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Abstract
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1 Introduction

In this paper, we study the blowup of solutions to Cauchy problem for a semilinear wave equation
with scale-invariant damping

vtt −∆v +
µ

1 + t
vt = (1 + t)−α|v|p, in (0,∞)× Rn,

v(0, x) = v0(x), x ∈ Rn,

vt(0, x) = v1(x), x ∈ Rn,

(1.1)

where µ ≥ 0, α ≥ 0, n ≥ 1 and p > 1.

Damped wave equations are known as models describing the voltage and the current on an electrical
transmission line with a resistance. It is also derived as a modified heat conduction equation from
the heat balance law and the so-called Cattaneo-Vernotte law instead of the usual Fourier law (cf.
[1]). The term b(t)vt is called the damping term, which prevents the motion of the wave and reduces
its energy, and the coefficient b(t) represents the strength of the damping. From a mathematical
point of view, it is an interesting problem to study how the damping term affects the properties
of the solution. In this case we are dealing with a scale-invariant damping which is a separating
threshold between effective and non-effective dissipations(cf.[2, 3]). We are interested in studying
the effect of the damping term on the blowup to Cauchy problem (1.1).

Before we state the content of this paper in detail, we recall a number of related results. If µ = α = 0,
Eq.(1.1) becomes the classical wave equation

vtt −∆v = |v|p, in (0,∞)× Rn,

v(x, 0) = v0(x), x ∈ Rn,

vt(x, 0) = v1(x), x ∈ Rn,

(1.2)

and the pS(n) is the positive root of the quadratic equation

(n− 1)p2 − (n+ 1)p− 2 = 0, n ≥ 2, (1.3)

if n = 1, we set pS(1) = ∞. There are lots of literatures about Cauchy problem (1.2). We list
some but may be not all of them, i.e., [4, 5, 6, 7]. Based on these known results, we may know
that pS(n) is the critical exponent of Cauchy problem (1.2), if 1 < p ≤ pS(n), then the solutions
with nonnegative initial data will blow up in finite time; if p > pS(n), then the solutions with small
initial data values exist for all time.

If α = 0, Eq.(1.1) becomes a semilinear wave equation with scale-invariant dissipation
vtt −∆v +

µ

1 + t
vt = |v|p, in (0,∞)× Rn,

v(0, x) = v0(x), x ∈ Rn,

vt(0, x) = v1(x), x ∈ Rn.

(1.4)

D’Abbicco [8] have showed that the critical power is pF (n) when

µ ≥


5

3
, if n = 1,

3, if n = 2,

n+ 2, if n ≥ 3.

(1.5)

Wakasugi [9] had obtained a blowup result, if{
1 < p ≤ pF (n), µ > 1,

1 < p ≤ pF (n+ µ− 1), 0 < µ ≤ 1,
(1.6)
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where pF (n) = 1 + 2
n
see [10]. When µ = 2, D’Abbicco-Lucente-Reissig [11] had got

pc(n) = max{pF (n), pS(n+ 2)}, n ≥ 2. (1.7)

After [11], where the global existence of small data solutions is proved when p > pc(n) for n = 2 , 3,
in [12, 13] the odd dimensional case and the even dimensional case, respectively, are studied in the
radially symmetric case for n ≥ 4. The estimations of life span can be referred to [14, 15, 16, 17]

An efficient way to prove blowup results, when the critical exponent comes from the scaling
properties of the partial differential operator, is the testing function method, first of all the test
function method was introduce by Mitidieri-Pohozaev (see for example [18, 19, 20, 21]) and then
applied by Zhang to study the critical case for the classical semilinear damped wave equation. In
[22], they had used the smooth cutoff functions as the testing functions, and it seems enough to
obtain a blowup result for Fujita type power. But if we want to get a blowup result for Strauss type
power, it is better to use some special solutions of the linear wave equation as the testing function,
i.e.,

ψ(t, x) = e−t

∫
Sn−1

ex·ωdω, n ≥ 2, (1.8)

used in [7].

Our aim is to study the exponent for the blowup to Eq.(1.1) with µ > 0, α ∈ [0, 2) that is for given
n ≥ 1 and p > 1, the solutions of (1.1) will blow up in finite time when 1 < p ≤ pc(µ, α, n). If
α > 2, we guess it will have a global solution for any p > 1, we will give its proof in future papers.

The rest of the paper is organized as follows: in Section 2, we will state our main blowup results:
Theorem 2.1-2.3. In Section 3, for µ ̸= 1, we use a key transformation to transform Eq.(1.1) into
a Generalized Tricomi equation, which is introduced by D’Abbicco [11]. In Section 4, we define
F (t) =

∫
Rn u(t, x)dx as in [7] and use some modified Bessel functions (see [8]), and we choose a

good testing function. We derive a Riccati-type ordinary differential inequality for F (t) by a delicate
analysis of Eq.(1.1). Especially in the critical case, we can use the fundamental solutions of the
Generalized Tricomi equation (see [23]) to modify the Riccati-type ordinary differential inequality,
we get a blowup result for Strauss type power. Almost repeating the proof in Section 4 can be
similar to Theorem 2.2 in Section 5. If µ = 1, Applying the testing function(see [22]) can be used
to get a blowup result for Fujita type power, we shall complete the proof of Theorem 2.3 in Section
6.

2 Main results

In this paper, we say f . g (f & g), that means there exists a constant C > 0 such that f ≤
Cg (f ≥ Cg). As in the introduction we denote throughout the article by pF (n) Fujita exponent

pF (n) = 1 +
2

n
, n ≥ 1, (2.1)

and pS(n) is called the Strauss index and is the positive root of the quadratic equation

(n− 1)p2 − (n+ 1)p− 2 = 0, n ≥ 2, (2.2)

if n = 1, then pS(1) = ∞. Similarly, we set

pF (µ, α, n) = 1 +
2− α

n+ µ− 1
, (2.3)

and pS(µ, α, n) is the positive root of the quadratic equation

(n− 1 + µ)p2 − (n+ 1 + µ− 2α)p− 2 = 0, n ≥ 1. (2.4)

Let us state the main theorems that will be proved in the present article.
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Theorem 2.1. (0 ≤ µ < 1) For Eq.(1.1), if{
(v0(x), v1(x)) ∈ H1(Rn)× L2(Rn) have compact supports,

(v0(x), v1(x)) are non-negative and positive somewhere,
(2.5)

and

pc1(µ, α, n) = max{pF (µ, α, n), pS(µ, α, n)}, (2.6)

where µ ∈ [0, 1) and α ∈ [0, 2). Then the global solution u ∈ C
(
[0,∞), H1(Rn)

)
∩C1

(
[0,∞), L2(Rn)

)
to Eq.(1.1) dose not exist provided that 1 < p ≤ pc1(µ, α, n).

Theorem 2.2. (1 < µ < 2) For Eq.(1.1), if{
(v0(x), v1(x)) ∈ H1(Rn)× L2(Rn) have compact supports,

(v0(x), v1(x)) are non-negative and positive somewhere,
(2.7)

and

pc2(µ, α, n) = max{pF (1, α, n), pS(µ, α, n)}, (2.8)

where µ ∈ (1, 2) and α ∈ [0, 2). Then the global solution u ∈ C
(
[0,∞), H1(Rn)

)
∩C1

(
[0,∞), L2(Rn)

)
to Eq.(1.1) dose not exist provided that 1 < p ≤ pc2(µ, α, n).

Theorem 2.3. (µ = 1) For Eq.(1.1), if
(v0(x), v1(x)) ∈ H1(Rn)× L2(Rn) have compact supports,∫
Rn

v1(x)dx > 0,
(2.9)

where µ = 1 and α ∈ [0, 2). Then the global solution u ∈ C
(
[0,∞), H1(Rn)

)
∩ C1

(
[0,∞), L2(Rn)

)
to Eq.(1.1) dose not exist provided that 1 < p ≤ pF (1, α, n).

Remark 2.1. If α = µ = 0, Eq.(1.1) returns to the classical wave equation, then pc1(0, 0, n) = pS(n),
see [4, 5, 6, 7]. If α = 0, Eq.(1.1) returns to the semilinear wave equation with scale invariant
damping, then pci(0, 0, n) = pµ(n), i=1,2, see [15, 23].

Remark 2.2. If α > 2, we guess it will have a global solution for any p > 1, we will give its proof in
future articles.

3 Preliminaries

From [11], we will introduce some useful transformations. If µ ∈ (0, 1) in Eq.(1.1), by

u(t, x) = u(a(t)− 1, x), (3.1)

where a(t) = (1+t)k+1

k+1
and k = µ

1−µ
, Cauchy problem (1.1) becomes a Cauchy problem for the

Tricomi equation
utt − (1 + t)2k∆u = ck(1 + t)2k−α(k+1)|u|p, in (0,∞)× Rn,

u(t∗, x) = v0(x), x ∈ Rn,

ut(t∗, x) = (1− µ)−µv1(x), x ∈ Rn,

(3.2)

where t∗ = (1− µ)−(1−µ) − 1 and ck = (k + 1)−α.
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If µ ∈ (1, 2) in Eq.(1.1), by

u(t, x) = aµ−1(t)u(a(t)− 1, x), (3.3)

where a(t) = (1+t)k+1

k+1
and k = 2−µ

µ−1
, Cauchy problem (1.1) becomes a Cauchy problem for the

Tricomi equation
utt − (1 + t)2k∆u = ck(1 + t)2k−(p−1)−α(k+1)|u|p, in (0,∞)× Rn,

u(t∗, x) = v0(x), x ∈ Rn,

ut(t∗, x) = (1− µ)2−µ (v1(x) + (µ− 1)v0(x)) , x ∈ Rn,

(3.4)

where t∗ = (µ− 1)−(µ−1) − 1 and ck = (µ− 1)(µ−1)(p−1)(k + 1)−α.

By the finite speed of propagation for Eq.(3.2) and

supp{u0(x), u1(x)} ⊂ {x : |x| ≤ R}. (3.5)

Then

supp{u(t, x)} ⊂ {x : |x| ≤ R+ ϕ(t)− ϕ(0)}, (3.6)

where ϕ(t) = (1+t)k+1

k+1
and R is a constant from (3.5).

Introduce the following two useful functions: Following [7], the first one is
ϕ1(x) = ex + e−x, n = 1,

ϕ1(x) =

∫
Rn

ex·ωdω, n ≥ 2,
(3.7)

which satisfies

△ϕ1(x) = ϕ1(x). (3.8)

From [7], we recall the following properties

Lemma 3.1. ([7]) If ϕ1(x) =
∫
Sn−1 e

x·ωdω. Then

ϕ1(x) ∼ C(n)e|x||x|−
n−1
2 , as |x| → ∞. (3.9)

The second one is the so-called modified Bessel function

Iν(t) =

∫ ∞

0

e−t cosh z cosh(νz)dz, ν ∈ R, (3.10)

and Iν(t) is a solution of the equation

t2
d2Iν(t)

dt2
+ t

dIν(t)

dt
− (t2 + ν2)Iν(t) = 0, t > 0, (3.11)

where ν is a real parameter. From [24], it follows that

(1) The asymptotic behavior of Iν(t)

Iν(t) =

√
π

2t
e−t (1 +O(t−1)

)
as t→ ∞. (3.12)

(2) The derivative identity

dIν(t)

dt
= −Iν+1(t) +

ν

t
Iν(t). (3.13)
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Set

λ(t) = C(k)t
1
2 I 1

2k+2

(
1

k + 1
tk+1

)
, t > 0, (3.14)

where C(k) is chosen so that λ(t) satisfies{
λ′′(t)− (1 + t)2kλ(t) = 0, t ≥ 0,

λ(0) = 1, λ(∞) = 0.
(3.15)

From [25]. Here is a list of properties of λ(t).

Lemma 3.2. ([25]) From (3.12)-(3.14), it follows that
(1)λ(t) and −λ′(t) are both decreasing, and

lim
t→∞

λ(t) = lim
t→∞

λ′(t) = 0 (3.16)

(2) There exists a constant t0 such that

1

C0
λ(t)tk ≤ |λ′(t)| ≤ C0λ(t)t

k, ∀ t ≥ t0, (3.17)

where C0 = C0(k, t0) .

Using Hölder’s inequality, we have∫
Rn

|u(t, x)|pdx ≥ |F1(t)|p
(∫

Rn

ψ
p

p−1

1 (t, x)

)−(p−1)

, (3.18)

where

F1(t) =

∫
Rn

ψ1(t, x)u(t, x)dx, (3.19)

ψ1(t, x) = λ(t)ϕ1(x). (3.20)

From [26], it is easy to get the following lemmas

Lemma 3.3. ([26]) Under the assumptions of Theorem 2.1, there exists a t0 > 0 such that

F1(t) ≥ C1t
−k, ∀ t ≥ t0, (3.21)

where C1 = C1(u0, u1, k, R, t0).

Lemma 3.4. ([26]) By some properties of λ(t) and ϕ1(x), we deduce(∫
|x|≤R+ϕ(t)

ψ
p

p−1

1 (t, x)dx

)p−1

≤ C2(1 + t)(k+1)(n−1)(p−1)− 1
2
(k+1)(n−1)p− 1

2
kp, ∀ t ≥ t0,

(3.22)

where C2 = C2(u0, u1, k, n, p, t0, R).

It follows from (3.18), (3.21) and (3.22) that∫
Rn

|u(t, x)|pdx ≥ C3(1 + t)
p
2
+(k+1)(n−1−np

2
), ∀ t ≥ t0, (3.23)

where C3 = C3(u0, u1, n, p, k0, t0, R). From [6, 7], we have the following lemma:
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Lemma 3.5. (Kato’s lemma) Let p > 1, q ∈ R and F ∈ C2([0, T )) be a positive function satisfying
the nonlinear ordinary differential inequality

d2F (t)

dt2
≥ k1(t+R)−qF p(t) (3.24)

for any t ∈ [T1, T ), for some k1, R > 0 and T1 ∈ [0, T ).
(1)If it holds the inequality

F (t) ≥ k0(t+R)a for any t ∈ [T0, T ), (3.25)

for some a ≥ 1 satisfying a > q−2
p−1

and for some k0 > 0 and T0 ∈ [0, T ), then T <∞.
(2) Let q ≥ p+1 in (3.24) and suppose that the constant k0 = k0(k1) > 0 is sufficiently large. Then,
if (3.25) holds with a = q−2

p−1
for some T0 ∈ [0, T ), then T <∞.

4 The Proof of Theorem 2.1

Let us prove the blowup result for (3.2). Applying Lemma3.5 for the case in which the exponent a
in (3.25) satisfies a ≥ q−2

p−1
, this condition corresponds to the requirement (2.6) in the statement of

Theorem 2.1.

Proof of Theorem 2.1. (1) The subcritical case

In order to write simply, we put the initial time 0 instead of t∗. Recall (3.2) as
utt − (1 + t)2k∆u = ck(1 + t)2k−α(k+1)|u|p, in (0,∞)× Rn,

u(0, x) = u0(x), x ∈ Rn,

ut(0, x) = u1(x), x ∈ Rn.

(4.1)

Set

F (t) =

∫
Rn

u(t, x)dx. (4.2)

Using (3.6), (4.1) and (4.2) and by integration by parts, we get

F̈ (t) = ck(1 + t)2k−α(k+1)

∫
Rn

|u(t, x)|pdx, (4.3)

then (3.23) gives

F̈ (t) ≥ C4(1 + t)
p
2
+(k+1)(n−1−np

2
)+2k−α(k+1), ∀ t ≥ t0, (4.4)

where C4 = C4(u0, u1, t0, k, α, n, p,R). Integrating twice the previous relation leads to

F (t) ≥ C5(1 + t)max{ p
2
+(k+1)(n−1−np

2
)+2k−α(k+1)+2,1}, ∀ t ≥ t0, (4.5)

where C5 = C5(u0, u1, t0, k, α, n, p,R). In view of (4.3), (3.6) and Hölder’s inequality, we get

F̈ (t) ≥ C6(1 + t)−(k+1)n(p−1)+2k−α(k+1)F p(t), (4.6)

where C6 = C6(k, n, t0, p, R).

If a = p
2
+ (k + 1)(n− 1− np

2
) + 2k − α(k + 1) + 2 and q = (k + 1)n(p− 1)− 2k + α(k + 1), then

applying Lemma3.5, we have

p

2
+ (k + 1)(n− 1− np

2
) + 2k − α(k + 1) + 2 > (k + 1)n+

α(k + 1)− 2k − 2

p− 1
,
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using k = µ
1−µ

, then

(n+ µ− 1)p2 − (n+ µ+ 1− 2α)p− 2 < 0. (4.7)

Precisely

1 < p < pS(µ, α, n). (4.8)

If a = 1 and q = (k + 1)n(p− 1)− 2k + α(k + 1), then applying Lemma 3.5, we have

1 > (k + 1)n+
α(k + 1)− 2k − 2

p− 1
, (4.9)

so

1 < p < pF (µ, α, n). (4.10)

From (4.8) and (4.10), we get

1 < p < pc1(µ, α, n), (4.11)

the solutions to (1.1) will blow up in finite time.

(2) The critical case

If p = pF (µ, α, n), it’s easy to have

−(k + 1)n(p− 1) + 2k − α(k + 1) + p = −1. (4.12)

(4.6) and (4.12) give

F̈ (t) ≥ C6(1 + t)−(k+1)n(p−1)+2k−α(k+1)F p(t)

≥ C7(1 + t)−(k+1)n(p−1)+2k−α(k+1)+p

= C7(1 + t)−1, ∀ t ≥ t0,

(4.13)

where C7 = C7(k, n, t0, p, u0, u1, R). Intergrading twice the previous relation leads to

F (t) ≥ C8(t+ 1) ln(1 + t), ∀ t ≥ t0, (4.14)

where C8 = C8(u0, u1, k, n, t0, p, R). So

F (t) ≥ k0(1 + t), (4.15)

for large t > 0 and k0 is sufficiently large, then applying Lemma3.5, we know p = pF (µ, α, n) also
in the range of blowup.

If p = pS(µ, α, n), then

(n(k + 1)− 1) p2 − ((k + 1)(n+ 2− 2α)− 1) p− 2(k + 1) = 0. (4.16)

Step1: With no loss of generality we assume that u(t, ·) is radial. This because

ūtt − (1 + t)2k△ū ≥ ck(1 + t)2k−α(k+1)|ū|p, (4.17)

where

ū =
1

ωn

∫
Sn−1

u(t, r, θ)dθ

is the spherical average of u.
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Step2: The lower bound of R(u). The practices of reference [27, 23], let ω ∈ Rn be a unit vector.
The Radon transform of u with respect to the space variables is defined a

R(u)(t, ρ) =

∫
{x: x·ω=ρ}

u(t, x)dSx, (4.18)

where dSx is the Lebesque measure on the hyper-plane {x : x · w = 0}. Next we show that R(u) is
a function of ρ and t and is in fact independent of ω, when u is radially symmetric. From (4.18),
it’s easy to see

R(u)(t, ρ) =

∫
{x′: x′·ω=0}

u(t, ρω + x′)dSx′

=cn

∫ ∞

0

u(t,
√
ρ2 + x′2)|x′|n−2d|x′|

=cn

∫ ∞

|ρ|
u(r, t)(r2 − ρ2)

n−3
2 rdr,

(4.19)

where cn is a constant. This shows that R(u)(t, ρ) is independent of ω. From [28], we deduce

R(△u)(t, ρ) = ∂2
ρR(u)(t, ρ). (4.20)

Since u is a solution to (4.1), it’s well known that R(u) satisfies one-dimensional Generalized Tricomi
equation 

∂2
tR(u)(t, ρ)− (1 + t)2k∂2

ρR(u)(t, ρ) = ck(1 + t)2k−α(k+1)R(|u|p)(t, ρ),
R(u)(0, x) = R(u0(ρ)),

∂tR(u)(0, x) = R(u1(ρ)).

(4.21)

Set

ϕ(t) =
(1 + t)k+1

k + 1
, A(t) = ϕ(t)− ϕ(0), (4.22)

then

supp u(t, ·) ⊂ [−(R+A(t)), R+A(t)]. (4.23)

From [23], we have

R(u)(t, ρ) =
1

2
(1 + t)−

k
2 (f(ρ+A(t)) + f(ρ−A(t)))

+

∫ A(t)

0

(f(ρ− σ) + f(ρ+ σ))K0(t, σ)dσ

+

∫ A(t)

0

(g(ρ− σ) + g(ρ+ σ))K1(t, σ)dσ

+ C

∫ t

0

∫ A(t)−A(s)

0

(1 + s)2k−α(k+1) [|u(b, ρ− σ)|p + |u(b, ρ+ σ)|p]

× E(t, σ; s, 0)dσds,

(4.24)

where

E(t, σ; b, 0) = ((ϕ(t) + ϕ(b))2 − σ2)−γ × F (γ, γ, 1, z),

K(t, σ) = CE(t, σ; 0, 0), K0(t, σ) = −C ∂E(t, σ; s, 0)

∂s

∣∣∣∣
s=0

,

z =
(ϕ(t)− ϕ(s))2 − (ρ− σ)2

(ϕ(t) + ϕ(s))2 − (ρ− σ)2
∈ [0, 1), γ =

k

2(k + 1)
,
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and F (γ, γ, 1, z) is the hypergeometric function (see [24]). It’s easy to see

F (γ, γ, 1, z) =
1

Γ(γ)Γ(1− γ)

∫ 1

0

sγ−1(1− s)−γ(1− zs)−γds

≥ 1

Γ(γ)Γ(1− γ)
B(γ, 1− γ) = 1

(4.25)

From the assumptions that the initial data of u are nonnegative, we can get

R(u)(t, ρ) ≥ck
∫ t

0

∫ ρ+(A(t)−A(s))

ρ−(A(t)−A(s))

(
(A(t) +A(s))2 − (ρ− σ)2

)−γ

× (1 + s)2k−α(k+1)R(|u|p)(s, σ)dσds.
(4.26)

Note that the support of R(u)(·, s) is contained in B(0, ϕ(s) + R). From now on we will assume

ρ ≥ 0, unless stated otherwise. If A(s) ≤ A(s1) =
A(t)−ρ−R

2
, then

ρ+ (A(t)−A(s)) ≥ A(s) +R, ρ− (A(t)−A(s)) ≤ −(A(s) +R). (4.27)

From (4.26) and (4.27) it follows that

R(u)(t, ρ) ≥ ck

∫ s1

0

∫ −(R+A(s))

R+A(s)

(
(ϕ(t) + ϕ(s))2 − (ρ− σ)2

)−γ

× (1 + s)2k−α(k+1)R(|u|p)(s, σ)dσds

= ck

∫ s1

0

∫ +∞

−∞

(
(ϕ(t) + ϕ(s))2 − (ρ− σ)2

)−γ

× (1 + s)2k−α(k+1)R(|u|p)(s, σ)dσds.

(4.28)

By (4.27) we have

ϕ(t) + ϕ(s) + ρ− σ ≤ 2ϕ(t), ϕ(t) + ϕ(s)− (ρ− σ) ≤ 2(ϕ(t)− ρ). (4.29)

Using (4.28) and (4.29) gives

R(u)(t, ρ) ≥ C9

∫ s1

0

∫ +∞

−∞
(ϕ(t)− ρ)−γϕ−γ(t)(1 + s)2k−α(k+1)R(|u|p)(s, σ)dσds

= C9(ϕ(t)− ρ)−γϕ−γ(t)

∫ s1

0

∫ +∞

−∞
(1 + s)2k−α(k+1)

×R(|u|p)(s, σ)dσds

= C9(ϕ(t)− ρ)−γϕ−γ(t)

∫ s1

0

∫
Rn

(1 + s)2k−α(k+1)

× |u|p(s, x)dxds

= C9(ϕ(t)− ρ)−γϕ−γ(t)

∫ s1

0

F̈ (s)ds,

(4.30)

where C9 = 2−2γck. Since
p
2
+(k+1)(n− 1− np

2
)+ 2k−α(k+1) > −1 and applying (4.4), we can

get

R(u)(t, ρ) & (ϕ(t)− ρ)−γϕ−γ(t)

∫ s1

0

(1 + s)
p
2
+(k+1)(n−1−np

2
)+2k−α(k+1)ds

& (ϕ(t)− ρ)−γϕ−γ(t)(1 + s1)
p
2
+(k+1)(n−1−np

2
)+2k−α(k+1)+1

& (ϕ(t)− ρ)−γϕ−γ(t)(A(t)− ρ−R)
p−2

2(k+1)
+2−α+n−1−np

2 .

(4.31)
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Step 3 The lower bound of
∫
Rn |u(t, x)|pdx. From [7], one can introduce the transformation

T (f)(ρ) =
1

|A(t)− ρ+R|
n−1
2

∫ A(t)+R

ρ

f(r)|r − ρ|
n−3
2 dr (4.32)

and further derive

||T (f)||Lp ≤ C||f ||Lp , (4.33)

where C is a constant. In fact, if n ≥ 3, then

|T (f)| ≤ 2

2|A(t)− ρ+R|

∫ A(t)+R

2ρ−(A(t)+R)

|f(r)|dr ≤ 2M(|f |)(ρ), (4.34)

whereM(|f(x)|) is the maximal function of f(x), so (4.33) holds.

For n = 2, at first we prove that T maps L∞ to L∞ and L1 to L1,w(weak L1 space), by Marcinkiewicz
interpolation theorem, then (4.33) holds for n = 2.

In fact, for n = 2, we have

|T (f)(ρ)| = 1

|A(t)− ρ+R| 12

∫ A(t)+R

0

f(r)|r − ρ|−
1
2 dr

≤
||f ||L∞([0,A(t)+R])

|A(t)− ρ+R| 12

∫ A(t)+R

0

|r − ρ|−
1
2 dr

=2||f ||L∞([0,A(t)+R])
1

|A(t)− ρ+R| 12
|A(t)− ρ+R|

1
2

=2||f ||L∞([0,A(t)+R]),

(4.35)

which yields the L∞ − L∞ estimate of operator T . Next we derive the L1 − L1,w estimate of T .
Suppose f ∈ L1([0, A(t) +R]). Let

g(ρ) =
1

|A(t)− ρ+R| 12
, h(ρ) =

∫ A(t)+R

ρ

f(r)|r − ρ|−
1
2 dr, (4.36)

Denote dφ = |{0 ≤ ρ ≤ A(t) +R : φ(ρ) > α}| as the distribution function of φ. It’s known that for
0 < α <∞ and measurable functions f1, f2,

df1,f2(α) ≤ df1(α
1
2 ) + df2(α

1
2 ). (4.37)

Note that

dg(α
1
2 ) = |{0 ≤ ρ ≤ A(t) +R : g(ρ) > α}| = 1

α
. (4.38)

In addition,

|h(ρ) ≤
∫ A(t)+R

0

|f(r)||r − ρ|−
1
2 dr = f ∗ 1

|r| 12
. (4.39)

Since 1

|r|
1
2

∈ L2,w([0, A(t) + R]) and f ∈ L1([0, A(t) + R]), by Young’s inequality, we have h ∈

L2,w([0, A(t) +R]). Therefore,

αdgh(α) ≤ αdf (α
1
2 ) + αdh(α

1
2 ) ≤ C, (4.40)
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which means T (f)(ρ) = g(ρ)h(ρ) ∈ L1,w([0, A(t) + R]). Then an application of Marcinkiewicz
interpolation theorem yields

||T (f)||Lp([0,A(t)+R]) ≤ C||f ||Lp([0,A(t)+R]), (4.41)

where C > 0 is a uniform constant independent of t.

Using (4.33) to the function

f(r) =

{
|u(t, r)|r

n−1
p , r ≥ 0,

0, r < 0,
(4.42)

then ∫ A(t)+R−1

0

(
1

|A(t)− ρ+R|
n−1
2

∫ A(t)+R

ρ

|u(t, r)|r
n−1
p |r − ρ|

n−3
2 dr

)p

dρ

.
∫ ∞

0

|u(t, r)|prn−1dr =

∫
Rn

|u(t, x)|pdx.

(4.43)

For ρ ≤ r ≤ A(t) +R, it holds

r
n−1
p ≥

 r
n−1
2 ρ

n−1
p

−n−1
2 , 1 < p ≤ 2,

r
n−1
2 (A(t)−R− 1)

n−1
p

−n−1
2 , p > 2.

(4.44)

Now, we only treat the case of 1 < p ≤ 2 since the treatment for p > 2 is completely similar. When
1 < p ≤ 2, from (4.43) and (4.44) it follows that∫ A(t)+R−1

0

(
1

|A(t)− ρ+R|
n−1
2

∫ A(t)+R

ρ

|u(t, r)|r
n−1
2 |r − ρ|

n−3
2 dr

)p

× ρ(n−1)(1− p
2
)dρ .

∫
Rn

|u(t, x)|pdx.
(4.45)

Since supp u(t, ·) ⊂ B(0, A(t) +R), it’s easy to see

R(u)(t, ρ) .
∫ A(t)+R

|ρ|
|u(r, t)|(r2 − ρ2)

n−3
2 rdr

.
∫ A(t)+R

|ρ|
|u(r, t)|(r + ρ)

n−3
2 (r − ρ)

n−3
2 rdr

.
∫ A(t)+R

|ρ|
|u(r, t)|r

n−1
2 (r − ρ)

n−3
2 rdr.

(4.46)

Substituting (4.46) into (4.45) leads to∫ A(t)+R

0

(R(u)(t, ρ))p

|A(t)− ρ+R|
(n−1)p

2

ρ(n−1)(1− p
2
)dρ .

∫
Rn

|u(t, x)|pdx. (4.47)

If ρ ∈ (0, A(t)−R− 1), then ϕ(t) > 2(R+ 1) and

A(t)− ρ+R ≤ C(A(t)− ρ−R), A(t)− ρ ≤ C(A(t)− ρ−R), (4.48)

where C is a constant. Using (4.31), (4.47) and (4.48), we find that∫ A(t)−R−1

0

ρ(n−1)(1− p
2
)ϕ−γp(t)

|A(t)− ρ+R|βp+
(n−1)p

2
−( p−2

2(k+1)
+2−α+n−1−np

2
)p
dρ

.
∫
Rn

|u(t, x)|pdx.

(4.49)
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Since p = pS(µ, α, n) it holds γp+
(n−1)p

2
−
(

p−2
2(k+1)

+ 2− α+ n− 1− np
2

)
p = 1, where γ = k

2(k+1)
.

Then (4.49) becomes∫
Rn

|u(t, x)|pdx &
∫ A(t)−R−1

0

ρ(n−1)(1− p
2
)ϕ−γp(t)

A(t)− ρ−R
dρ

& ϕ(n−1)(1− p
2
)−γp(t)

∫ A(t)−R−1

A(t)−R−1
2

1

A(t)− ρ−R
dρ

& (1 + t)(k+1)(n−1)(1− p
2
)− kp

2 ln(1 + t),

(4.50)

for large t > 0. Thus

F̈ (t) = ck(1 + t)2k−α(k+1)

∫
Rn

|u(t, x)|pdx

& (1 + t)(k+1)(n−1)(1− p
2
)− kp

2
+2k−α(k+1) ln(1 + t),

(4.51)

for large t > 0. It can be obtained by twice integrations on [0, t]

F (t) & F (0) + Ḟ (0)t+ (1 + t)(k+1)(n−1)(1− p
2
)− kp

2
+2k+2−α(k+1) ln(1 + t), (4.52)

for large t > 0. Thus

F (t) ≤ k0(1 + t)(k+1)(n−1)(1− p
2
)− kp

2
+2k+2−α(k+1), (4.53)

for large t > 0 and k0 is sufficiently large. Applying Lemma3.5, we know p = pS(µ, α, n) also in the
range of blowup.

5 The Proof of Theorem 2.2

Let us prove the blowup result for (3.4), Using Lemma3.5 for the case in which the exponent a in
(3.25) satisfies a ≥ q−2

p−1
, this condition corresponds to the requirement (2.8) in the statement of

Theorem2.2.

Proof of Theorem 2.2. For simple writing, we put initial time 0 instead of t∗. Recall (3.4) as
utt − (1 + t)2k∆u = ck(1 + t)2k−α(k+1)−(p−1)|u|p, in (0,∞)× Rn,

u(0, x) = u0(x), x ∈ Rn,

ut(0, x) = u1(x), x ∈ Rn.

(5.1)

By repeating the process of proving Theorem 2.1, we can prove Theorem 2.2. We can get a =
p
2
+(k+1)(n−1− np

2
)+2k−α(k+1)− (p−1)+2 and q = (k+1)n(p−1)−2k+α(k+1)+(p−1),

then applying Lemma 3.5, we know if 1 < p ≤ pc2(µ, α, n), the solutions will blow up in finite
time.

6 The Proof of Theorem 2.3

In this section, we will prove Theorem 2.3, our strategy is the testing function argument, which was
builded by Zhang [22] can be employed, more More details, we can see [29, 30, 9].

Proof of Theorem 2.3. We introduce the test function depending on the parameter R > 0

ψR(t, x) = ηR(t)ϕR(r) = η(
t

R
)ϕ(

r

R
), for |x| = r, (6.1)
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where η(t), ϕ(r) ∈ C∞
0 satisfy

0 ≤ η(t) ≤ 1, |η′(t)|, |η′′(t)| ≤ C,
(η′(t))2

η(t)
≤ C,

η(t) =

 1 t ∈ [0,
1

2
],

0 t ∈ [1,∞),

0 ≤ ϕ(r) ≤ 1, |ϕ′(r)|, |ϕ′′(r)| ≤ C,
(∇ϕ(r))2

η(t)
≤ C,

ϕ(r) =

 1 t ∈ [0,
1

2
],

0 t ∈ [1,∞).

Recall Eq.(1.1) as

vtt −∆v +
1

1 + t
vt = (1 + t)−α|v|p, (µ = 1). (6.2)

Multiplying (6.2) by some C2 function g(t) > 0, we derive

(gv)tt −∆(gv)− (g′v)t + (−g′ + gb1)vt = (1 + t)−αg|v|p, (6.3)

where b1(t) =
1

1+t
. If −g′ + gb = 0 for t > 0 and g(0) > 0, then

g(t) = g(0)(1 + t). (6.4)

So

(gv)tt −∆(gv)− (g′v)t = (1 + t)−αg|v|p. (6.5)

Define

IR =

∫
QR

(1 + t)−αg(t)|v|pψq
Rdxdt, (6.6)

where QR = [0, R]×BR, BR = {x ∈ Rn : |x| ≤ R} and 1
p
+ 1

q
= 1. By integration by parts, we can

get

IR =− g(0)

∫
BR

v1(x)ϕ
q
R(r)dx

+

∫
QR

g(t)v(t, x)(ψq
R(t, x))ttdxdt

+

∫
QR

(
g′(t)v(t, x)

)
(ψq

R(t, x))tdxdt

−
∫
QR

g(t)v(t, x)∆(ψq
R(t, x))dxdt

=− g(0)

∫
BR

v1(x)ϕ
q
R(r)dx+ J1 + J2 + J3.

(6.7)

where

J1 =

∫
QR

g(t)v(t, x)(ψq
R(t, x))ttdxdt,

J2 =

∫
QR

(g′(t)v(t, x))(ψq
R(t, x))tdxdt, J3 = −

∫
QR

g(t)v(t, x)∆(ψq
R(t, x))dxdt.
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In view of assumption (2.9), then

IR <
3∑

i=1

Ji. (6.8)

Using Hölder’s inequality and the previous inequality about η(t), ϕ(r) to estimate Ji(i = 1, 2, 3),
we get

|J2| =
∣∣∣∣∫

QR

g(0)v(t, x)(ψq
R(t, x))t

∣∣∣∣ dxdt
. R−1

∫
Q̂

|v(t, x)|ψq−1
R (t, x)dxdt

. R−1Î
1
p

R

(∫
Q̂R

(1 + t)
(α−1) q

p dxdt

) 1
q

. R
−q(2−α)+n+2−α

q Î
1
p

R .

(6.9)

Similarly

|J1| . R−2

∫
Q̂R

g(t)|v(t, x)|ψq−1
R (t, x)dxdt . R

−q(2−α)+n+2−α
q Î

1
p

R , (6.10)

|J3| . R−2

∫
Q̃R

g(t)|v(t, x)|ψq−1
R (t, x)dxdt . R

−q(2−α)+n+2−α
q Ĩ

1
p

R , (6.11)

where

ÎR =

∫
Q̂R

(1 + t)−αg(t)|v(t, x)|pψq
R(t, x)dxdt,

ĨR =

∫
Q̃R

(1 + t)−αg(t)|v(t, x)|pψq
R(t, x)dxdt,

and Q̂R =

[
R
2
, R

]
×BR(0), Q̃R = [0, R]× (BR

2
(0), BR(0)). It follows from (6.8)-(6.11) that

IR . (Ĩ
1
p

R + Î
1
p

R + I
1
p

R )R
−q(2−α)+n+2−α

q . I
1
p

RR
−q(2−α)+n+2−α

q , (6.12)

which impels

I
1− 1

p

R . R
−q(2−α)+n+2−α

q . (6.13)

If 0 < p < pF (1, α, , n), we have IR → 0 as R→ ∞, then v ≡ 0, therefore, we have
∫
Rn v1(x)dx =

0, which contradicts the assumption on the data of (2.9).
If p = pF (1, α, n), we have IR ≤ C, with some constant C independent of R, so

lim
R→∞

(ĨR + ÎR) = 0, then lim
R→∞

IR = 0.

Therefore v ≡ 0, it also leads a contradiction.

7 Conclusions

In this study We obtain a blowup result for solutions to a semilinear wave equation with scale-
invariant dissipation. We perform a change of variables that transforms our starting equation into a
Generalized Tricomi equation, then apply Kato’s lemma, we can prove a blowup result for solutions
to the transformed equation under some assumptions on the initial data.
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