimate that the temperature
of the brown dwarf is only increased by ∼50 K due to
irradiation by the white dwarf. This fact, and the system’s
relative brightness, make it a good prototype system for long-
period white-dwarf–brown-dwarf systems.

5.2. Formation History

Since the companion is a brown dwarf and not a giant planet,
standard common-envelope evolution can explain the forma-
tion of this system. Given that the mass of the white dwarf is
�0.47Me, the white dwarf very likely has a CO core (see, e.g.,
Marigo 2013 and also Parsons et al. 2017b for observational
evidence) which allows for two formation scenarios. In the first
scenario, the white dwarf could have formed during a common-
envelope phase on the AGB after helium-core exhaustion. The
second scenario is that the common envelope happened at the
tip of the RGB, just after the helium flash (Han et al. 2003)
which would result in a white dwarf with a mass close to
0.47M☉. In that scenario the white dwarf would have emerged
from the common envelope as a hot subdwarf (sdB) and

appeared as an HW Vir system before it evolved into a white
dwarf with a brown dwarf companion after helium exhaustion
in the sdB. Several sdB + brown dwarf systems are known,
although typically seen with shorter orbital periods (e.g., Geier
et al. 2011; Schaffenroth et al. 2015, 2018, 2019).
The white dwarf will slowly cool down and the period will

slowly decrease due to gravitational wave radiation. It will
take ∼135 Gyr to reach an orbital period of ∼40 minutes
(Rappaport et al. 2021), at which point the white dwarf will be
∼1000 K. Roche-lobe overflow will commence and the system
becomes a cataclysmic variable (Littlefair et al. 2003). The
accretion flow will heat up the white dwarf again while the
period increases. This will slowly drain the brown dwarf and
the system ends up as a “period-bouncer”; a very low accretion-
rate CV with an orbital period of ≈90 minutes (e.g Pala et al.
2018).

5.3. Implications for Searches for Brown Dwarfs and Giant
Planets Orbiting White Dwarfs

Here, we briefly discuss the detection efficiency of our
search and the occurrence rate of white dwarfs with transiting
substellar objects. A detailed simulation is beyond the scope of
this paper and we limit ourselves to an order of magnitude
estimate only.
To find ZTFJ0038+2030 we searched the ZTF lightcurves

of the Gaia white dwarf catalog by Gentile Fusillo et al. (2019)
which contains 486,641 candidate white dwarfs over the entire
sky. There are 129,148 white dwarfs brighter than 20 mag with
more than 80 epochs in their ZTF lightcurve. Based on the
number of epochs in these lightcurves, we estimate an average
recovery efficiency of 15%–25% (the probability of getting 7–5
in-eclipse points). We note that we did recover the other three
known eclipsing WD–BD systems (Figure 3) that show longer
eclipse duty cycles and are therefore easier to find than
ZTFJ0038+2030.
With the discovery of ZTFJ0038+2030 and the discovery of

its planet-candidate (Vanderburg et al. 2020), there are now
two known long-period (10 hr) transiting substellar objects
around white dwarfs; the first is most likely a giant planet and
the second a brown dwarf. Based on just these two detections
of long-period transiting objects (10 hr), the occurrence rate
of planets and brown dwarfs is the same order of magnitude. If
we also consider the non-transiting objects, the white-dwarf–
brown-dwarf GD1400 and the white-dwarf–planet system WD
1145+017, we reach a similar conclusion. However, we note
that these latter two systems were discovered due to an infrared
excess and peculiar white dwarf emission lines, which are both
methods that are heavily biased. In order to systematically
measure the occurrence rate of objects spanning masses of
≈0.01–0.07M☉, a white dwarf transit search is needed.12 Such
a survey allows us to measure the mass distribution of white
dwarf companions and determine which of the formation
channels are important in the formation of these objects.
Currently, the ZTF detection efficiency is limited by the

number of epochs available per white dwarf. As more epochs
are obtained, ZTF will be able to identify narrower eclipses,
which means that longer period systems can be identified.
Based on the recovery efficiency of ZTFJ0038+2030, we
estimate that ZTF will find another 3–6 similar-sized objects at

Table 3
Binary Parameters Determined by Modeling the Lightcurves using ellc and

Modeling the SED

p f (d) 0.431 920 8 (14)
t0 (BJDTBD) 2, 459, 045.985194(2)
q -

+0.1167 0.0068
0.0075

i (°) -
+89.71 0.13

0.12

r1 -
+0.007195 0.000078

0.000075

r2 -
+0.03934 0.00019

0.00033

a (R☉) -
+1.987 0.022

0.030

Jg 0.000035
Jz 0.00014

M1 (M☉) -
+0.505 0.018

0.024

M2 (M☉) -
+0.0593 0.0039

0.0036

R1
p (R☉) -

+0.01429 0.00017
0.00022

R2 (R☉) -
+0.0783 0.0011

0.0013

glog 1( ) (cgs) -
+7.832 0.013

0.013

glog 2( ) (cgs) -
+5.425 0.03

0.02

K1
p (km s−1) -

+24.4 1.4
1.4

K2 (km s−1) -
+208.4 2.9

3.7

r2 (g cm−3) -
+174 11

9

K1
p (km s−1) -

+24.4 1.4
1.4

K2 (km s−1) -
+208.4 2.9

3.7

T1 (K) 10900 ± 200
T2 (K) 750
distance (pc) 139 ± 2

Note. The top section lists ellc model parameters; the middle section shows the
binary parameters derived from the ellc fit. We fixed the orbital period (f) and
for the radius of the white dwarf (R1) and radial velocity amplitude (K1) we
used a prior (p). The temperatures, in the bottom section of the table, have been
determined by modeling the SED. We use the 95% percentile to determine
upper limits.

12 A large-scale, precise (1 km s−1) spectroscopic survey to find radial
velocity changes of white dwarfs would also work.
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long orbital periods (10 hr) as it keeps accumulating more
data. Other surveys like Gaia (Gaia Collaboration et al. 2016),
ATLAS (Tonry et al. 2018), and BlackGEM (Groot 2019) can
be used to find similar systems over the whole sky. In the near
future, the Vera C. Rubin observatory (Ivezic̀ et al. 2019) is
expected to find many white dwarfs with exoplanets, possibly
down to Earth-sized objects (Agol 2011).

6. Summary and Outlook

Using ZTF photometry and Gaia and Pan-STARRS data, we
discovered an eclipsing binary composed of a white dwarf and
a substellar companion with an orbital period of 10 hr.
We obtained follow-up photometry and spectroscopy and
measured the binary parameters. We showed that the substellar

Figure 3. The characteristics of substellar objects that are orbiting white dwarfs. Filled black markers show eclipsing systems, with ZTFJ0038+2030 as a star and
other eclipsing systems as triangles (Littlefair et al. 2014; Parsons et al. 2018; Vanderburg et al. 2020; Casewell et al. 2020a). The open circle shows the non-eclipsing
WD–planet system from Gänsicke et al. (2019). Open squares show known non-eclipsing white dwarfs with substellar companions (see Section 1). Of note is GD1400
(Farihi & Christopher 2004; Burleigh et al. 2011), a non-eclipsing system that has almost the same white dwarf mass and orbital period as ZTFJ0038+2030. Open
diamonds show cataclysmic variables with low-mass donors (Longstaff et al. 2019). Grey dots show brown dwarfs and giant planets that orbit main-sequence stars
from Carmichael et al. (2021) and Chen & Kipping (2017). Top panel: the orbital period versus the mass. It shows that the known brown dwarfs orbiting white dwarfs
are typically found at short orbital periods, close to the Roche limit (Rappaport et al. 2013), while substellar objects around main-sequence stars are found at orbital
periods of 1 day. Bottom panel: the radius versus the companion mass. The white dwarf temperature is indicated next to each marker. Models are taken from Marley
et al. (2018). Young or heavily irradiated substellar objects tend to be larger compared to old and non-irradiated objects (Casewell et al. 2020b). Uncertainties for low-
mass objects (M < 0.005M☉) are omitted for clarity.
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companion is a 8 Gyr old, small brown dwarf with a mass of
0.06M☉, and the white dwarf a 0.50M☉, CO white dwarf.
ZTFJ0038+2030 has a much longer orbital period than most
known white-dwarf–brown-dwarf systems, and is very similar
to non-transiting white-dwarf–brown-dwarf GD1400. How-
ever, GD1400 shows an infrared excess (which is how it was
discovered) while ZTFJ0038+2030 does not because the
brown dwarf is older and has a lower temperature.

ZTFJ0038+2030 is relatively bright and because the brown
dwarf suffers minimal irradiation, it can be used to study the
brown dwarf atmosphere, while the mass and radius can be
measured even more precisely by obtaining additional high-
speed photometry and phase-resolved spectra. It is also a useful
target for eclipse timing to find circumbinary objects (e.g., NN
Ser, Marsh et al. 2014) as brown dwarfs are not expected to
show eclipse time variations due to Applegate’s mechanism
(Applegate 1992; Bours et al. 2016). The discovery of this
system demonstrates that ZTF data can be used to find
substellar objects in long periods orbiting white dwarfs and we
expect ZTF to find more of these systems as more data are
obtained.
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Appendix
Appendix Information

Figure 4 shows the posterior distribution of the Chimera
lightcurve modelling.
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