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Abstract

Associated with every commuting m-tuples of operators on a complex Hilbert space X is its
Aluthge transform. In this paper we show that every commuting m-tuples of operators on a
complex Hilbert space X and its Aluthge transform have the same joint essential spectrum.
Further, it is shown that the joint essential spectrum of Aluthge transform is contained in the
joint essential numerical range of Aluthge transform.

Keywords: Aluthge transform; joint essential spectrum; joint essential numerical range.

2010 Mathematics Subject Classification: 47LXX, 46N10, 47N10.

1 Introduction

Denote by B(X) the algebra of (bounded) linear operators acting on complex Hilbert space X
with inner product ⟨, ⟩. For each operator T ∈ B(X), its numerical range denoted by W (T ) is a
subset of complex plane C defined by W (T ) =

{
⟨Tx, x⟩ : x ∈ X, ⟨x, x⟩ = 1

}
. This implies that

W (T ) is the image of the unit sphere {x ∈ X : ∥x∥ = 1} of X under the (bounded) quadratic
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form x → ⟨Tx, x⟩. This concept of numerical range, also known as the classical field of values on a
Hilbert space, was introduced in 1918 by Toeplitz [1] for matrices. Since its conception, there has
been an extensive research on this concept and its generalization. For instance, it is known that
the spectrum of T denoted by σ(T ) is contained in the closure of numerical range, W (T ). Here, the
spectrum of an operator T is defined as σ(T ) = {λ ∈ C : T − λI is not invertible}. The spectrum
of an n× n matrix is vital in giving many properties of the matrix. For instance, it is clear that a
matrix A is invertible if and only if 0 ̸∈ σ(A). The spectrum has various components, among them
the approximate point spectrum which we define as the complex number λ ∈ C such that for a
sequence {xm} of unit vectors in X we have ∥(T − λI)xm∥ → 0. Dekker [2] extended the notion
of numerical range to joint numerical range in 1969. Let T = (T1, ..., Tm) ∈ B(X) be m-tuples
of operators on a complex Hilbert space X, the joint numerical range is denoted and defined as
Wm(T ) =

{(
⟨T1x, x⟩, ..., ⟨Tmx, x⟩

)
: x ∈ X, ⟨x, x⟩ = 1

}
.

Also related the study of numerical range is the notion of essential numerical range. The essential
numerical range for a single operator was introduced and studied in [3] by Stampfli and Williams
in 1968. It is denoted and defined as We(T ) = {λ ∈ C : ⟨Txm, xm⟩ → λ, xm → 0 weekly}. It is
worth noting that much has been done on the essential numerical range. For instance, it was shown
in [4] and [5] that the essential numerical range of an operator T ∈ B(X) is related to the usual
numerical range by the formula We(T ) =

∩
{W (T +K) : K ∈ K(X)}, where K(X) is the ideal of

all compact operators in B(X). It is clear that the essential numerical of an operator T is contained
in the closure of the numerical range and that We(T ) contains the essential spectrum of T, σe(T )
[4]. The essential spectrum σe(T ) is defined as σe(T ) = {λ ∈ C : T − λI is not Fredholm}. Recall
that an operator T ∈ B(X) is Fredholm if it has a closed range with infinite dimensional null space
and its range of finite co-dimension.

In the sequel, a bounded linear operator T ∈ B(X) is said to be an isometry if ∥Tx∥ = ∥x∥ ∀x ∈ X.
We say that T is a partial isometry if it is an isometry on the orthogonal complement of its kernel,
that is, for every x ∈ ker(T )⊥, ∥Tx∥ = ∥x∥ where ker(T ) denotes the kernel of a bounded linear

operator T. In this paper, we recall that Aluthge transform T̃ of a bounded linear operator T on

a complex Hilbert space X is the operator |T |
1
2U |T |

1
2 and T = U |T | is any polar decomposition

of T with U a partial isometry and |T | = (T ∗T )
1
2 . Here, an operator T ∗ denotes the adjoint of

T ∈ B(X). Recall that the adjoint of T ∈ B(X) is a linear operator T ∗ ∈ B(X) defined by
the relation ⟨Tx, y⟩ = ⟨x, T ∗y⟩ ∀y, x ∈ X. The adjoint T ∗ ∈ B(X) of an operator should not be
construed as the adjoint of a matrix A denoted by Adj(A) which is the transpose of the cofactor
matrix. Aluthge transform has been extensively studied due to its usefulness in the study of p-
hyponormal and semi-hyponormal operators.

The notion of numerical range W (T ) of an operator and its generalisation was later extended to

the study of numerical range W (T̃ ) of Aluthge transform T̃ . For instance, Yuan Wu [6] proved that

the closure of the numerical range of T̃ is contained in that of T . Let ∗-Aluthge transform T̃ ∗ be

defined as |T ∗|
1
2U |T ∗|

1
2 . Both T̃ and T̃ ∗ are independent of the choice of the partial isometry U in

the polar decomposition of T. In 2007, Guoxing, Liu and Li [7] studied the essential numerical range
and the maximal numerical range of Aluthge transform. They proved that the essential numerical
range of T̃ is contained in that of T and is the same as that of T̃ ∗.

Various connections between an operator T and its associated Aluthge transform T̃ were studied
by Jung, Ko, and Pearcy, [8] in particular with regard to the invariant subspace problem.

Proposition 1.1. If T ∈ B(X) and T̃ has a nontrivial invariant subspace, then so does T.

2



Cyprian; JAMCS, 36(8): 1-9, 2021; Article no.JAMCS.57208

See [8] for the proof and more.

Yuan [6] studied the relation between numerical range of T and its associated Aluthge transform T̃

and proved that the containment W (T̃ ) ⊆ W (T ) holds for any operator T ∈ B(X).

Theorem 1.1. W (T̃ ) ⊆ W (T ) for any operator T ∈ B(X).

See [6] for the proof.

In this report, firstly, we show a property of Aluthge transform on the joint essential spectrum, that
the joint essential spectrum of T coincides that of T̃ .

Secondly, we show that the joint essential spectrum of T̃ is contained in the joint essential numerical
range of T̃ .

2 Joint Essential Spectrum of Aluthge Transform

In this section, we give certain properties of the joint essential spectrum of commuting m-tuples of
complex Hilbert space operators. Further, we show that the joint essential spectrum of T coincides
with the joint essential spectrum of T̃ . Let T = (T1, ..., Tm) ∈ B(X) be commuting m-tuples
of operators on a complex Hilbert space X and Tj = Uj |T | for 1 ≤ j ≤ m be any joint polar
decomposition of T = (T1, ..., Tm) ∈ B(X) with Uj a joint partial isometry and |T | = (T ∗

1 T1 + ...+

T ∗
mTm)

1
2 . The joint Aluthge transform is defined by T̃ =

(
|T |

1
2U1|T |

1
2 ...|T |

1
2Um|T |

1
2

)
. Dash [9]

defined the joint essential spectrum of commuting m-tuples of operators T = (T1, ..., Tm) ∈ B(X)
as σem(T ) = σl

em(T ) ∪ σr
em(T ). Dash [9] also showed that σem(T ) ⊂ σm(T ) where σm(T ) is the

joint spectrum of commuting m-tuples of operators T = (T1, ..., Tm) ∈ B(X). Motivated by this

definition, the set σem(T̃ ) of Aluthge transform is equivalently defined as σem(T̃ ) = σl
em(T̃ )∪σr

em(T̃ )

where the left (right) joint essential spectrum σl
em(T̃ )

(
σr
em(T̃ )

)
of Aluthge transform are defined

as

σl
em(T̃ ) =

{
(λ1, ..., λm) ∈ Cm : B1(T̃1 − λ1I) + ... + Bm(T̃m − λmI) is not a Fredholm operator

for all operators B = (B1, ..., Bm) on X

}
and

σr
em(T̃ ) =

{
(λ1, ..., λm) ∈ Cm : (T̃1 − λ1I)B1 + ...+ (T̃m − λmI)Bm is not a Fredholm operator for

all operators B = (B1, ..., Bm) on X

}
.

Remark 2.1. If λ = (λ1, ..., λm) ∈ σl
em

(
(T̃1 − λ1)

∗(T̃1 − λ1) + ...+ (T̃m − λm)∗(T̃m − λm)
)

then 0 ∈ σem

(
(T̃1 − λ1)

∗(T̃1 − λ1) + ...+ (T̃m − λm)∗(T̃m − λm)
)
.

If λ = (λ1, ..., λm) ∈ σr
em

(
(T̃1 − λ1)(T̃1 − λ1)

∗ + ...+ (T̃m − λm)(T̃m − λm)∗
)

then 0 ∈ σem

(
(T̃1 − λ1)(T̃1 − λ1)

∗ + ...+ (T̃m − λm)(T̃m − λm)∗
)
.

The converse of a) and b) are true.

Theorem 2.1 characterizes the sets σl
em(T̃ ) and σr

em(T̃ ).

Theorem 2.1. Let T = (T1, ..., Tm) be commuting m-tuples operators on X and let
T = (U1|T |, ..., Um|T |) be the associated joint polar decomposition. Then: λ = (λ1, ..., λm) ∈
σl
em(T̃ ) if and only if there exists a sequence {xm} of unit vectors in X with xm → 0 weakly such that

3
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∥(T̃1−λ1)xm...(T̃m−λm)xm∥ → 0 as m → ∞. λ = (λ1, ..., λm) ∈ σr
em(T̃ ) if and only if there exists a

sequence {xm} of unit vectors in X with xm → 0 weakly such that ∥(T̃ ∗
1 −λ∗

1)xm...(T̃ ∗
m−λ∗

m)xm∥ →
0 as m → ∞.

Moreover, the sequence {xm} can be chosen orthonormal.

Proof. Let λ = (λ1, ..., λm) ∈ σl
em(T̃ ). Then B1(T̃1 −λ1)+ ...+Bm(T̃m −λm) ̸= 1 for all operators

B = (B1, ..., Bm) on X. Thus, (T̃1 − λ1)
∗(T̃1 − λ1) + ... + (T̃m − λm)∗(T̃m − λm) lacks left inverse

in X. Therefore, there exists a sequence {xm} of unit vectors with xm → 0 weekly such that

(T̃1 − λ1)
∗(T̃1 − λ1) + ...+ (T̃m − λm)∗(T̃m − λm) → 0 as m → ∞.

Now,∥∥(T̃1 − λ1)xm

∥∥2
+ ...+

∥∥(T̃m − λm)xm

∥∥2
=

⟨
(T̃1 − λ1)

∗(T̃1 − λ1)xm, xm

⟩
+ ...

+
⟨
(T̃m − λm)∗(T̃m − λm)xm, xm

⟩
= ∥(T̃1 − λ1)

∗(T̃1 − λ1)xm + ...

+ (T̃m − λm)∗(T̃m − λm)xm∥ → 0as m → ∞.

Therefore, ∥(T̃1 − λ1)xm...(T̃m − λm)xm∥ → 0 as m → ∞.

On the other hand, let {xm} be a sequence of unit vectors with xn → 0 weekly such that

∥(T̃1 − λ1)xm...(T̃m − λm)xm∥ → 0 as m → ∞.

Then

∥(T̃1 − λ1)
∗(T̃1 − λ1)xm + ...+ (T̃m − λm)∗(T̃m − λm)xm∥≤

∥∥(T̃1 − λ1)
∗(T̃1 − λ1)xm

∥∥+ ...+
∥∥(T̃m −

λm)∗(T̃m − λm)xm

∥∥→0. This implies that

0 ∈ σl
em

(
(T̃1 −λ1)

∗(T̃1 −λ1)+ ...+(T̃m −λm)∗(T̃m −λm)
)
= σem

(
(T̃1 −λ1)

∗(T̃1 −λ1)+ ...+(T̃m −
λm)∗(T̃m − λm)

)
implying that λ = (λ1, ..., λm) ∈ σl

em(T̃ ) by Remark 2.1. Proof of part 2.1 follows
as that of part 2.1 by taking adjoint. This completes the proof.

Throughout the remaining part of this section, let A = (A1, ..., Am) and B = (B1, ..., Bm) be two
m-tuples of operators on X. We define AB = (A1B1, ..., AmBm) and BA = (B1A1, ..., BmAm). If
AiBjAk = AkBjAi and BiAjBk = BkAjBi for all i, j, k = 1, ...,m then A and B commute. If there
is no danger of confusion, we write A instead of A = (A1, ..., Am) and B instead of B = (B1, ..., Bm).

Note that if A and B commute and AB is commuting then BA is also commuting.

Lemma 2.2. Suppose that A = (A1, ..., Am) and B = (B1, ..., Bm) are two m-tuples of operators
on X and A = A∗. Then AB is invertible if and only if BA is invertible.

Proof. Let A = A∗ and AB be invertible. Then there exists an operator Y such that ABY = I.
Thus, (BY )∗A = I which implies that A is invertible. Therefore, both A and AB are invertible
meaning that B is invertible and so is BA.

Conversely, assume BA is invertible. Then there is an operator Z such that BAZ = I. Then
(AZ)∗B = I so that B is invertible. Since BA and B are invertible, A is invertible. Thus, AB is
invertible.

The following proposition by Halmos [10] will be used in the sequel.

Proposition 2.1. Let A,B ∈ B(X). Then σ(AB)\{0} = σ(BA)\{0}

4
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See [11] for the proof.

Theorem 2.3. Let T = (T1, ...Tm) or T̃ =
(
|T |

1
2U1|T |

1
2 ...|T |

1
2Um|T |

1
2
)
be left invertible.

Then |T | = (T ∗
1 T1 + ...+ T ∗

mTm)
1
2 is invertible.

Proof. Assume T = (T1, ...Tm) is left invertible. Then T ∗
1 T1 + ...+ T ∗

mTm is left invertible implying

that |T | = (T ∗
1 T1 + ...+ T ∗

mTm)
1
2 is invertible.

Now let T̃ =
(
|T |

1
2U1|T |

1
2 ...|T |

1
2Um|T |

1
2
)
be left invertible. Then it is bounded below. This means

that there is a constant k > 0 such that
T̃ x =

∥∥|T | 12U1|T |
1
2 x

∥∥2
+ ...+

∥∥|T | 12Um|T |
1
2 x

∥∥2 ≥ k2∥x∥2.
Since (U1, ..., Um) is a joint partial isometry, it follows that∥∥|T | 12 x∥∥2

+ ...+
∥∥|T | 12 x∥∥2 ≥ k2∥∥|T |

∥∥∥x∥2.
Therefore, |T |

1
2 is bounded below and hence |T | is invertible.

As a consequence, we state the following remark.

Remark 2.2. If the operator T = (T1, ...Tm) ∈ B(X) is invertible, then |T | = (T ∗
1 T1 + ...+T ∗

mTm)
1
2

is invertible and U = (U1, ..., Um) is unitary.

Theorem 2.4. The operator T̃ =
(
|T |

1
2U1|T |

1
2 ...|T |

1
2Um|T |

1
2
)
is invertible if and only if

T = (T1, ...Tm) ∈ B(X) is invertible.

Proof. From definition of T̃ , if T = (T1, ...Tm) ∈ B(X) is invertible then

T̃ =
(
|T |

1
2U1|T |

1
2 ...|T |

1
2Um|T |

1
2
)
is invertible.

It now remains to show that if T̃ =
(
|T |

1
2U1|T |

1
2 ...|T |

1
2Um|T |

1
2
)
is invertible then

|T | = (T ∗
1 T1 + ...+ T ∗

mTm)
1
2 is invertible. Assume the contrary that |T | = (T ∗

1 T1 + ...+ T ∗
mTm)

1
2 is

not invertible. Then |T |
1
2 is not invertible meaning |T |

1
2 is not bounded below. Therefore, there is

a sequence {xn} of unit vectors such that
∥∥|T | 12 xn

∥∥ → 0.

Since T̃ x =
∥∥|T | 12U1|T |

1
2 x

∥∥2
+ ...+

∥∥|T | 12Um|T |
1
2 x

∥∥2
we have

∥T̃ x∥ ≤
∥∥|T | 12U1

∥∥∥∥|T | 12 x∥∥+ ...+
∥∥|T | 12Um

∥∥∥∥|T | 12 x∥∥. This implies that ∥T̃ x∥ → 0 so that T̃ is not

bounded below and is thus not invertible. This contradicts and thus |T | = (T ∗
1 T1 + ...+ T ∗

mTm)
1
2 is

invertible and so is T̃ =
(
|T |

1
2U1|T |

1
2 ...|T |

1
2Um|T |

1
2
)
. Since |T | = (T ∗

1 T1+ ...+T ∗
mTm)

1
2 is invertible

and T = |T |−12T̃ |T |12 it implies T is invertible.

The following theorem shows that T and T̃ have the same joint essential spectrum.

Theorem 2.5. Let T = (T1, ...Tm) ∈ B(X) be m-tuples arbitrary operator such that

T = (U1|T |, ..., Um|T |) with joint partial isometry U1, ..., Um. Then σem(T ) = σem(T̃ ).

Proof. Clearly, σem(T ) \ {0} = σem

(
U1|T |, ..., Um|T |

)
\ {0} and

σem(T̃ ) \ {0} = σem

(
|T |

1
2U1|T |

1
2 ...|T |

1
2Um|T |

1
2
)
\ {0} by applying Proposition 2.1.

Thus σem

(
|T |

1
2U1|T |

1
2 ...|T |

1
2Um|T |

1
2
)
\ {0} = σem

(
U1|T |

1
2 |T |

1
2 ...Um|T |

1
2 |T |

1
2
)
\ {0}.

Since 0 ∈ σem(T ) if and only if 0 ∈ σem(T̃ ), by Lemma 2.2 we have that σem(T ) = σem(T̃ ).

We proceed by studying the finer components of the joint spectra of T and T̃ . We write σπm(T )
for the joint approximate point spectrum of T = (T1, ..., Tm) ∈ B(X) and define it as the complex
numbers λ = (λ1, ..., λm) ∈ Cm such that for a sequence {xm} of unit vectors in X we have
∥(T1 − λ1I)xm, ..., (Tm − λm)xm∥ → 0. A joint eigenvalue σpm(T ) of T = (T1, ..., Tm) ∈ B(X) is

5
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the complex numbers λ = (λ1, ..., λm) ∈ Cm such that for a nonzero joint eigenvector x there is
(T1 − λ1)x...(Tm − λm)x = 0. In general, we have σπm(T ) ⊂ σpm(T ). Note that σπm(T ) = σpm(T )
holds for semi-hyponormal operators [12].

Theorem 2.6. For every T = (U1|T |, ..., Um|T |) in B(X) with joint partial isometry U1, ..., Um,

σπm(T ) = σπm(T̃ ).

Proof. If λ = (λ1, ..., λm) ∈ σπm(T ) there is a sequence {xm} of unit vectors in X such that
∥(T1 − λ1)xm, ..., (Tm − λm)xm∥ → 0. Thus,∥∥(U1|T | − λ1)xm, ..., (Um|T | − λm)xm

∥∥ → 0. (2.1)

Let λ = (λ1, ..., λm) = 0, then
∥∥|T |xm

∥∥ → 0. This implies that
∥∥|T |12xm

∥∥ → 0 and
∥∥T̃ xm

∥∥ → 0

meaning that 0 ∈ σπm(T̃ ).

Now let λ = (λ1, ..., λm) ̸= 0. Then, from (2.1),
∥∥|T |12xm

∥∥ ̸→ 0. Applying |T |12 to (2.1) we obtain∥∥(T̃ |T |12 − λ1|T |12)xm, ..., (T̃ |T |12 − λm|T |12)xm

∥∥ → 0.

Thus λ = (λ1, ..., λm) ∈ σπm(T̃ ) and σπm(T ) ⊂ σπm(T̃ ). It remains to show that σπm(T ) ⊃ σπm(T̃ ).

Now let λ = (λ1, ..., λm) ∈ σπm(T̃ ). There is a sequence {xm} of unit vectors in X such that∥∥(|T | 12U1|T |
1
2 − λ1

)
xm...

(
|T |

1
2Um|T |

1
2 − λm

)
xm

∥∥ → 0. (2.2)

If λ = (λ1, ..., λm) = 0, then either
∥∥|T |12xm

∥∥ → 0 so that
∥∥Txm

∥∥ → 0 or
∥∥|T |12xm

∥∥ ̸→ 0 meaning
that∥∥U1|T |12xm, ..., Um|T |12xm

∥∥ ̸→ 0. But |T |
1
2 (and therefore T ) maps∥∥U1|T |12xm, ..., Um|T |12xm

∥∥ ̸→ 0 to a null sequence. Thus 0 ∈ σπm(T ).

Now let If λ = (λ1, ..., λm) ̸= 0. Then, from (2.2)
∥∥|T |12xm

∥∥ ̸→ 0 meaning that∥∥U1|T |12xm, ..., Um|T |12xm

∥∥ ̸→ 0. Apply
∥∥U1|T |12, ..., Um|T |12

∥∥ to (2.2) to get∥∥(TU1|T |
1
2 − λ1U1|T |

1
2
)
xm...

(
TUm|T |

1
2 − λmUm|T |

1
2
)
xm

∥∥ → 0.

Thus λ = (λ1, ..., λm) ∈ σπm(T ) and σπm(T ) ⊃ σπm(T̃ ). Thus σπm(T ) = σπm(T̃ ).

Theorem 2.7. Let T = (T1, ..., Tm) ∈ B(X) be m-tuples arbitrary operator with joint polar

decomposition T = (U1|T |, ..., Um|T |). Then σpm(T ) = σpm(T̃ ).

The proof is omitted since it runs through as that of Theorem 2.6 if we replace {xm} with x.

3 Joint Essential Numerical Range of Aluthge Transform

The notion of the joint essential numerical range of m-tuples of operators T = (T1, ..., Tm) ∈ B(X)
has been studied by various authors. It is related to the joint numerical range by the formula
Wem(T ) =

∩{
Wm(T1 +K1, ..., Tm +Km) : K = (K1, ...,Km) ∈ K(X)

}
. Clearly,

Wem(T ) ⊂ Wm(T ). We denote by Wem(T ∗) = [Wem(T )]∗ the complex conjugate of Wem(T ).
Cyprian, Masibayi and Okelo, together studied the convexity of the joint essential numerical ranges
in [13]. Later, Cyprian [14] generalised this notion to the study of the joint essential numerical range

Wem(T̃ ) of Aluthge transform and proved various interesting results. In this section, we examine

some of the properties of the set Wem(T̃ ) and show that σem(T̃ ) ⊂ Wem(T̃ ). We begin with the
following theorem.

6
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Theorem 3.1. Suppose X is an infinite-dimensional complex Hilbert space and
T = (T1, ..., Tm) ∈ B(X). Let λ = (λ1, ..., λm) ∈ Cm and k = 1, ...,m. Let P be an infinite-
dimensional projection such that
P (Tk − λkI)P ∈ K(X) then λ ∈ Wem(T ) =

∩{
Wm(T +K) : K = (K1, ...,Km) ∈ K(X)

}
.

See [15] for the proof.

Lemma 3.2. Let T = (T1, ...Tm) ∈ B(X) be m-tuples arbitrary operator such that

T = (U1|T |, ..., Um|T |) with joint partial isometry U1, ..., Um. Then (T̃ +K1− T̃ , ..., T̃ +Km− T̃ ) ∈
K(X) for all K = K1, ...,Km ∈ K(X).

We omit the proof since it runs as [7, Lemma 1] which was done for a single operator T ∈ B(X).
We only highlight the following which are key to the proof. If U1|T |, ..., Um|T | is the joint polar
decomposition of T with U1, ..., Um a joint partial isometry, we write T = (U1|T |, ..., Um|T |).
Similarly, V1|T +K1|, ..., Vm|T +Km| is the joint polar decomposition of T +K1, ..., T +Km with
V1, ..., Vm a joint partial isometry. In this case we write T+K1, ..., T+Km = (V1|T+K1|, ..., Vm|T+
Km|). It is easy to see that K1, ...,Km = (V1|T +K1|, ..., Vm|T +Km|)−T or K1, ...,Km = (V1|T +

K1|, ..., Vm|T +Km|)− (U1|T |, ..., Um|T |) ∈ K(X). Note also that T̃ = (|T |
1
2U1|T |

1
2 ...|T |

1
2Um|T |

1
2 )

and T̃ +K1, ..., T̃ +Km = (|T +K1|
1
2 V1|T +K1|

1
2 ...|T +Km|

1
2 Vm|T +Km|

1
2 ).

Therefore, (T̃ +K1−T̃ , ..., T̃ +Km−T̃ ) =
(
|T+K1|

1
2 V1|T+K1|

1
2 −|T |

1
2U1|T |

1
2 ...|T+Km|

1
2 Vm|T+

Km|
1
2 − |T |

1
2Um|T |

1
2
)
We leave the rest of the proof to the reader.

Theorem 3.3. Let X be an infinite-dimensional complex Hilbert space and T̃ = (T̃1, ..., T̃m) ∈
B(X).

Then σem(T̃ ) ⊆ Wem(T̃ ).

Proof. Let λ = (λ1, ..., λm) ∈ σem(T̃ ). It should be shown that λ = (λ1, ..., λm) ∈ Wem(T̃ ).

To do this, since σem(T̃ ) = σl
em(T̃ ) ∪ σr

em(T̃ ), it is enough to show that both σl
em(T̃ ) and σr

em(T̃ )

are contained in Wem(T̃ ). Now suppose λ = (λ1, ..., λm) ∈ σl
em(T̃ ). Then there is a sequence {xm}

of unit vectors in X such that∥∥(T̃1 − λ1I)xm...(T̃m − λmI)xm

∥∥ → 0 as xm → 0 weakly.

Now
∣∣⟨(T̃1 − λ1I)xm, xm

⟩
...
⟨
(T̃m − λmI)xm, xm

⟩∣∣ ≤ ∥∥(T̃i − λiI)xm

∥∥ → 0

Therefore,
(⟨
T̃1xm, xm

⟩
...
⟨
T̃mxm, xm

⟩)
→ λi ∀i = (1, ...,m). Thus λ = (λ1, ..., λm) ∈ Wem(T̃ ).

Likewise, let λ = (λ1, ..., λm) ∈ σr
em(T̃ ) then λ∗ = (λ∗

1, ..., λ
∗
m) ∈ σl

e(T̃ )
∗.

This gives λ = (λ1, ..., λm) ∈ Wem(T̃ )∗ = [Wem(T̃ )]∗ (the complex conjugate of Wem(T̃ )) implying

that λ = (λ1, ..., λm) ∈ Wem(T̃ ) which completes the proof.

Theorem 3.4. Let T̃ =
(
|T |

1
2U1|T |

1
2 ...|T |

1
2Um|T |

1
2
)
such that T = (U1|T |, ..., Um|T |) with joint

partial isometry U1, ..., Um. Then Wem(T̃ ) ⊆ Wem(T ).

Proof. Since Wem(T ) =
∩{

Wm(T1 +K1, ..., Tm +Km) : K = (K1, ...,Km) ∈ K(X)
}
, we have

Wem(T ) = Wem(T1 +K1, ..., Tm +Km) for all K = (K1, ...,Km) ∈ K(X).

From Theorem 1.1, it is immediate thatWm(T̃ ) ⊆ Wm(T ) for any operator T = (T1, ..., Tm) ∈ B(X).
Using this together with Lemma 3.2 we get,
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Wem(T̃ ) = Wem(T̃1 +K1, ..., ˜Tm +Km)

⊆ Wm(T̃1 +K1, ..., ˜Tm +Km)

⊆ Wm(T1 +K1, ..., Tm +Km).

This implies that Wem(T̃ ) ⊆
∩{

Wm(T1 +K1, ..., Tm +Km) : K = (K1, ...,Km) ∈ K(X)
}

=
Wem(T ) which completes the proof.

4 Conclusions

Section 1 was a survey of what is known about the notions of numerical range, essential numerical
range and essential spectrum of T and its associated T̃ . In section 2, we gave certain properties of the
joint essential spectrum of Aluthge transform. Further, we showed that σem(T ) = σem(T̃ ). Section 3
delved into the notion of the joint essential numerical range of Aluthge transform associated with m-
tuples of operator T = (T1, ..., Tm) ∈ B(X) and among other results, showed that σem(T̃ ) ⊆ Wem(T̃ )

and Wem(T̃ ) ⊆ Wem(T ).
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