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ABSTRACT

This work reassesses previous results and generalizes the expression for the low-frequency
spectrum of magnetic fields fluctuations in a thermal plasma, that was previously obtained within
the framework of the fluctuation-dissipation theorem. The new approach presented here is able to
avoid any approximation yielding a unique expression that covers both the low- and high-frequency
spectrum, without the need of procedures to smooth the junction between the two limit frequency
regions formerly used. Also, the simultaneous dependence of this intensity on the plasma and on
the collisional frequencies is discussed. Finally, the total emitted plasma energy is compared to the
Stefan-Boltzmann law of a pure black-body.
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1 INTRODUCTION

Our universe is filled with magnetic fields present
in almost all galaxies and clusters of galaxies,
which are essential for many physical processes,
such as synchrotron radiation generated by
astronomical objects like pulsars and quasars.
One possible explanation for these fields is built
by considering an initially weak field, which
is amplified by a dynamo mechanism [1, 2,
3, 4]. However, this process needs a so-
called seed field. These seed fields are
presumed to be generated shortly after the
Big Bang. Several theoretical explanations of
how they were created can be found in the
literature, such as the Biermann mechanism [5],
supernova explosion [6, 7, 8], electromagnetic
fluctuations in plasma [9, 10, 11] and others.
Considering this last topic, Tajima, et al. [12]
noted a lack of a concrete expression of the low-
frequency spectrum of fluctuations of magnetic
fields in thermal plasma and argued that this low-
frequency spectrum can be the origin of magnetic
fields in the Universe.

Fluctuations of physical quantities near zero
frequency have been investigated by several
authors since the papers of Johnson [13]
and Nyquist [14]. A general theory on the
fluctuation-dissipation theorem, which will be
the starting point of this paper, was developed
in [15]. To the best of our knowledge, an
approximated expression for the low-frequency
spectrum of magnetic fields fluctuations in a
thermal plasma was obtained for the first
time in [16]. They found a peak around
ω “ 0 magnetic fluctuation which was
interpreted as the evanescent energy component
of electromagnetic fluctuations “screened” in
plasma, below the plasma frequency. The
impact of such a result into the cosmic

microwave background was then investigated
in [12]. Although in these two references
the authors claim that the fluctuations were
rigorously computed, several approximations
were indeed made and they were not able to get
a unique formula covering both the low- and high-
frequency spectrum. Some criticism concerning
Tajima’s results can be found in [17, 18], where
a new model was developed including thermal
effects as well as collisional effects.

The aim of this paper is very specific. We
reevaluate the derivation of the spectrum of
magnetic fluctuations, in the case of electron-
positron plasma, avoiding any approximation
in the low-frequency region and also in the
transition between the low- and the high-
frequency spectrum. Several different behaviors
between ours and previous results [16, 18],
mainly in the low-frequency part of the spectrum,
are found and discussed. We are also able to
make new quantitative predictions, such as how
the energy density of the magnetic fields deviates
from the Stefan-Boltzmann law of an ideal black-
body.

2 THE FIRST PREDICTIONS

The fluctuation-dissipation theorem developed
in [15] can deal with the thermal fluctuations
inside a plasma in or near thermal equilibrium.
The expression for the magnetic field fluctuation
in a homogeneous isotropic non-magnetized
equilibrium plasma was obtained in [16] looking
at waves in such a plasma. In an electron-
positron plasma, for example, the magnetic
fluctuations in wavenumber and frequency space
are given as a function of the plasma temperature
T by

xB2yk⃗,ω

8π
“

2~ω
e~ω{k

B
T ´ 1

ηω2
p ˆ

(2.1)

ˆ
k2c2

pω2 ` η2qk4c4 ` 2ω2pω2
p ´ ω2 ´ η2qk2c2 ` rpω2 ´ ω2

pq2 ` η2ω2sω2
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where kB is the Boltzmann constant, and ωp and
η are, respectively, the plasma and collisional
frequencies. In an electron-positron plasma, the
plasma frequency ωp is given by the relation ω2

p “

ω2
pe` ` ω2

pe´ ; since ωpe` “ ωpe´ we have

ω2
p “ 2ω2

pe; ω2
pe “

ne4πe
2

γme
; and γ “ 1`

kBT

mec2

with e and me being, respectively, the charge
and the mass of the constituents (electrons and
positrons) of the plasma, ne being the electron
(positron) density. In addition, the collisional
frequency is

ηe´ “ ηe` “ η “ ηe “ 2.91ˆ10´6 ne T
´1.5 lnpΛq

with
lnpΛq “ ln

`

4πneλ
3
D

˘

where λD is the Debye’s length

λD “

c

kBT

4πnee2
(2.2)

Integrating the former equation in dk⃗ “

4πk2dk we get (the Fourier transform)

Spωq ”
xB2yω

8π
“

ż

dk⃗
p2πq3

xB2yk⃗,ω

8π

”

ż 8

0

Spω, kqdk (2.3)

Thus we have to solve the following integral:

Spωq ”
2~ω

e~ω{k
B

T ´ 1

η

p2πq3
ω2
p

c2
ˆ

ˆ

ż 8

0

p4πqk4dk

pω2
` η2

qk4
`

2ω2

c2
pω2

p ´ ω2
´ η2

qk2
`

„

pω2 ´ ω2
pq2 ` η2ω2

c4

ȷ

ω2

(2.4)

The integral over wavenumbers to be solved in
Eq. (2.4) clearly shows a high wavenumber linear
divergence. According to [16], this is expected
since the derivation is based on classical fluid
equations of motion and the constant collision
frequency η is considered to be independent of
k. However, they prefer to carry on their analyzes
in the simpler phenomenological approach. To
overcome the large k dependence, they first take
the limit η Ñ 0 and then they integrate over k to
infinity, which corresponds to the vanishing cross
section of collisions as k Ñ 8. This is a very
delicate point and we will turn back to this point
in Section 3. For both the high frequency and
high wavenumber limits the authors emphasized
that the expression of Eq. (2.1) has a substantial
value only where ω2 ´ c2k2 ´ ω2

p » 0. The
combined high-frequency and high wavenumber
limits were got by letting η Ñ 0. The expression
for the low-frequency spectrum was obtained by

breaking up the k integral into two intervals,
by introducing what the authors called “a cutoff
value” kcut, with xcut ” kcutc{ωpe. Technically, this
kcut is not really a cutoff. It would be better to be
called a “convergence point” which was arbitrarily
chosen by Tajima, et al. to obtain a smooth
connection at the joining point of the low and high
spectrum. Although these authors sustain that
their results do not critically depend on this upper
limit, it was shown in [18] that this is not true.
The integration from 0 to kcut done in [16, 12], η
was kept finite while in the integral from kcut to 8

the approximation η Ñ 0 was considered. The
expressions obtained for the high and low parts
of the spectrum were, respectively:

xB2yω

8π
“

T

2π
δpωq

ż

ω2
p

ω2
p ` c2k2

k2dk`

`
1

2πc3
~

e~ω{k
B

T ´ 1
pω2

´ ω2
pq

3{2

(2.5)

and

Spω1
q ”

xB2yω1

8π
“

1

π2

~ω1

ep~ω1
pe{k

B
T qω1

´ 1
2η1

´ωpe

c

¯3

ˆ

ż

x4

pω12 ` η12qx4 ` ¨ ¨ ¨
dx `

(2.6)

`
~pω12 ´ ω12

p q3{2

2πep~ωpe{k
B

T qω1
´ 1

´ωpe

c

¯3

ˆ Θpω ´

b

c2k2
cut ` ω2

pq
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where Θ is the Heaviside step function; η1 ”

η{ωpe, ω1 ” ω{ωpe, and ω1
p ” ωp{ωpe.

Defining, as in [16] and [18], the normalization
factor

S0 “
ω2
pekBT

c3
(2.7)

we can numerically reproduce the previous
results, based on Eq. (2.6), of those references

as shown in Fig.1.

Finally, the zero frequency limit of the magnetic
fluctuations is give by

lim
ωÑ0

xB2yω

8π
“

~ω1

π2pe~ωpeω1{k
B

T ´ 1q
ˆ

ˆ 2
´ωpe

c

¯3 1

η1

ż xcut

0

dx (2.8)

Fig. 1. Plot of the normalized magnetic field spectrum of Eq. (2.6) made by us (full line),
compared to the plot given in Fig. 1.b of [18], both ploted for T “ 7 ˆ 109 K,

ne “ 4.6 ˆ 1030 cm´3 (γ “ 1).

At this point the frequency spectral intensity
was plotted for a temperature T “ 1010 K,
by requiring that the value of kcut (or xcut)
provide a smooth behavior at the joint between
the low-frequency spectrum and the black-body
spectrum. The choice was kcut „ ωpe{c or (xcut „

1q. The result for other temperature values were
presented in another paper [12]. The main claims
by these authors was that the intensity of the
spectrum does not vary sensitively with kcut and
that, near ω “ 0, the spectrum goes like ω´2.
Let us now show our general and exact
results.

3 GENERAL RESULT

Our analytical solution for Eq. (2.4) was obtained
by introducing a dimensionless variable y “ k{k˝,
where k˝ “ ω{c, and reducing the integrand into

partial fractions, namely

Spωq “ Db

ż 8

0

y4dy
y4 ´ 2ay2 ` C

“ Db

ż 8

0

F pyq

fpyq
dy

with D ” π´2
´

~ω2

e
~ω{k

B
T

´1

¯

ˆ

ω2
p

c3

˙

η, a ”
ˆ

1 ´
ω2
p

ω2`η2

˙

, b “ pω2 ` η2q´1, C ” 1 `

ω2
p

ω2`η2

ˆ

ω2
p

ω2 ´ 2

˙

, F pyq “ ´2ay2 ` C and fpyq “

y4 ´ 2ay2 ` C. The ratio between these two
functions is expressed as

F pyq

fpyq
“

A1

y ´ y1
`

A2

y ´ y2
`

A3

y ´ y3
`

A4

y ´ y4

where yi are the roots of fpyq and Ai “

F pyiq{f 1pyiq, for i “ 1, 2, 3, 4. A straightforward
calculation gives rise to our expression for
Spωq, which will be expressed as a function
of the variable ω1 “ ω{ωpe to facilitate future
comparisons, i.e.,

13
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Spω1
q “

1

π2ω1 2

ˆ

~ω1 3

ep~ωpe{k
B

T qω1
´ 1

˙

´ωpe

c

¯3

ˆ

ˆ

"

2λc
η1

ω1 2 ` η1 2
` fpω1

q

”

hpω1
q
a

gpω1q ` hpω1q ´ 2η1
a

gpω1q ´ hpω1q

ı

*

(3.1)

where λc “ kcutc{ωpe, and f , g and h are
functions defined by:

fpω1
q “

π

2
?
2

ω1 1{2

pω1 2 ` η1 2q3{2

gpω1
q “ pω1 2

` η1 2
q
1{2

ˆ

ˆ
a

ω1 2pω1 2 ` η1 2q ` 4p1 ´ ω1 2q

hpω1
q “ ω1

pω1 2
` η1 2

´ 2q

The constant λc represents, in our scheme,
the cutoff to avoid the linear divergence in the
wavenumber variable and, thus, must assume
a high value. For us, λc has the same

purpose of the xmax “ kmaxc{ωpe used in the
Tajima et al. works, where kmax is introduced
to avoid in a Coulomb collision that, for small
distances, the Coulomb energy exceeds the
kinetic energy. This occurs approximately for the
closest approximation distance of a test particle
and an electron in the plasma (See Ref. [18]).
Therefore, λc cannot be of the order of 1. For
the sake of future comparisons, we will fix the
following plasma parameters: T » 1010 K,
ne » 4.8 ˆ 1030 cm´3 and λc » 2 444.4. In
any case, we can show that we have a small
dependency of Eq. (3.1) with the λc value as can
be inferred from Fig. 2.

Fig. 2. Plot of ln
“

Spω1q{S0

‰

, where Spω1q is given by Eq. (3.1) considering the following
parameters: 0 ă ω1 ď 10, γ “ 2.18724, T “ 7 ˆ 109 K, ne “ 4.6 ˆ 1030 cm´3 and a huge range of

λc values.

Our exact results, based on Eq. (3.1), are plotted
in Figs. 3 and 4, considering, respectively, two
different ranges for ω1 (0 ă ω1 ă 10, and 0 ă

ω1 ă 100), with S0 defined in Eq. (2.7):

They are both in good agreement with the results
of [18].

Lastly, in order to study the behavior of S
by varying both the plasma’s frequency and
temperature, we have to come back to the
variables ω and T , since ω1 “ ω1pT q.

We still need to know how the plasma density ne

varies with the temperature T .

14
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Fig. 3. Plot of ln
“

Spω1q{S0

‰

, where Spω1q is given by Eq. (3.1), for the following parameters:
0 ă ω1 ď 10, γ “ 2.18724, T “ 7 ˆ 109 K, ne “ 4.6 ˆ 1030 cm´3 and λ “ 2 444.4.

Fig. 4. Plot of ln
“

Spω1q{S0

‰

, where Spω1q is given by Eq. (3.1), for the following parameters:
0 ă ω1 ď 100, γ “ 2.18724, T “ 7 ˆ 109 K, ne “ 4.6 ˆ 1030 cm´3 and λ “ 2 444.4.

Generalizing the book of Paul M. Bellan [19],
inside the plasma, i.e., for |x| " λD, we will
assume that the electron distribution function is
given by a Maxwell-Jüttner distribution [20, 21]
with temperature T . This distribution describes
the situation where the gas becomes hotter and
kBT approaches or exceeds mc2. Since the
distribution function depends only on constants
of the motion, the one-dimensional electron
velocity distribution function must depend only

on the electron energy E ` qexφpxqy, having the
following dependence

fepγ, xq “
γ2β

θK2p1{θq
ˆ

ˆ exp
”

´

´γ

θ
` qexφpxqy{kBT

¯ı

where β “ v{c “
a

1 ´ 1{γ2, θ “ kBT {mc2 and
K2 is the modified Bessel function of the second

15
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kind. So, the electron density is

nepxq “

ż 8

´8

dγfepγ, 0q

“ n˝ expp´qexφpxqy{kBT q

Let us take from the mean plasma density the
expression

ne “ n˝e
´λ{kBT (3.2)

The parameters n˝ and λ are fixed by using two
different inputs [18]: ne “ 4.8 ˆ 1030 for T “

1ˆ1010 K, and ne “ 4.6ˆ1030 for T “ 7ˆ109 K.
We have to solve the system

4.8 ˆ 1030 “ n˝ e
´λ{861730

4.6 ˆ 1030 “ n˝ e
´λ{603211

which has the following solutions:

n˝ “ 5.30ˆ1030 cm´3; and λ “ 8.56ˆ104 eV
(3.3)

Thus, in our future calculations, we will adopt the
following expression for apT q:

a “
2e~
kBT

ˆ

2πn˝

γme

˙1{2

e´λ{p2kBT q (3.4)

So, using Eqs. (3.2), (3.3) and (3.4), we get the
result shown in Fig. 5 for Spω, T q.

Fig. 5. Plot of Spω, T q considering the same parameters as the Fig. 4 but with variable
temperature.

In Fig. (6) it is shown how our prediction depends on the choice of the γ factor.

16
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Fig. 6. Our prediction for lnrSpω1q{S0s for γ “ 1 and γ “ 2.18724.

Finally, the prediction of our model compared
to that of [18] is shown in Fig. 7. One should
remember that the prediction of [18] is based on
a model that extends that of [16] and [12] by
including both thermal and collisional effects in
the plasma description. Notice, however, that

when this prediction is compared to ours we
get quite good agreement, which means that
the previous discrepancy between the previously
cited papers is mainly due to the approximations
introduced in [16] and [12] which were not
necessary in our approach.

Fig. 7. Plot of the normalized magnetic field spectrum of Eq. (3.1) made by us (full line),
compared to the plot given in Fig. 4.b of [18], both for T “ 7 ˆ 109 K, ne “ 4.6 ˆ 1030 cm´3 and

λ “ 2 444.4 (γ “ 1).
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4 SOME USEFUL LIMITS

4.1 The limit ω1 Ñ 0

Let us calculate now the limit ω1 Ñ 0, given by
Eq. (3.1).

S˝

ˇ

ˇ

ˇ

ω1»0
“

1

π2

´ωpe

c

¯3 ~ω1

1 `
~ωpe

kBT
ω1

´ 1

»
1

π2

ω2
pe

c3
kBT

Thus,

Spω1
q

ˇ

ˇ

ˇ

ω1»0
“ S˝

ˇ

ˇ

ˇ

ω1»0
ˆ

ˆ

$

’

’

&

’

’

%

2λc

η1
` fpω1

q

ˇ

ˇ

ˇ

ω1»0
looooomooooon

0

ˆr¨ ¨ ¨ s

,

/

/

.

/

/

-

or, finally, our prediction is

Spω1
q

ˇ

ˇ

ˇ

ω1»0
“

2

π2

ω2
pekB

c3η1
λc T

This is exactly what Tajima has found (kB “ 1),1

lim
ωÑ0

ă B2 ąω

8π
“

2

π2

ω2
pe

c3η1
xcut T

with

xcut “
kcutc

ωpe
ñ xcut » 1

while for us

ckmax

ω
“

λcωpe

ω
ñ λc “

ckmax

ωpe

which is the same factor.

4.2 The η1 Ñ 0 limit of Spω1q

Let us now determine the η1 Ñ 0 limit of Spω1q,
given by Eq. (3.1). It is given by

Spω1
q “

S˝

ω1 2
fpω1

qhpω1
q
a

gpω1q ` hpω1q

ˇ

ˇ

ˇ

η1“0

where,

S˝

ω1 2
“

1

π2

ˆ

~ω1

ep~ωpe{k
B

T qω1
´ 1

˙

´ωpe

c

¯3

fpω1
q Ñ

π
?
2

?
ω1

ω1 3

hpω1
q Ñ ω1

pω1 2
´ 2q

gpω1
q Ñ ω1

?
ω1 4 ` 4 ´ 4ω1 2 “ ω1

pω1 2
´ 2q

Thus,

Spω1
q Ñ

1

π2

ˆ

~ω1

ep~ωpe{k
B

T qω1
´ 1

˙

´ωpe

c

¯3

ˆ

ˆ
π

?
2

?
ω1

ω1 3
ω1

pω1 2
´ 2q

a

2ω1pω1 2 ´ 2q

or

Spω1
q “

1

π

ˆ

~pω1 2 ´ 2q3{2

ep~ωpe{kT qω1
´ 1

˙

´ωpe

c

¯3

(4.1)

This is exactly 2 times the second term of
the principal formula of Tajima et al, which
appears multiplied by the Heaviside function
θpω ´

a

c2kcut ` ω2
pq, which, for us, is just2

θpω1 2 ´ 2q.

If ω1 "
?
2 (or in the limit ωpe Ñ 0), we get the

well known Planck distribution3

SPlanckpω1
q “

1

π

ˆ

~ω1 3

ep~ωpe{kT qω1
´ 1

˙

´ωpe

c

¯3

Thus, asymptotically, this result gives rise to the
Stefan-Boltzmann law, ET 9T 4, if we integrate
SPlanckpω1q over ω1. However, for the plasma,
we have to integrate Eq. (4.1). It is clear that
the contribution to this integral from the range?
2 ď ω1 ď 10, should yield a small deviation from

this law. Let us now demonstrate it and determine
its value.

1Eq. (19) of [16].
2Otherwise, the term pω1 2 ´ 2q3{2 could be imaginary.
3We can see graphically that this is the case for ω1 ě 10.
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5 DEVIATION FROM THE
STEFAN-BOLTZMANN LAW

We have to solve the following integral to
calculate the energy density of the cold plasma,
ET , with Spω1q given by Eq. (4.1):

ET “

ż 8

?
2

Spωq

2π
dω

Rewriting Spω1q as a function of ω, Spωq,

Spωq “
1

π

ˆ

~pω2 ´ 2ωpeq3{2

ep~ω{kT q ´ 1

˙ ˆ

1

c

˙3

So,

ET “

ż 8

?
2

Spωq

2π
dω (5.1)

“
~

2π2c3

ż 8

?
2ωpe

pω2 ´ 2ω2
peq3{2

e~ω{kBT
dω

Let us make

ω “
kBT

~
z ñ dω “

kBT

~
dz

In terms of this new variable z,

ET “
1

2π2~3c3
pkBT q

4

ż 8

a

z3p1 ´ a2{z2q3{2

ez ´ 1
dz

loooooooooooooomoooooooooooooon

J

(5.2)
where apT q is given by Eq. (3.4).

The integral of Eq. (5.2) can be numerically
solved and we find J “ 6.42733. For the values
of T we are considering in the range 109´1010 K,
a2 » 0.0003. So, we can made the approximation
below, which can be numerically verified to be a
good approximation. Indeed,

J »

ż 8

a

pz3 ´ 3a2z{2q

ez ´ 1
dz “ 6.42576

So, we have to compute two integrals:

J “

ż 8

a

z3

ez ´ 1
dz ´

3a2

2

ż 8

a

z

ez ´ 1
dz

It is convenient to have the integral from 0 to 8

and, then, let us define y “ z ´ a. With this
change,

J “ e´a

"
ż 8

0

py ` aq3

ey ´ e´a
´

3a2py ` aq

2pey ´ e´aq
dy

*

All those integrals are particular cases of the
integral ([22], p. 354, Eq. (22)):

ż 8

0

xp´1

erx ´ q
dx “

1

qrp
Γppq

8
ÿ

k“1

qk

kp

“ Γppqr´pΦpq, p, 1q

if rp ą 0, r ą 0,´1, q, 1s, where Φ is the Lerch
function ([22], p. 1039), and Γ is the usual gamma
function. In our case, r “ 1 and q “ e´a.
Knowing this general result, we have to compute:

J “

ż 8

0

y3 ` 3ay2 ` 3a2y ` a3

ey ´ e´a
dy

looooooooooooooooooomooooooooooooooooooon

J1

`

`

ż 8

0

y ` a

ey ´ e´a
dy

looooooooomooooooooon

J2

where J2 “ Γp2qΦpe´a, 2, 1q ` aΦpe´a, 1, 1q

and

J1 “ Γp4qΦpe´a, 4, 1q ` 3aΓp3qΦpe´a, 3, 1q `

` 3a2Γp2qΦpe´a, 2, 1q ` a3Φpe´a, 1, 1q

But we know also that, in general,

Φpe´a, n, 1q “
Linpe´aq

e´a

where Linpxq is the polylogarithm function.

Therefore, in terms of this function, J “ J1 ` J2

can be written as

J “ 6 Li4pe´a
q ` 6a Li3pe´a

q `

`
3

2
a2 Li2pe´a

q ´
1

2
a3 Li1pe´a

q (5.3)

Knowing how a depends on T , Eq. (3.4), the
above equation is the general expression for the
T -dependence of our result given by Eq. (5.2),
in the interval 2 ď ω1 ď 10. This dependence
was not discussed by Tajima. Note that the
above equation gives the same numerical result
previously found, i.e., J “ 6.42576. Therefore,
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ET “
1

2π2~3c3
pkBT q

4
“ 6 Li4pe´a

q ` 6a Li3pe´a
q `

3

2
a2 Li2pe´a

q ´
1

2
a3 Li1pe´a

q

or, in a more convenient formula,

ET “

ˆ

2σ

c

˙

T 4
ˆ

15

π4

„

6 Li4pe´a
q ` 6a Li3pe´a

q `
3

2
a2 Li2pe´a

q ´
1

2
a3 Li1pe´a

q

ȷ

(5.4)

where we have introduced the usual Stefan-
Boltzmann constant σ:

σ “

ˆ

π2k4
B

60~3c2

˙

“ 5.670ˆ10´5 erg ¨cm´2
¨s´1

¨K´4

To plot Eq. (5.4) we have used the expression for

apT q given by Eq. (3.4).

Notice that the expression for plasma radiated
energy, ET (in red in Fig. 8, is below the curve
for the magnetic component of the black-body
radiation (in blue), p2σ{cqT 4, for an intermediate
region of temperature.

Fig. 8. Deviation from the Stefan-Boltzmann law.

6 CONCLUSION

In this paper, we have computed the spectrum of
magnetic fluctuations of a homogeneous cosmic
plasma avoiding any approximations. Several
different behaviors between our results and the
previous one obtained by [12], mainly in the low-
frequency part of the spectrum, are found and
discussed. It is important to stress that the
exact result indicates that the peak of the zero-
frequency spectrum is not so sensitively to the
cut-off value λc, as shown in Fig. 2.
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