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Abstract

To understand the effects of animal movement on transmission and control of brucellosis infection,
a reaction diffusion partial differential equation (PDE) brucellosis model that incorporates wild
and domesticated animals under homogeneous Neumann boundary conditions is proposed and
analysed. We computed the reproductive number for the brucellosis model in the absence of spatial
movement and we established that, the associated model has a globally asymptotically stable
disease-free equilibrium whenever the reproductive number is less or equal to unity. However, if
the reproductive number is greater than unity an endemic equilibrium point which is globally
asymptotically stable exists. We performed sensitivity analysis on the key parameters that drive
the disease dynamics in order to determine their relative importance to disease transmission and
prevalence. For the model with spatial movement the disease threshold is studied by using the
basic reproductive number. Additionally we investigate the existence of a Turing stability and
travelling waves. Our results shows that incorporating diffusive spatial spread does not produce
a Turing instability when the reproductive number RODE

0 associated with the ODE model is less
than unity. Finally the results suggest that minimizing interaction between buffalo and cattle
population can be essential to manage brucellosis spillover between domesticated and wildlife
animals. Numerical simulations are carried out to support analytical findings.
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1 Introduction

Brucellosis remains one of the zoonotic infections of a significant public health importance, with
major economic and financial burdens in countries where the disease remains endemic. More than
500 000 cases of human brucellosis occurs annually and majority of these cases have been observed
in the Middle Eastern countries, southern Europe and North Africa, countries in South and Central
Asia, sub-Saharan Africa, Mexico, the Caribbean, and countries in South and Central America [1].

Animal infections mostly occur due to contact with fetal tissues and post-parturient discharges,
while human infections occur from contact with infected animal tissues or ingestion of infected
animal products [2]. The transmission and spread of infectious disease amongst and between
domesticated and wild animals is widely recognized. Factors such as seasonal variations leads
to climatic changes in pastures and this induces animal movements, which in turn influence cross-
infection of diseases. The effects of African buffalo movements and Zoonotic disease transmission
is well documented [3].

Mathematical modeling, analysis and simulation of brucellosis play a crucial role on providing
useful insight into the disease dynamics that could guide public health administration for designing
effective prevention and control measures. Recently, mathematical modeling of brucellosis dynamics
has been an interesting topic for a couple of researchers (see, for example [4, 5, 6, 7, 8, 9, 10, 11, 12,
13]). These studies and several other studies undeniably revealed many useful results and improved
the existing knowledge on brucellosis dynamics.

Despite all these studies there are some important questions regarding the transmission of brucellosis
that are yet to be answered. For example, why does brucellosis remain endemic in some countries
(such as Spain, Latin America, the Middle East, parts of Africa [14]) but not in others? What is
the influence of animal movements on the spread of the brucellosis? How to measure the infection
risk of brucellosis in an environment where domesticated and wildlife species interact? To date very
little work has been devoted to explore the influence of animal movements on brucellosis dynamics.

In 2016 Caron et al [15] presented a report on the long-distance movements of sub-adult female
buffalo within a transfrontier conservation area in Africa. The authors noted that in January 2014,
a 2.5 year-old female buffalo collared in South Africa walked a maximum distance of 95 km, and
in 6 days, she crossed into Zimbabwe, then into Mozambique, and into Zimbabwe again. On the
second incident, in February 2014, a 4-year-old female buffalo is believed to have walked a distance
of 64 km in 8 days. On the third case, in March 2013, a 4.5-year-old female buffalo captured
in July 2011 was sighted in a location deep into communal land at a distance of 96 km from her
capture site. It is clear that animal movements could play an important role in shaping the complex
epidemic and endemic pattern of brucellosis, and it is a key factor in the epidemiology of brucellosis.

Hence the goal of this paper is to improve our quantitative understanding of the effects of animal
movements on brucellosis dynamics. To achieve this goal, we propose and analyse a reaction-
diffusion brucellosis model that incorporates domesticated (cattle) and wildlife (African buffalo)
animals. For each population, the total population is sub-divided into two epidemiological compart-
ments namely: susceptible and infectious. We will begin by formulating and analysing a deterministic
brucellosis model, which will then be extended to a reaction-diffusion PDE system to explore the
effects of animal movements on the spread of brucellosis.
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We will pay special attention to the travelling wave solutions and threshold dynamics of the PDE
model.

The paper is organized as follows. In Section 2, the partial differential equation (PDE) model is
presented and necessary assumptions are stated. In Section 3, we analyse the brucellosis model
without and with diffussion, respectively. In Section 4, numerical results are carried out in order to
support analytical findings. A brief discussion and conclusion in Section 5 rounds up the paper.

2 Materials and Methods

2.1 Model description

We introduce a one-dimensional spatial domain, x ∈ [0, 1] on the assumption that both livestock and
wildlife population undergo a diffusion process. We classify each population into two compartments
namely, susceptible Si(t) and infectious Ii(t). The subscript i = b, c, represent buffalo and livestock
populations, respectively. Let Di > 0 (1 ≤ i ≤ 4) be the diffusion coefficients of Sb(x, t), Ib(x, t),
Sc(x, t) and Ic(x, t), respectively. The model takes the form:

∂Sb

∂t
= µbNb − [βbbIb + βcb(1− ϵ)Ic]Sb − µbSb +D1

∂2Sb

∂x2
,

∂Ib
∂t

= [βbbIb + βcb(1− ϵ)Ic]Sb − [µb + db]Ib +D2
∂2Ib
∂x2

,

∂Sc

∂t
= µcNc − [βbc(1− ϵ)Ib + βccIc]Sc − µcSc +D3

∂2Sc

∂x2
,

∂Ic
∂t

= [βbc(1− ϵ)Ib + βccIc]Sc − [µc + γ + dc]Ic +D4
∂2Ic
∂x2

.


(1)

Further, we assume the entire domain represents a closed community of our interest with an
assumption that, no individual would cross the boundary the only recruitment is by birth. Hence,
we impose null Neumann boundary conditions for x ∈ [0, 1] for t > 0 :

∂Si

∂x
=
∂Ii
∂x

= 0, i = b, c. (2)

It follows that the total population at time t is Ni(t) = Si(t) + Ii(t). We assume that constant size
population for each specie with a recruitment and non-brucellosis-related death rate at time t given
by µi. In addition, we assume that natural mortality occurs in all classes at a constant rate and
infectious animals suffer mortality due to infection at rate di. Parameter βij (i, j = b, c) denotes
disease transmission rate, with i = j implying buffalo-to-buffalo or cattle-to-cattle transmission
and i ̸= j signify cross-transmission, respectively. Parameter ϵ accounts for minimized interaction
between wildlife and domesticated animals. Practically these account for the impact of game
deterrent fences. If ϵ = 1 it follows that wildlife and domesticated animals do not interact, γ
denotes culling rate of domesticated animals.

3 Dynamical Behavior of the Brucellosis Model

In this section, we will perform the analysis of the proposed brucellosis model. in particular, we
will begin by analyzing the dynamics of the model without spatial movements.
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3.1 Model without spatial movement

In the absence of spatial movement, that is, Di = 0, for i = 1, 2, 3, 4, system (1) becomes to

Ṡb(t) = µbNb − [βbbIb + βcb(1− ϵ)Ic]Sb − µbSb,

İb(t) = [βbbIb + βcb(1− ϵ)Ic]Sb − [µb + db]Ib,

Ṡc(t) = µcNc − [βbc(1− ϵ)Ib + βccIc]Sc − µcSc,

İc(t) = [βbc(1− ϵ)Ib + βccIc]Sc − [µc + γ + dc]Ic.

 (3)

It can easily be verified that the domain of biological interest for system (3) is :

Γ =

{
(Sb, Ib, Sc, Ic) ∈ ℜ4

+ : Sb, Ib, Sc, Ic ≥ 0, Nb = Sb + Ib, Nc = Sc + Ic

}
, (4)

which is positively invariant and attracting. It is evident that system (3) admits an infection/disease-
free equilibrium given by

E0 :
[
S0
b , I

0
b , S

0
c , I

0
c

]
= [Nb, 0, Nc, 0] .

One of the most important threshold parameters in infectious disease modeling is the reproductive
number, which is defined as the average number of new infections generated by a single infected
individual in a completely susceptible population. The reproductive number measures the power of
the disease to invade the population. Based on the standard next-generation matrix technique [16]
and our assumptions, matrices F and V can be written as:

F =

[
βbbNb βcb(1− ϵ)Nb

βbc(1− ϵ)Nc βccNc

]
and V =

[
(µb + db) 0

0 (µc + γ + dc)

]
. (5)

The basic reproductive number of system (3) is the dominant eigenvalue of the next generation
matrix FV −1,

RODE
0 =

1

2

[
(Rbb +Rcc) +

√
(Rbb −Rcc)2 + 4RbcRcb

]
, (6)

with

Rbb =
βbbNb

db + µb
, Rcc =

βccNc

dc + γ + µc
,

Rbc =
βbc(1− ϵ)Nc

db + µb
, Rcb =

βcb(1− ϵ)Nb

dc + γ + µc
.


The quantities Rii and Rij (i, j = b, c, with i ̸= j) correspond, respectively, to the average number
of secondary infections through inter-species and cross-species transmission caused by one infectious
animal in its infectious lifetime.

3.1.1 Stability analysis of the model without spatial movement

The local stability of the disease-free equilibrium can be directly obtained from Theorem 2 of Van
den Driessche and Watmough [16]; i.e., the disease-free equilibrium E0 is locally asymptotically
stable if RODE

0 < 1 and unstable if RODE
0 > 1.

Theorem 3.1. If RODE
0 ≤ 1, then E0 is globally asymptotically stable in Γ.

Proof. The proof is based on using a Comparison Theorem [17]. Note that the equations of the
infected components in system (3) can be written as[

İb(t)

İc(t)

]
= [F − V ]

[
Ib
Ic

]
−

[
Q11 Q12

Q21 Q22

] [
Ib(t)
Ic(t)

]
,
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where
Q11 = βbb(S

0
b − Sb), Q12 = βcb(1− ϵ)(S0

b − Sb),
Q23 = βbc(1− ϵ)(S0

c − Sc), Q24 = βcc(S
0
c − Sc),

}
with F and V as defined in (5). Further, since Si ≤ S0

i , (for all t ≥ 0) in Γ, it follows that[
İb(t)

İc(t)

]
≤ [F − V ]

[
Ib(t)
Ic(t)

]
. (7)

Utilizing the fact that the eigenvalues of matrix F−V all have negative real parts, it follows that the
linearized differential inequality (7) is stable whenever RODE

0 < 1. Consequently, (Ib, Ic) → (0, 0)
as t → ∞. It follows from the Comparison Theorem [17] that (Ib, Ic) → (0, 0) as t → ∞. Hence
system (3) is asymptotic to

dS̄b

dt
= µbNb − µbS̄b,

dS̄c

dt
= µcNc − µcS̄c,


as t→ ∞. Clearly, limt→∞(S̄b, S̄c) = (Nb, Nc). Therefore, by the theory of asymptotic autonomous
semi-flow

lim
t→∞

(Sb, Sc) = (Nb, Nc). (8)

This implies that E0 is a global attractor.

Theorem 3.2. If RODE
0 > 1 then system (3) has a unique endemic point, E∗ = (S∗

b , S
∗
c , I

∗
b , I

∗
c ),

which is globally asymptotically stable.

Proof. System (3) can be written in reduced form as

İb(t) = [βbbIb + βcb(1− ϵ)Ic][Nb − Ib]− [µb + db]Ib,

İc(t) = [βbc(1− ϵ)Ib + βccIc][Nc − Ic]− [µc + γ + dc]Ic.

}
(9)

One can easily verify that system (9) has the feasible region:

Ω =

{
(Ib, Ic) ∈ ℜ2

+ : 0 < Ib ≤ Nb, 0 < Ic ≤ Nc

}
. (10)

Denoting the right hand side of (9) by (f, g), respectively, and choosing a Dulac function D(Ib, Ic) =
1

IbIc
, it follows that

∂(Df)
∂Ib

+
∂(Dg)

∂Ic
= −

(
βbb
Ic

+
βcc
Ib

+
βcb(1− ϵ)Nb

I2b
+
βbc(1− ϵ)Nc

I2c

)
< 0,

for all Ni, Ii > 0 (i = b, c). Thus, system (9) does not have a limit cycle in the interior of Ω ∈ Γ.
Additionally, we can easily rule out homoclinic and heteroclinic orbits in Ω. Since the EE is locally
asymptotically stable, it follows from Poincaré-Bendixson theorem and [18, 19] that the EE is
globally asymptotically stable if RODE

0 > 1.

3.2 Analysis of the model with spatial movement

3.2.1 Turing instability

It is known that in many reaction-diffusion equations with multiple components provoke a non-
equilibrium behavior, which is known as Turing instability [20], that is, there exist conditions under
which the spatially uniform steady state is stable in the absence of diffusion and can become unstable
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because of diffusion. We linearize system (1) at the DFE, (S0
b , I

0
b , S

0
c , I

0
c )

T = (N∗
b , 0, N

∗
c , 0)

T of the
model (3) in the absence of diffusion. Introducing the new coordinates W = (W1,W2,W3,W4)

T =
(Sb − S0

b , Ib − I0b , Sc − S0
c , Ic − I0c )

T , we obtain the following linear system:

∂W

∂t
= D

∂2W

∂x2
+ JW, (11)

where J is the Jacobian matrix of the associated ODE system evaluated at the DFE, and

D = diag[D1, D2, D3, D4].

Consider the eigenvalue problem

∂2ψ(x)

∂x2
= −ρψ(x), x ∈ (0, 1)

∂ψ(x)

∂x
= 0, x = 0, 1. (12)

It can easily be verified that the eigenvalues of the boundary value problem (12) ρm = (mπ)2 ≥ 0
with corresponding eigenfunctions ψm(x) = cos(mπx). Now let us return to our system (11). Since
the system is linear, the solution W (x, t) can be written as the sum of eigenfunctions

W (x, t) =
∑
j

aje
λtψj(x), (13)

where ψj(x) is the solution of the eigenvalue problem (12), and λ and aj are constant. Substituting
(13) into (11) yields

|J − ρD − λI4| = 0, (14)

where I4 is a 4× 4 identity matrix. Now, we investigate whether there exists ρ such that Re(λ) > 0
at DFE. Solving (14) gives

λ1 = − (m1 +m2)

2
+

√
(m1 −m2)2 + 4m3m4

2
,

λ2 = − (m1 +m2)

2
−

√
(m1 −m2)2 + 4m3m4

2
,

λ3 = −(µb + ρD1), λ4 = −(µc + ρD3),


where

m1 = (µb + db)(1−Rbb) + ρD2, m2 = (µc + γ + dc)(1−Rcc) + ρD4,
m3 = βbc(1− ϵ)Nc, m4 = βcb(1− ϵ)Nb.

}
Proposition 3.1. If RODE

0 < 1, inclusion of diffusive spatial spread into model (3) will not produce
a Turing instability.

Proof. If RODE
0 < 1, it follows that Rij < 1, for i = j = b, c thus system (1) has a unique DFE,

and we can conclude that (µb + db)(1−Rbb) > 0 and (µc + γ + dc)(1−Rcc) > 0. Therefore we can
safely conclude that mi > 0 for i = 1, 2, 3, 4.
Further, it follows that, λi < 0, (i = 2, 3, 4) and the only eigenvalue that could have a sign change
is λ1. We now demonstrate that λ1 < 0. Observe that

λ1λ2 = m1m2 −m3m4

= (µb + db)(1−Rbb)ρD4 + (µc + γ + dc)(1−Rcc)ρD2 + ρ2D2D4
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+(µb + db)(µc + γ + dc)

[
(1−Rbb)(1−Rcc)−RbcRcb

]
(15)

It is clear that, the first three terms of Equation (15) are positive. By theorem (3.1), (µb+db)(µc+
γ + dc)[(1−Rbb)(1−Rcc)−RbcRcb] is a product of two eigenvalues of JE0 at the DFE, and hence
it is positive since system (3) is stable at DFE . Therefore Equation (15) clearly shows that λ1 < 0,
since the product of λ1 and λ2 is positive, and the fact that λ2 < 0 it follows that λ1 < 0. Therefore,
we conclude that all eigenvalues of system (1) are negative and real and this implies that Turing
instability will not occur.

3.2.2 Disease threshold

Our goal in this section is to explore the spatial threshold dynamics of brucellosis through the
intrinsic analysis of the basic reproductive number derived from PDE model (1). We will make use
of the ideas presented in [21, 22] to compute the basic reproductive number of the PDE model (1).
Based on these studies, the basic reproductive number R0 for a PDE epidemic model is defined as
the spectral radius of the operator

L[ϕ(x)] =

∫ ∞

0

F (x)T (t)ϕdt = F (x)

∫ ∞

0

T (t)ϕdt . (16)

in [21] they demonstrated that ∫ ∞

0

T (t)ϕdt = −B−1ϕ , (17)

Where B := ∇.(dI∇)− V and

L = −FB−1, (18)

where F and V , are as in equation (5). Further, T (t) denotes the solution semi-group for the
linearized reaction-diffusion system, ϕ is the distribution of the initial infection, and dI is the
diffusion coefficient vector. For our epidemic model (1), we have

dI = diag[D2, D4], (19)

and,

B =


D2

∂2

∂x2
− (µb + db) 0

0 D4
∂2

∂x2
− (µc + γ + dc)

 . (20)

To analyze the basic reproductive number of the PDE system (1), RPDE
0 = ρ(L), we proceed

to calculate B−1 by solving B(ϕ1, ϕ2)
T = (y1, y2)

T subject to homogeneous Neumann boundary
conditions. Let us first consider the boundary value problem

B1[ϕ1] : = D2
∂2ϕ1

∂x2
− (µb + db)ϕ1 = y1, 0 ≤ x ≤ 1;

ϕ
′
1(0) = 0, ϕ

′
1(1) = 0. (21)

This problem can be easily solved by using the Laplace transform. Describe the Laplace transforms
of ϕ1(x) and y1(x) by Φ1(s) and Y1(s), respectively. It yields

Φ1(s) =
Y1(s)

D2s2 − (µb + db)
+

sD2ϕ1(0)

D2s2 − (µb + db)
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The inverse Laplace transform and the convolution integral then gives

ϕ1(x) =
1√

D2(µb + db)

∫ x

0

sinh

[√
µb + db
D2

(x− τ)

]
y1(τ)dτ + ϕ1(0) cosh

[√
µb + db
D2

x

]
.

We differentiate ϕ1 and applying the boundary condition ϕ′
1(1) = 0, we then obtain

ϕ1(0) = − 1√
D2(µb + db) sinh

(√
µb+db
D2

) ∫ 1

0

cosh

[√
µb + db
D2

(1− τ)

]
y1(τ)dτ.

Therefore

ϕ1(x) = B−1
1 [y1]

=
1√

D2(µb + db)

∫ x

0

sinh

[√
µb + db
D2

(x− τ)

]
y1(τ)dτ −

cosh
[√

µb+db
D2

x
]

√
D2(µb + db) sinh

(√
µb+db
D2

)

×
∫ 1

0

cosh

[√
µb + db
D2

(1− τ)

]
y1(τ)dτ. (22)

Similarly, we can solve the boundary value problem

B2[ϕ2] : = D4
∂2ϕ2

∂x2
− (µc + γ + dc)ϕ2 = y2, 0 ≤ x ≤ 1;

ϕ
′
2(0) = 0, ϕ

′
2(1) = 0. (23)

We obtain that

ϕ2(x) = B−1
2 [y2]

=
1√

D4(µc + γ + dc)

∫ x

0
sinh

[√
µc + γ + dc

D4

(x − τ)

]
y2(τ)dτ −

cosh

[√
µc+γ+dc

D4
x

]
√

D4(µc + γ + dc) sinh
(√

µc+γ+dc
D4

)

×
∫ 1

0
cosh

[√
µc + γ + dc

D4

(1 − τ)

]
y2(τ)dτ. (24)

For notations consistency, below we will switch ϕ1 and y1 in equations (22) and ϕ2 and y2 in
equation (24). Now let us focus on the eigenvalue problem L[ϕ] = λϕ, that is,

−FB−1ϕ = λϕ. (25)

By virtue of (22) and (24) we can express (25) as follows,

λϕi(x) = ki1

∫ x

0
sinh

[√
µb + db

D2

(x − τ)

]
ϕ1(τ)dτ + ki2 cosh

[√
µb + db

D2

x

] ∫ 1

0
cosh

[√
µb + db

D2

(1 − τ)

]
ϕ1(τ)dτ

+ki3

∫ x

0
sinh

[√
µc + γ + dc

D4

(x − τ)

]
ϕ2(τ)dτ + ki4 cosh

[√
µc + γ + dc

D4

x

]

×
∫ 1

0
cosh

[√
µc + γ + dc

D4

(1 − τ)

]
ϕ2(τ)dτ, (26)
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for i = 1, 2, with the coefficients

k11 = −
Nbβbb√

D2(µb + db)
, k12 =

Nbβbb√
D2(µb + db) sinh

(√
(µb+db)

D2

) , k13 = −
Nbβcb(1 − ϵ)√
D4(µc + γ + dc)

,

k14 =
Nbβcb(1 − ϵ)√

D4(µc + γ + dc) sinh(

√
(µc+γ+dc)

D4
)

, k21 = −
Ncβbc(1 − ϵ)√
D2(µb + db)

,

k22 =
Ncβbc(1 − ϵ)√

D2(µb + db) sinh
(√

(µb+db)

D2

) , k23 = −
Ncβcc√

D4(µc + γ + dc)
,

k24 =
Ncβcc√

D4(µc + γ + dc) sinh
(√

(µc+γ+dc)
D4

) .



3.2.3 Travelling Wave front

An important approach to study the spatial spread of brucellosis is to investigate the travelling
wave solution of model (1) and to determine the critical speed of the the traveling fronts. Let a
variable u = x − vt where v is the speed of the disease traveling front. Assume that Nb = Sb + Ib
and Nc = Sc + Ic are constant. Then (1) can be written as

dIb
du

= −1

v

[
(βbbIb + βcb(1− ϵ)Ic)(Nb − Ib)− (µb + db)Ib +D2

d2Ib
du2

]
,

dIc
du

= −1

v

[
(βbc(1− ϵ)Ib + βccIc)(Nc − Ic)− (µc + γ + dc)Ic +D4

d2Ic
du2

]
.

 (27)

Then the corresponding first-order ordinary differential equation with respect to the variable u of
system (1) is

dIb
du

= X,

dIc
du

= Y,

dX

du
=

1

D2

[
− vX − (βbbIb + βcb(1− ϵ)Ic)(Nb − Ib) + (µb + db)Ib

]
,

dY

du
=

1

D4

[
− vY − (βbc(1− ϵ)Ib + βccIc)(Nc − Ic) + (µc + γ + dc)Ic

]
.



(28)

In what follows, we will assume that RODE
0 > 1, since our current interest is the spatial spread of

brucellosis. We can easily verify that model (28) has two spatially homogeneous stationary solutions,
r0 = (0, 0, 0, 0) and r1 = (I∗b , I

∗
c , 0, 0). The equilibria r0 and r1 correspond to the disease-free and

endemic equilibrium points of the ODE model (28) respectively. More specifically any traveling
wave solution of (28) can be regarded as a heteroclinic orbit (minimum wave speed) connecting the
disease-free equilibrium to the endemic equilibrium.
The Jacobian matrix J associated with the linearized system (28) evaluated at r0 must be real for
a wave front to exist. Direct calculation gives

J =

[
02 I2
J21 J22

]
,

where 02 is the 2× 2 zero matrix, I2 denotes 2× 2 identity matrix. Further

J21 =

[
B11 B12

B21 B22

]
,
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with

B11 =
1

D2
[−βbbNb + (µb + db)], B12 = −βcb(1− ϵ)Nb

D2
,

B21 = −βbc(1− ϵ)Nc

D4
, B22 =

1

D4
[−βccNc + (µc + γ + dc)],


and

J22 = diag
[
− v

D2
, − v

D4

]
.

The characteristics equation of matrix J is

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0, (29)

where

a1 =
v

D2
+

v

D4
,

a2 = −
[
(µb + db)− βbbNb

D2

]
−

[
(µc + γ + dc)− βccNc

D4

]
+

v2

D2D4
,

a3 =
[
βbbNb − (µb + db) + βccNc − (µc + γ + dc)

] v

D2D4
,

a4 =
[
(µb + db)− βbbNb

][
(µc + γ + dc)− βccNc

] 1

D2D4
− βcbβbc(1− ϵ)2NbNc

D2D4

=
(µb + db)(µc + γ + dc)

D2D4

[
(1−Rbb)(1−Rcc)−RbcRcc

]
.


The critical value of v occurs only if the characteristic equation (29) has repeated real roots. Let’s
consider the roots of the characteristic equation

p(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4.

Define

(C1) Rcc ≤ 1, when RODE
0 > 1;

(C2) Rcc > 1 and Rbb ≤ 1;

(C3) Rcc > 1, Rbb > 1 and (1−Rbb)(1−Rcc) < RbcRcc.

It follows from direct calculation that a4 < 0 iff one of three conditions (C1)-(C3) holds. Assume
that (C1), (C2) or (C3) is satisfied. Then the characteristic polynomial (29) has at least one positive
and one negative zeros. We now proceed to find the condition for repeated roots. According to
Jury and Mansour [23], the quartic polynomial p(λ) undergoes the double zeros if

∆ = 4A3 −B2 = 0, (30)

with

A = a22 + 12a4 − 3a1a3,

B = 72a2a4 + 9a1a2a3 − 2a32 − 27a23 − 27a4a
2
1.

(31)

Assume that D2, D4 > 0. Equation (30) takes the form

b1(v
2)4 + b2(v

2)3 + b3(v
2)2 + b4(v

2) + b5 = 0, (32)
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where the coefficients depend on the model parameters. Specifically,

b1 =
[(
(µb + db)(1−Rbb)− (µc + γ + dc)(1−Rcc)

)2
+4(µb + db)(µc + γ + dc)RbcRcb

] (D2 −D4)
2

16D2D4
≥ 0.

This implies that b1 > 0 when D2 ̸= D4. On the other hand,

b5 =
[(
(µc + γ + dc)(1−Rcc)D2 − (µb + db)(1−Rbb)D4

)2
+ 4(µb + db)(µc + γ + dc)RbcRcbD2D4

]2
×(µb + db)(µc + γ + dc)

[
(1−Rbb)(1−Rcc)−RbcRcb

]
.

Note that b5 < 0 ⇐⇒ a4 < 0. Since (C1), (C2) or (C3) is valid, 0, we have b5 < 0. Thus, in terms
of v2, equation (32) has a least one positive zero. In other words, this equation has at least a pair
of real roots with respect to v which have the same magnitude and the opposite signs.

4 Numerical Results

In this section, we present numerical simulations of our study, in order to illustrate our theoretical
results, using the parameters listed in Table 1.

Table 1. Parameters and values

Symbol Value Units
γ 0.15 year−1

ϵ 0.5 Unitless
µb 0.04 year−1

µc 0.22 year−1

βbb 5.0× 10−4 buffalo−1year−1

βbc 5.0× 10−4 cattle−1year−1

βcc 1.48× 10−5 cattle−1year−1

βcb 1.48× 10−5 buffalo−1year−1

db 0.05 year−1

dc 0.15 year−1

D1 varied km2 d−1

D2 varied km2 d−1

D3 varied km2 d−1

D4 varied km2 d−1

Nb 1000 Buffaloes
Nc 1500 Cattle

4.1 Sensitivity analysis of the reproductive number

The reproductive number is an integral threshold quantity for infectious disease models. It demonstrates
the power of the disease to invade the community. In order to determine how best the spread of
brucellosis can be controlled in a community where cattle and buffaloes interact, it is essential to
know the relative importance of the different factors that make up the basic reproductive number.
The reproductive number of the proposed model, equation (6), , RODE

0 , is made up of the quantities
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Rbb, Rcc, Rbc, and Rcb, which represents disease transmission between buffalo to-buffalo, cattle-to-
cattle, buffalo-to-cattle and cattle to buffalo, respectively. Hence, there is need to investigate which
of the four aforementioned quantities has more influence on the magnitude of the reproductive
number. We computed the four quantities using parameter values in Table 1.

Results in Table 2 shows that the reproductive number is greatly influenced by infectious buffalo
population since Rbb > 1 and Rbc > 1 while Rcc < 1 and Rcb < 1. Therefore in a population
were buffaloes interact with cattle one can conclude that the infected buffalo population will be
responsible for the persistence of the disease. In addition, one can also deduce that brucellosis
infection will persist in communities where the probability of livestock interaction with buffaloes is
0.5 (1− ϵ).

Table 2. Reproductive numbers and their values

RODE
0 Rbb Rcc Rbc Rcb

5.558 5.556 0.043 4.167 0.142

Results in Table 2 warrants the need to identify parameters which strongly influence Rbb and
Rbc since these are the two threshold quantities greatly influencing RODE

0 . Thus we computed
the sensitivity indices of the reproductive number, RODE

0 , following the approach in Arriola [24].
Sensitivity indices enables the researcher to measure the relative change in a state variable when a
parameter changes. To this end, denoting by Φ the generic parameter of equation (6), we evaluate
the normalised sensitivity index SΦ = Φ

Rbb

∂Rbb
∂Φ

, which indicates how sensitive R0 is to a change
of parameter Φ. Model parameters with positive index increase the value of reproductive number
whenever they are increased while those with a negative index decrease the value of reproductive
number whenever they are increased.

Fig. 1 shows the sensitivity index for Rbb with respect to model parameters that define it. As one
can observe, an increase in the values of βbb and Nb by 10% will increase Rbb by the same magnitude.
However, an increase in µb and db by 10% decrease Rbb by 4.44% and 5.5%, respectively.

Fig. 2 shows the sensitivity index for Rbc with respect to model parameters that define it. We can
observe that, an increase in the values of βbb and Nc by 10% will increase Rbc by the same magnitude
while an increase in µb, db and ϵ by 10% decrease Rbb by 4.44%,5.5% and 10%, respectively. The
results suggest that minimizing interaction between buffalo and cattle population can be essential
to manage brucellosis spillover between domesticated and wildlife animals. Hence, in Fig. 3 we
investigate the minimization level ϵ sufficient to make Rbc ≤ 1. Results in Fig. 3 shows that ϵ = 0.9
will be sufficient to confine disease to wildlife population, since Rbc ≤ 1 for all ϵ ∈ [0.9, 1].

In Fig. 4 we examine the impact of low cross-transmission rate (βcb = βbc = 0.45 < 1) on the
spread of the disease in the community. We can observe that whenever Rcc ≤ 1 and Rbb ≤ 1 the
disease will die out in the community and for the reverse case the disease will persist.
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Fig. 1. Sensitivity index for Rbb with respect to model parameters that define it

Fig. 2. Sensitivity index for Rbc with respect to model parameters that define it

Fig. 5 illustrates the effects of high cross transmission rate on the prevalence of brucellosis. For
this case, on can observe that cross-transmission is high than local transmission then the disease
will persist for even small values of the reproductive number.

Fig. 6 depicts the impact of varying the control parameter ϵ and the cross-transmission rate (βcb =
βbc, on the spread of the disease in the community. As we can observe, if 0.5 ≤ ϵ ≤ 1 and
0 ≤ βcb ≤ 1, then brucellosis dies out in the community and for the reverse it will persist.

In Figs. 7 and 8, we illustrate the effects of the reproductive number on brucellosis dynamics, with
and without spatial movement. Here we observe that that when RPDE

0 > 1 then system (1) has an
endemic equilibrium point with peak values occurring approximately 30 days from the start
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Fig. 3. Impact of controlled interaction between buffalo and livestock on
transmission of brucellosis

Fig. 4. Effects of low cross-transmission (Rcb = Rbc = 0.45 < 1) on transmission of
brucellosis

Fig. 5. Effects of high cross-transmission (Rcb = Rbc = 1.05 < 1) on transmission of
brucellosis
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Fig. 6. Effects of varying ϵ and βcb on the reproductive number RODE
0

Fig. 7. Number of infected cattle associated with system (1) versus space and time
when RPDE

0 > 1.

Fig. 8. Number of infected buffaloes associated with system (1) versus space and
time when RPDE

0 > 1.

66



Lolika and Mushayabasa; JAMCS, 36(8): 52-69, 2021; Article no.JAMCS.73830

5 Discussion and Conclusions

Many wildlife species are known to be reservoirs of zoonotic infections. In developing nations
mixing of wildlife and domesticated animals is almost homogeneous since the game reserve fencing
materials are seriously dilapidated. To investigate how the effects of movements of wildlife and
domesticated animals lead to cross-infection of diseases and impact the spread and control of
brucellosis transmission, we constructed a reaction-diffusion brucellosis model, that comprise cattle
and African buffaloes. We established that without spatial animal movement, the associated model
admits two equilibrium points; the disease-free and endemic. Utilizing the Comparison Theorem,
we have shown that the disease-free equilibrium is globally asymptotically stable whenever the
reproductive number RODE

0 is less or equal to unity, and if the reproductive number is greater than
unity there exists an endemic equilibrium which is globally asymptotically stable. Analysis for our
model that constitute spatial animal movements demonstrates that incorporating diffusive spatial
spread does not produce a Turing instability when RODE

0 < 1.With the aid of numerical simulations
we have shown that both with and without spatial movement the disease persists whenever the
associated reproductive number is greater than unity. The results also suggest that minimizing
interaction between buffalo and cattle population can be essential to manage brucellosis spillover
between domesticated and wildlife animals.

Finally, Several avenues for future research arise from this work. First, future research should
assess the role of spatial animal movements and seasonal variation on the persistence of brucellosis,
since factors such as seasonal variations leads to climatic changes in pastures and this induces
animal movements. Seasonal availability of water and pastures have a significant influence on
pastoral farming, hence there is need to investigate its impact on the persistence of brucellosis.
Second, although we were able to establish the existence of a Turing stability and travelling waves
analytically, we did not resolve the results numerically and that remains an interesting topic for our
future research.
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