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ABSTRACT 
 

This paper discusses the development of a multiple regression model to predict the final 
examination marks of students in an undergraduate business statistics course. The marks of a 
sample of 366 students in the Winter 2017 semester were used to fit the regression model. The 
final model contained three predictor variables namely two test marks and the homework 
assignment mark. The marks of another 194 students from Winter 2018 were used to validate the 
model. The model validation showed that it can be used for future cohorts of students for prediction. 
The two main objectives of the study were to use the model as a teaching tool in class and to use 
the model to predict final examination marks of future students. 
 

 

Keywords: Multiple regression; prediction; multicollinearity; forecasting; performance; statistics 
education; evaluation in higher education. 

 

1. INTRODUCTION 
 

Generally, there is a growing anxiety among 
students before their final examination to know 

how they will perform overall in the course. “Am I 
going to pass or fail the course?” is a commonly 
asked question. If we can answer this question in 
an effective way, it would lead some poor-
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performing students to drop the course without 
academic penalty and some better-performing 
students to get some extra motivation to perform 
well in the final examination. Some students 
expect help form their instructor in this scenario 
and the instructors can use several tools 
available to them to comment on the students’ 
performance. One method is that the instructor 
can calculate the student’s current course 
average by averaging their marks so far and 
provide them with information on how they 
should perform in the final examination to reach 
a respectable grade. This is an estimated guess 
based on the student’s past performance. This 
estimate would not provide them with any                
future predictions. Using a reliable and valid 
regression model to predict their final 
examination score from their current scors is a 
much better way to satisfy and motivate students 
further. 
 
This study has developed a multiple regression 
model to predict the final examination marks of 
students in an undergraduate Business Statistics 
course in a mid-sized urban university in Ontario, 
Canada. A sample of 366 students’ marks from 
two tests and an online homework assignment in 
the Winter 2017 semester was used to fit the 
regression model. Another set of 194 student 
marks from Winter 2018 was used to validate the 
model. The steps followed in the model building 
process were: fitting the regression model, 
testing the assumptions, interpreting the 
coefficients, testing the significance of                  
the model and individual coefficients, and,  
finally, validating the model. Initially, six              
predictor variables were used and after fitting the 
model using the forward selection method in 
SPSS, three variables were eliminated by the 
procedure as insignificant to the final model. The 
final model contained three predictor variables 
namely test 1, test 2, and the homework 
assignment marks. Coefficients of the model 
were interpreted, and the model was assessed 
for validity to predict the final examination marks 
of a similar course. The model validation also 
showed that it can be used for future cohorts of 
students.  
 
The study has two main objectives: 1) To teach 
students as part of their course work to fit a 
multiple regression model from their own data 
and predict their individual final examination 
marks. 2) Use the model to predict final 
examination marks for students in future 
semesters [1]. 

One advantage of this study is that the students 
will get a real chance to utilize the data collected 
from their own class rather than using the data 
collected by others for different purposes. The 
process will allow students to go through the 
entire model building process with guided 
practice before tackling a large data set on their 
own in later courses involving various forms of 
regression. The exercise also will increase 
students’ conceptual understanding and practical 
problems of substantive issues related to 
regression. 
 

2. THEORETICAL FRAMEWORK  
 

2.1 Fitting a Regression Model  
 
Multiple regression is a frequently used statistical 
method for analyzing data when there are 
multiple independent variables. The approach is 
used most commonly in associational 
relationships and it can be used in place of 
analysis of variance [2]. According to Kuiper [3], 
there are three main uses of multiple regression 
namely, description, prediction, and confirmation. 
Description is to describe the relationship 
between the explanatory variables and the 
response variable. Prediction is to use the model 
to make predictions and confirmation is to 
develop theories using the model.  
 
Multiple regression involves the use of more than 
one independent variable to predict a dependent 
variable [4]. In a multiple linear regression model, 
the response, Y, is a random variable that is 
related to the independent (predictor) k variables 

𝑋1 , 𝑋2 , …, 𝑋𝑘  by the population regression 

equation,  
 

Y = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + … + 𝛽𝑘𝑋𝑘 + 𝜀         (1) 

 
where for the ith observation, Y = 𝑌𝑖 and 𝑋1, 𝑋2, 

𝑋3,…. 𝑋𝑘 , are set at values 𝑋𝑖1 , 𝑋𝑖2 , 𝑋𝑖3 ,…. 𝑋𝑖𝑘 . 

The 𝜀 s are error components that are the 

deviations of the response from the true relation. 
They are unobservable random variables 
accounting for the effect of other factors on the 
response. The errors are assumed to be 
independent and normally distributed with mean 
0 and unknown standard deviation, 𝜎. Given the 

sample data, the regression coefficients are 
determined by using the method of lease 
squares. The sample linear regression equation 
can be written as  
 

Y = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + … + 𝑏𝑘𝑋𝑘.               (2) 
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There are several variable selection methods 
that can be used when deciding which variables 
are to be included in a regression model. In 
SPSS, there are methods such as forward 
selection, backward elimination, and stepwise. 
Forward selection is a step-by-step procedure, 
that enters variables into the model each time 
having the largest absolute t- value until there 
are no more variables having this criterion. In this 
method, the variable that correlates highly with 
the dependent variable gets entered to the 
equation first, and stays in the equation and this 
process is repeated until all significant variables 
are added to the model [5]. 
 

2.2 Adequacy of the Model 
 
After fitting a regression model, it is necessary to 
examine whether the fitted model is adequate for 
prediction and estimation purposes. A simple 
measure to explain model adequacy is using the 

𝑅2  (adjusted). This measure explains the 

proportion of variability in the response, Y, 
explained by the predictors after adjusting for the 
sample size and the number of independent 
variables in the model. It is a measure which can 
be used to compare several models to select the 
best model. Hypothesis testing is a better way of 
assessing the overall significance of the model. 
An F-test will test the significance of all the 
predictors collectively to the model. T-tests are 
used to test the significance of the individual 
predictor variables to the model. The confidence 
intervals for each regression coefficient explains 
the range of values that the mean of Y can take 
given a unit change in the corresponding 
predictor variable. Finally, the standard error of 
the regression model measures the spread of the 
observed y-values about the fitted regression 
line. We can expect that approximately 95% of 
the observed y-values lie within 2 standard errors 
of the fitted line if the errors are normally 
distributed. 
 

2.3 Testing Model Assumptions 
 
There are four assumptions in regression 
analysis namely, linearity, independence, 
normality, and equal variance that can be tested 
using a variety of methods. The linearity 
assumption states that there is a linear 
relationship between the dependent variable and 
each independent variable. This can be checked 
using scatter plots between the dependent 
variable and each independent variable. If the 
plots show a linear pattern, then it is assumed to 
be a linear relationship between the dependent 

and those predictor variables. Otherwise, higher 
order terms for predictor variables or data 
transformations are necessary to come up with a 
reasonable model. The second assumption is 
that the errors (residuals) are independent of one 
another. Errors are the differences between the 
observed Y values from the data and the 
predicted Y values obtained from the fitted 
regression equation. The independence 
assumption can be tested using plots between 
the residuals and each independent variable. 
When the assumption is satisfied, the plots show 
no linear or other curvilinear patterns.  
 
The third, normality assumption indicates that the 
errors are normally distributed. This can be 
tested using a normal probability plot, which 
compares the cumulative distribution of the 
observed residuals with the expected values 
derived from the normal distribution, which forms 
a straight line. If the observed data fall close to 
the expected line, this assumption is satisfied [6]. 
Fourth, the equal variance assumption is that the 
errors have constant variance for all levels of the 
independent variables. A residual plot can 
diagnose this assumption. If the graph of 
standardized residuals and standardized 
predicted values shows no pattern and the points 
are scattered randomly in a uniform manner on 
the graph, this assumption is satisfied. In 
situations where this assumption is violated, data 
transformations are necessary before fitting a 
regression line.  
 

2.4 Multicollinearity 
 
When the data for regression are routinely 
recorded rather than obtained from preselected 
settings in controlled experiments, the 
independent variables often are linearly related. 
This condition is called multicollinearity. “If two 
independent variables are highly related to each 
other, they will explain the same variation, and 
the addition of the second variable will not 
improve the forecast. In the fields such as 
econometrics and applied statistics, there is a 
great deal of concern with this problem of 
intercorrelation among independent variables, 
often referred to as multicollinearity” [4]. There 
are several methods of tackling multicollinearity. 
A covariance matrix shows the correlation 
coefficients between any two independent 
variables and if the coefficients are high and 
close to -1 or 1, multicollinearity exists. 
 
Another method is to examine the Variance 
Inflation Factors (VIF) for individual β 
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parameters. When VIFs are greater than 10, a 
serious multicollinearity problem exists [7]. VIFs 
less than 10 for predictors indicate that 
independent variables are not correlated. 
Another procedure is to use stepwise regression 
method to fit the regression line since this 
procedure tests the parameter associated with 
each variable in the presence of all the other 
variables already in the model. Another 
advanced method is to use ridge regression 
instead of the lease squares method to fit the 
regression line. In ridge regression, the β 
coefficients are more stable than in the least 
squares method. 
 
Another method is to examine the condition 
index (CI) for each independent variable in the 
model. Ho [5] commented on how to detect a 
multicollinearity problem using the CI. “The 
condition index summarizes the findings, and a 
common rule of thumb is that a condition index 
over 15 indicates a possible multicollinearity 
problem and a condition index over 30 suggests 
a serious multicollinearity problem” [5]. One or 
more above methods can be used to examine 
multicollinearity in predictor variables. Both VIFs 
and CIs were used in the current study to detect 
multicollinearity. 
 

2.5 Validation of the Model 
 
One of the objectives of fitting a regression 
model to the current data is to use the model for 
future predictions. Therefore, it is important to 
assess the validity of the model for this purpose. 
Some methods of model validation are: 
examining the predicted values, examining the 
estimated model parameters, applying the model 
to a new data set, data splitting, and Jackknifing.  
 
Mendenhall. & Sincich [8] provided the following 
formula to calculate the Mean Square Error 
(MSE) of the prediction. 
 

𝑀𝑆𝐸𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  = ∑ (𝑦𝑖−�̂�𝑖)2𝑛
𝑖=1

𝑛−(𝑘+1)

 ,                         (3) 

 
where n is the number of new sample 
observations and k is the number of independent 
variables in the fitted model. 𝑦𝑖  represents the 

values of the dependent variable in the new 
sample data and �̂�𝑖  represents the predicted 

values for the new data using the previously 
fitted regression model. Montgomery, Peck, & 
Vining [7] stated that the number of observations 
in the new data set should be large enough to 
reliably assess the model’s prediction capability. 

They recommended to use 15 to 20 new 
observations at a minimum for validation. This 
method was used in the current study to validate 
the model. 
 

2.6 The Educational Value 
 
It is challenging when teaching multiple 
regression concepts without interesting real-life 
datasets and to put together all the concepts in 
one large example. For example, concepts like 
Prediction, validation, and testing assumptions 
are explained in textbooks quite often illustrated 
through small-scale data sets. This is challenging 
for students to perceive how these concepts 
might be applied in more realistic multi-variable 
problems. This article attempts to address this 
problem by describing a complete multiple linear 
regression analysis procedure by analyzing a 
large set of student data from a previous cohort 
of students. It is a comprehensive analysis in the 
sense that all the important steps in regression 
analysis namely formulating the model, testing 
assumptions of regression, validating the model, 
and prediction using the model are discussed. 
The analysis also contains useful practical advice 
on model building. Secondly, instructors can use 
the method for their own student data thereby 
serving the procudure as a teaching tool. As said 
earlier, a comprehesive analysis is given with 
real data as a module if teachers wish to adapt it. 
Therefore, the content of the article serves as a 
learning exercise for students and a teaching tool 
for teachers.  
 

3. DATA ANALYSIS 
 

3.1 Data Description 
 
The data file contained the marks of 366 
students from an Introductory Business Statistics 
course offered by the business school of an 
Ontario university during Winter 2017. This 
statistics course was a mandatory requirement 
for all Bachelor of Commerce (B. Com.) students 
in the business school (…… University, 2018).  
 

As admission requirements to the B. Com. 
Degree, enrolling students need to have Ontario 
Secondary School Diploma (OSSD) or equivalent 
with a minimum of six Grade 12U or M courses. 
English (ENG4U/EAE4U) and one of Advanced 
Functions (MHF4U), Calculus and Vectors 
(MCV4U) or Mathematics of Data Management 
(MDM4U) are preferred courses. The minimum 
grades required in the subject prerequisites 
normally are in the 70% range and this cut-off 
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mark differs subject to competition. In addition, a 
few international students enroll in each year with 
other equivalent international qualifications. 
Considering these entry requirements, it is 
reasonable to assume that the cohort of students 
enrolling to the program each year have the 
same baseline qualifications. 

 
After enrolling into the Business Management 
program, students choose one of the seven 
majors namely, Economics and Management 
Science, Entrepreneurship, Global Management 
Studies, Human Recourses Management and 
Organizational Behaviour, Law and Business, 
Marketing Management, and Real Estate 
Management.  

 
The evaluation framework of the Business 
Statistics course contains two tests (test 1 and 
test 2), weekly online homework (12 
assignments), and a group project to be 
completed using the statistical software package, 
SPSS. In this project, students are expected to 
analyze some business data using SPSS 
software and write a report. Normally, the project 
will cover topics in the last 4 to 5 weeks of the 
course. There are 12 weekly modules in the 
online homework assignment spreading over all 
the topics in the course. The materials in test 1 
and test 2 do not overlap as they are based on 
the materials of the first and second halves of the 
course respectively. The final examination covers 
all the topics in the course. All the questions in 
tests, the online homework, and the final 
examination have multiple choice and short 
answer question formats. 

 
The data set contained one response variable 
and six predictor variables as follows:  

 
 Test1 – Test 1 marks (%), 18% of the 

course weight 

 Test2 – Test 2 marks (%), 19% of the 
course weight 

 Mystatlab – Weekly online homework 
assignment marks (%), 10% of the course 
weight 

 Project – The group project marks (%), 3% 
of the course weight 

 Program – Major (coded as 1, 2, 3, 4, 5, 6, 
or 7) 

 Year – Year in the program (coded as 1, 2, 
3, or 4) 

 
The response variable, final examination (%) 
worth 50% of the course weight. 

3.2 Fitting the Model  
 
As there was no severe multicollinearity problem 
among predictors (section 3.4), the forward 
selection method in SPSS was used to fit a 
regression line. All the six predictor variables 
were entered initially to the model. The partial 
plots [6] (Appendices B.1, B.2, B.3), revealed 
that there exists a positive linear relationship 
between FinaExam and Test1 and FinalExam 
and Test2. A weak positive linear relationship 
indicated between FinaExam and Mystatlab. No 
attempt, therefore, was made to include 
quadratic or higher order terms into the model. 
The forward selection procedure eliminated the 
three variables, Project, Program, and Year from 
the final model. The final model retained three 
predictor variables: Test1, Test2, and Mystatlab 
as significant and it read as:  
 

FinalExam. = 20.825 + 0.221*Test1 + 
0.407*Test2 + 0.060*Mystatlab (Appendix 
A.3).                                                            (4) 

 

3.3 Testing Model Adequacy  
 

The model explained 50.7% (𝑅𝑎𝑑𝑗.
2 = 50.7) of the 

total variation in the FinalExam. marks using Test 
1, Test 2, and Mystatlab marks as predictors 
(Appendix A.1). The overall model was 
significant (F (3, 362) = 126.136, p<.001) 
(Appendix A.2). Individual t-tests indicated that 
all the three variables namely, Test1 (t=5.78, 
p<.001), Test2 (t=11.78, p<.001), and Mystatlab 
(t=2.41, p<.05) are useful in predicting the 
FinalExam. mark (Appendix A.3). The confidence 
interval for the coefficient of Test1 marks 
indicated that if Test1 mark was increased by 
1%, the FinalExam. mark would increase on 
average between 0.15% and 0.30%. Similarly, if 
Test2 mark was increased by 1%, the 
FinalExam. mark would increase on average 
between 0.34% and 0.48%. If Mystatlab mark 
was increased by 1%, the FinalExam. mark 
would increase on average between 0.01% and 
0.11% (Appendix A.3). The model expected to 
predict FinalExam. marks within about ± 2(9.78) 
= ±19.56 marks (MSE = 95.662) (Appendix A.2). 
 

3.4 Testing Regression Assumptions and 
Detecting Lack of Fit 

  
Multicollinearity has not affected the parameter 
estimates of the current model since VIFs for all 
predictor variables were less than 10. (Appendix 
A.3). This was further established by the fact that 
the condition indices for model 3 coefficients 
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were all less than 15 (Appendix A.5). The 
normality assumption of residuals which 
indicates that regression residuals are normally 
distributed was satisfied (Fig. 1,) since all the 
observed data points were close to the expected 
line. The equal variance assumption was also 
satisfied since the residuals against predicted 
values showed no pattern and very few points 
(less than 5%) were outside the ±2 standard 
deviations limit (Fig. 2,). 
 

Residuals plotted against each predictor variable 
shows that the points are scattered randomly in 
the diagram with no apparent pattern or trend in 
the graphs (Appendix B.4, B.5, and B.6), thereby 
confirming no lack of fit. To detect influential 
observations and outliers, Cook’s Distances were 
calculated for each observation and compared 
the values with the values of an F-distribution 
with 4 and 362 degrees of freedom (F (4, 362) = 
0.841). None of the Cook’s Distances were on or 

above 0.841 indicating that there were no 
influential observations or outliers. To detect 
residual correlation [9], the Durbin-Watson d 
statistic was calculated (d=2.237) (Appendix 
A.1). Since d≈2, residuals were uncorrelated 
thereby satisfying the independence         
assumption. 

 
3.5 External Model Validation  
 
Next, the validity of the fitted regression model 
was assessed using a sample of 198 students 
from the Winter 2018 semester who followed the 
same course with the same evaluation scheme. 
Using the fitted regression model in section 3.2 
with n = 198 and k = 3, the calculated 

𝑀𝑆𝐸𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  was 94.9705. Comparing with the 

MSE of the fitted model (95.662), it can be 
concluded that the fitted model was adequate 
and valid for any future predictions. 

 
 

 
Fig. 1. The Normal probability plot 

 
 

 
Fig. 2. Residuals vs. predicted values 
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4.  INTERPRETATION OF RESULTS  
 

The model explains 51% of the total variation in 
the final examination marks and with this 
reasonable amount, the model is moderately 
powerful in predicting final exam. marks. This is 
further confirmed by the significance of the 
overall F-test and individual t -tests. The 
interpretations of confidence intervals indicate 
that test 2 has comparatively high influence on 
the final examination marks. One reason for this 
may be that since test 2 is closer to the final 
examination, students would do more 
preparation work during this time. The expected 
prediction range for the final examination mark 
(±19.56) using the model was high possibly due 
to the high variations in Test1, Test2, and 
Mystatlab marks (Appendix A.6). All the model 
assumptions were completely satisfied making 
the fitted model valid and without lack of fit. No 
influential observations indicate that the 
performances of students were homogeneous. 
The external model validation with a considerably 
large number of students made the model 
powerful enough to be used with future cohorts 
of students. 
 

5. CONCLUSION 
 

As mentioned in the introduction section, this 
study was supposed to serve two main purposes. 
First, it can be used as an in-class exercise. 
Since multiple regression is taught towards the 
end of the course, the students have a chance to 
use their own data and can follow the step-by-
step process discussed in this study to fit a 
multiple regression model to a moderately large 
data set. This serves the purpose of using the 
data as a teaching tool for the instructor. Second, 
the fitted model can be used for future 
predictions of final examination marks of similar 
cohorts of students.  
 

On the one hand, as mentioned earlier, the 
predicted score will help the students to get 
motivated and to perform well in their final 
examination or they can decide on whether to 
continue or not with the course. Before the final 
examination, any student can find their course 
average by averaging their current marks. 
However, this would not provide them with any 
future predictions. It will only show their current 
performance. Hence, the advantage of using the 
fitted model and giving them a predicted final 
examination score is much better for student 
motivation and satisfaction. 
 

On the other hand, the process of regression 
model building will show the uncertainty of 
predictions and various other problems involved 
in regression such as fitting a model with a 
limited number of predictor variables. The need 
for data on additional variables that could 
improve the model can also be emphasized 
using this example. When using the model with 
future cohorts, it is also possible to fit another 
regression model using the data of that cohort. 
As a further step, students can compare and 
contrast the two models and discuss the 
differences and possible reasons for the 
discrepancies. 
 

6. FUTURE RESEARCH  
 
It would be possible to improve the final model by 
considering additional variables such as the 
number of hours spent for studying, student 
motivation, and the number of pervious statistics 
courses taken to be included in the model. Thus, 
it may reduce the prediction range of the final 
examination marks (±19.56) with an improved 
R^2 value. Quadratic or higher order terms were 
not included in the current model based on the 
results of the scatter plots. However, inclusion of 
those higher order terms especially for the 
variables that are not included in the model 
(SPSS project mark, year, program), which are 
anticipated to be important to predict the final 
examination marks, would improve the prediction 
capability of the model. This can be observed 
from Appendix B.3, that showed a high 
concentration of Mystatlab marks and final 
examination marks towards the high end of the 
marks range.  

 
Data transformations on the excluded variables 
and inputting them into the model is another 
option to improve the model. This suggestion 
was made on the observation that there was a 
high concentration of data points towards the 
right end of the diagram in the residual plot of 
Mystatlab marks which could have caused a 
slight violation of the regression assumptions. 
(Appendix B.6). All the suggestions above may 
or may not be applied to other data sets. There 
could well be variations when using other data 
sets. 
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APPENDIX A. REGRESSION RESULTS 
 
Appendix A.1. Model Summary 
 
Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .670a .449 .448 10.35384  
2 .709b .503 .500 9.84534  
3 .715c .511 .507 9.78069 2.237 

a. Predictors: (Constant), Test2 
b. Predictors: (Constant), Test2, Test1 

c. Predictors: (Constant), Test2, Test1, Mystatlab 
d. Dependent Variable: FinalExam 

 
Appendix A.2. ANOVA 
 
Model Sum of Squares df Mean Square F Sig. 

1 Regression 31807.134 1 31807.134 296.703 .000b 
Residual 39021.546 364 107.202   
Total 70828.680 365    

2 Regression 35642.805 2 17821.402 183.857 .000c 
Residual 35185.876 363 96.931   
Total 70828.680 365    

3 Regression 36199.103 3 12066.368 126.136 .000d 
Residual 34629.577 362 95.662   
Total 70828.680 365    

a. Dependent Variable: FinalExam 
b. Predictors: (Constant), Test2 

c. Predictors: (Constant), Test2, Test1 
d. Predictors: (Constant), Test2, Test1, Mystatlab 

 

Appendix A.3. Coefficients 
 
Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. 95.0% 
Confidence 
Interval for B 

Collinearity 
Statistics 

B Std. 
Error 

Beta Lower 
Bound 

Upper 
Bound 

Tolerance VIF 

1 (Constant) 32.941 2.084  15.803 .000 28.842 37.040   
Test2 .532 .031 .670 17.225 .000 .471 .593 1.000 1.000 

2 (Constant) 23.515 2.485  9.464 .000 18.629 28.402   
Test2 .425 .034 .535 12.487 .000 .358 .491 .747 1.339 
Test1 .238 .038 .269 6.291 .000 .163 .312 .747 1.339 

3 (Constant) 20.825 2.709  7.688 .000 15.498 26.152   
Test2 .407 .035 .512 11.775 .000 .339 .475 .713 1.402 
Test1 .221 .038 .250 5.784 .000 .146 .296 .722 1.386 
Mystatlab .060 .025 .096 2.411 .016 .011 .109 .859 1.163 

a. Dependent Variable: FinalExam 

 
Appendix A.4. Excluded Variables 
 
Model Beta In t Sig. Partial 

Correlation 
Collinearity Statistics 

Tolerance VIF Minimum 
Tolerance 

1 Test1 .269b 6.291 .000 .314 .747 1.339 .747 
SPSS .045b 1.129 .260 .059 .954 1.049 .954 
Mystatlab .138b 3.382 .001 .175 .889 1.124 .889 
Program -.006b -.157 .875 -.008 .992 1.008 .992 
Year -.051b -1.324 .186 -.069 .999 1.001 .999 

2 SPSS .041c 1.093 .275 .057 .954 1.049 .723 
Mystatlab .096c 2.411 .016 .126 .859 1.163 .713 
Program -.017c -.445 .656 -.023 .990 1.010 .739 
Year -.038c -1.022 .307 -.054 .996 1.004 .744 



 
 
 
 

Egodawatte; AJEBA, 21(14): 30-40, 2021; Article no.AJEBA.73872 
 

 

 
39 

 

Model Beta In t Sig. Partial 
Correlation 

Collinearity Statistics 

Tolerance VIF Minimum 
Tolerance 

3 SPSS .037d .970 .333 .051 .951 1.052 .694 
Program -.012d -.328 .743 -.017 .988 1.012 .708 
Year -.031d -.852 .395 -.045 .990 1.010 .713 

a. Dependent Variable: FinalExam 
b. Predictors in the Model: (Constant), Test2 

c. Predictors in the Model: (Constant), Test2, Test1 
d. Predictors in the Model: (Constant), Test2, Test1, Mystatlab 

 

Appendix A.5. Collinearity Diagnostics 
 

Model Dimension Eigenvalue Condition 
Index 

Variance Proportions 

(Constant) Test2 Test1 Mystatlab 

1 1 1.966 1.000 .02 .02   
2 .034 7.571 .98 .98   

2 1 2.941 1.000 .00 .01 .00  
2 .035 9.176 .42 .89 .04  
3 .024 11.026 .57 .10 .95  

3 1 3.897 1.000 .00 .00 .00 .00 
2 .047 9.126 .00 .30 .07 .75 
3 .033 10.895 .34 .61 .18 .18 
4 .024 12.867 .66 .09 .75 .06 

 
a. Dependent Variable: FinalExam 

 

Appendix A.6. Descriptive Statistics 
 

 N Minimum Maximum Mean Std. Deviation 

Test1 366 21.21 100.00 69.1597 15.78263 
Test2 366 18.18 100.00 65.1457 17.53902 
Mystatlab 366 1.00 100.00 83.4963 22.21835 
FinalExam 366 32.00 98.00 67.6148 13.93023 
Valid N (listwise) 366     

 

APPENDIX B. GRAPHS AND SUMMARY TABLES 
 

 

 

Appendix B.1. Final Exam. vs. Test 1 Marks 
 

 

 

Appendix B.2. Final Exam. vs. Test 2 
Marks 

 

 

 

Appendix B.3. Final Exam. vs. Mystatlab Marks 

 

 

Appendix B.4. Residuals vs. Test 1 Marks 
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Appendix B.5. Residuals vs. Test 2 Marks 

 

 
Appendix B.6. Residuals vs. Mystatlab 

Marks 
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