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ABSTRACT 
 

We analyze analytically the effects of anisotropy in permeability and that of a transverse magnetic 
field on thermal convection in a porous medium saturated with a binary fluid and confined in a 
horizontal cavity. The porous medium, of great extension, is subjected to various conditions at the 
thermal and solutal boundaries. The axes of the permeability tensor are oriented obliquely with 
respect to the gravitational field. Based on a scale analysis, the velocity, temperature, and heat and 
mass transfer rate fields were determined. These results were validated by the study of borderline 
cases which are: pure porous media and pure fluid media discussed in the literature. It emerges 
from this study that the anisotropy parameters influence the convective flow. The application of a 
transverse magnetic field significantly reduces the speed of the flow and thereby affects the 
temperature field and the rate of heat and mass transfer. 
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NOMENCLATURES 
 

a, b, c  :  Constants 
� : Aspect ratio of the cavity (L’/H’) 
� : Magnetic field 
�  : Gravitational acceleration 
��  : Height of the cavity 
�′ : Current density 

���  : Flow permeability tensor 

��,��	 : Flow permeability along the 
principal x and y axes, respectively 

�∗  : Permeability ratio 
�′ : Constant heat flow (per unit of 

surface), w.m-2 
��  : Thickness of the cavity 

��	 : Length of the central region of the 
cavity 

�� : Lewis number, αp/D 
�ℎ  : Sherwood number  
��  : Nusselt number 
��  : Pressure  
��  : Rayleigh number 
� : Ratio volume force, (βc△C*/ 

βT△T*) 
��  : Dimensional fluid temperature 
�′  : Dimensional fluid concentration 
�   : Dimensionless fluid temperature 
�   : Dimensionless fluid concentration 
∆�∗ = �’�’/�� : Temperature difference scale 
∆�∗ = �’�’/�� : Temperature difference scale 
�  : Dimensionless time, (t’αp /H’2) 
��,��  : Velocities components in x and y 

directions 
�,�  : Dimensionless velocities components in 

� and � directions 

��⃗ �	 : Velocity of the fluid in porous medium 
��,�� : Dimensional Cartesian coordinates 
�,�  : Dimensionless Cartesian coordinates 

��	 : Thermal expansion’s coefficient 
��  : Thermal diffusivity kp/(�C)f 

  : Dimensionless porosity, �’/� 
�	 : Heat capacity ratio (�C)p/(�C)f 
��   : solutal expansion coefficient, kg.mol.L-

1 
�����

�
 : Heat capacity of the fluid 

�  : Density of the fluid 
� : Dimensional stream function  
�  : Dimensionless stream function (Ψ’/αp) 
�  : kinematic viscosity of the fluid, m

2
.s

-1 
 

 

1. INTRODUCTION 
 

The effects of hydrodynamic anisotropy and 
transverse magnetic field on thermal convection 

in a porous medium are investigated analytically 
for fully developed flow regime. The porous 
medium saturated with a binary fluid, subjected 
to various conditions at the thermal and solutal 
boundaries, is anisotropic in permeability whose 
principal axes are oriented in a direction which is 
oblique to the gravity vector. On the basis of the 
generalized Darcy’s law and within the boundary 
layer approximations, solutions have been 
obtained for the flow field the heat and mass 
transfer. It was found that the anisotropic 
permeability ratio, the orientation angle of the 
princi pal axes of permeability and the magnetic 
field affected significantly the flow regime, the 
heat and mass transfer. 
 

Amahmid et al [1] studied analytically and 
numerically the natural convection in a porous 
layer of Brinkmann doubly diffusive in a confined 
anisotropic porous medium taking into account 
the particular situation where the thermal and 
solutal volume forces are opposite and of the 
same intensity. From their studies, it appears that 
the increase in Da induces a decrease in the flow 
intensity and heat and mass transfers; likewise 
as RT increases, the intensity of the flow 
increases monotonously; however Nusselt and 
Sherwood numbers tend asymptotically towards 
the same value independent of the of Lewis’s 
number Le, which decreases with Da.  
 
On the basis of Darcy flow model and the 
Boussinesq approximation, Attia et al [2] studied 
the Soret and Dufour effects on thermosolutal 
convection in a rectangular cavity filled with a 
porous medium saturated by a binary fluid. The 
horizontal walls of the cavity are subjected to 
uniform heat fluxes q" and species j", while the 
vertical walls are considered adiabatic and 
impermeable. As a result, Soret and Dufour 
effects drastically affect the stability of 
convection, which affects the heat and mass 
transfer rates. Through the Darcy flow model,  
Kalla [3] studied thermosolutal convection within 
a porous cavity saturated with a binary fluid 
confined in a rectangular cavity and heated from 
below. As a result, the convective flow induced 
by thermal forces, highly depends on the thermal 
Rayleigh number RT. Benissaad and Ouazaa [4] 
used Darcy's model to investigate analytically 
and numerically natural bi-diffusive convection in 
a porous medium saturated with a binary fluid 
and confined in a rectangular cavity. The 
horizontal walls of the cavity are heated with a 
uniform flux while the vertical walls are 
considered adiabatic and impermeable. These 
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authors have shown that the control parameters 
significantly influence the flow, heat and mass 
transfer. Through Brinkmann's model, Akowanou 
and Degan [5] studied convective transfer in a 
rectangular cavity, filled with a porous medium 
saturated with an incompressible electrically 
conductive fluid and subjected to a transverse 
magnetic field. The side walls of the cavity are 
subjected to differential heating. It appears that 
the convective flow is greatly influenced by the 
anisotropic parameters of the porous layer and 
by the effect of the applied transverse magnetic 
field. Likewise, the rate of heat transfer in the 
porous medium increases when the permeability 
in the horizontal direction is higher than that 
prevailing in the vertical direction. 
 
Ouazaa [6] through Darcy's mathematical model 
studied thermosolutal convection in porous 
media confined in a rectangular cavity and 
saturated with a binary fluid. The horizontal walls 
of the cavity are subjected to uniform heat fluxes 
q ′ and species j ′ while the vertical walls are 
considered adiabatic and impermeable. It 
appears that the flow intensity and the mass and 
heat transfer rates are significantly influenced by 
the thermal Rayleigh number. Benissaad et al [7]  
studied analytically the thermosolutal natural 
convection in anisotropic porous medium 
confined in a rectangular enclosure with 
horizontal walls supposed to be impermeable 
and adiabatic using the mathematical model 
Darcy-Brinkman-Forcheimer. Constant and 
uniform temperature and concentration gradients 
are imposed on the vertical walls. From their 
study, it appears that the flow increases with an 
increase in the Darcy number which increases 
with the Rayleigh number. The tilt angle of the 
permeability axes greatly influences heat and 
mass transfer rates. Using the Darcy-Brinkmann 
model, Hadidi [8] studied two-dimensional 
thermosolutal convection in a porous cavity 
arranged vertically. The side walls are subjected 
to uniform temperature and concentration 
conditions while the horizontal walls are adiabatic 
and impermeable. The results of this 
investigation show that the variation in the 
permeability of the two layers has a very 
appreciable effect on the flow structure and the 
transfers. Through the mathematical formulation 
of Darcy-Brinkman-Forchheimer, Safi [9] 
proceeded to the study of bi-diffusive convection 
in an anisotropic porous medium with for 
geometry used, an anisotropic porous medium 
saturated by a binary fluid, supposed 
incompressible, confined in a rectangular 
enclosure and arranged horizontally. The vertical 

walls of the cavity are subjected to constant 
temperatures and concentrations (Dirichlet-type 
boundary conditions), while the horizontal walls 
are kept impermeable and adiabatic. It was 
concluded that thermal anisotropy significantly 
affects heat and mass transfers as well as heat 
and mass transfers increase with Rayleigh 
number. 
 
In order to describe the heat transfer and 
contaminants diffusion phenomenon through the 
soil, the latter is, considered as a porous medium 
saturated by a binary fluid since the underground 
water is a mixture of liquid and pollutants.  
 
Because of the preferential orientation or 
asymmetric geometry of the grain or fibers 
encountered in porous matrix in many industrial 
applications and nature, as consequence, porous 
media are generally anisotropic in permeability. 
Also, analyzing the flow field, we take into 
account the magnetic earth's field which is 
assumed to be constant and oriented in a 
direction which is parallel to gravity. 
 
The present work is devoted to the study of 
thermosolutal convection in a rectagular cavity 
filled with porous medium and saturated by a 
binary fluid. The porous medium is anisotropic in 
permeability with its principal axes oriented in a 
direction that is oblique to the gravity vector. 
Assuming the usual approximations used in the 
classical boundary layer problem, a fully 
developed flow regime solution for the problem is 
applied. Consequently, closed-form expressions 
of flow field, temperature, heat and mass transfer 
rate are obtained in terms of the Rayleigh 
number, Hartman number and the anisotropic 
parameters. The influence of these parameters 
on the convective flow and the heat and mass 
transfer will be investigated, since the physical 
problem is of significant importance to many 
engineering-related applications. 
 

2. MATHEMATICAL FORMULATION 
 
The physical model considered in Fig. 1 is that of 
a rectangular enclosure with flat walls. The soil, 
confined in the enclosure, constitutes a porous 
medium which is saturated with a polluted water 
mixture assumed to a binary fluid. The porous 
medium which is anisotropic in permeability 
whose principal axes are oriented in a direction 
that is non-coincident with the gravity. This 
medium subjected to a uniform and transverse 
magnetic field is heated from below by a 
constant flux. The anisotropy permeability of the 
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porous medium is characterized by the 
anisotropy ratio �∗ = �� ��⁄ 	  and the inclination 
angle � , defined as the angle between the 
vertical direction and the principal axis with the 
permeability �� 
 
From the onset of the thermal heating, the 
medium is registered by a thermosolutal 
convection phenomenon.  
 

 
 

Fig. 1. Physical model and coordinates 
system 

 

The regime considered here is the steady state 
with flow developed in the porous channels. The 
equations of continuity, motion, energy and 
concentration are written Akowanou et al [5] : 
 

∇��⃗ � = 0																																																																					(1) 
 

�� = 	
��

�
�∇�����⃗ + ���⃗ + �⃗˄��⃗ �																																			(2) 

 

∇�′��⃗ = 0	; �⃗ = ��−∇∅ + ����⃗ �																															(3) 
 

�ρC��
�

∂T�

∂t
+ �ρC��

�
∇. �V����⃗ T�� = k∇�T�										(4) 

 

�
��′

��
+ �. �������⃗ ��� = ���(���)																											(5) 

 

where ��  represents the permeability tensor of 
the porous medium in the axis system shown in 
Fig (1). It is a tensor of order 2 which is written 
according to the coordinate axis system : 
 

K� = 	 �
K� cos θ� + K� sin θ� (K� − K�) sin θ cos θ

(K� + K�) sin θ cos θ K� cos θ� + K� sin θ��			(6) 

 

The porous medium being electrically isolated, 
then the electric field is zero everywhere. On this 
basis we have : 
 

�∅ = �																																																																						(7) 

Likewise 
 

����⃗ = �������⃗ ˄���⃗ �																																																										(8) 
 
Using the coordinates (�� , ��) of the filtration rate 
�� defined in the plane (�� � , �� � ) illustrated in 
Fig. 1, the equations (1), (2), (3), (4) and (5) 
describing the phenomenon of convection in an 
anisotropic porous medium in permeability, 
formulated as primitive variables are written: 
 

��′

��′
+

��′

��′
= 0																																																									(9) 

 

�
��� − ��� = 	

��

�
�−

���

���
− ������

−��� + ��� =
��

�
(−

���

���
− ��⃗)

⎭
⎪
⎬

⎪
⎫

														(10) 

 

�
��′

��′
+ 	��

��′

��′
+ ��

���

���
= � �

����

���� +	
����

�����		(11) 

 

�
��′

��′
+	 ��

��′

��′
+ ��

���

��� = � �
����

���� +	
����

�����		(12) 

 
With : 
 

�

� = ����� + �∗�����

� = ����� + �∗�����

� = (1 − �∗)��������

�∗ = �� ��⁄ ,�∗ = ��� ���⁄ ⎭
⎪
⎪
⎬

⎪
⎪
⎫

																												(13) 

 

� =
(���)�

(���)�

		; 		� = ��[1 − ��(�� − ��) − ��(�� − ��)		(14) 

 
The dimensionless variables not only have a 
simplifying advantage of the equations but also 
they allow a better physical interpretation of the 
phenomenon studied. 
 
The normalization scale factors used for the 
quantities of interest are : 
 

�

(�,�) =
(��,��)

�� 																						� =
�� − ��

��′

(�,�) =
(��,��)��

��
																	��� =

����

�

		� =
��

��
																																			��� = ����/�

� =
�� − ��

��� ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

								(15) 
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By introducing these dimensionless quantities 
into the conservation equations for mass (9), 
motion (10), energy (11) and concentration (12), 
we obtain respectively:  
 

��

��
+	

��

��
= 0																																																								(16) 

 

(� + ���)
��

��
− �

��

��
+ ��

��

��
−

��

��
� = −��� �

��

��
+ �

��

��
�			(17) 

 

�
��

��
+ �

��

��
= 	

���

���
+ 	

���

���
																														(18) 

 

�
��

��
+ �

��

��
=

1

��
�

���

���
+ 	

���

���
�																			(19) 

 

The feeding of the equation system reveals the 
control parameters of the problem :  
 

Ha = B(��� �⁄ )� �⁄   is the Hartmann number, 
��� = 	 �����∆�/	(��)  is the Rayleigh number 
of the cavity based on the height ,  � =
	��∆��/	��∆��  is the ratio of the thermal and 
solutal volume forces , �� = 	 ��/�  is the Lewis 

number which represents the ratio of the thermal 
diffusivity to the mass diffusivity of the saturated 
porous medium and the constants  α ,β ,	� 
 

Based on the parallel flow approximation and 

assuming that  � = 	
��

��
  and  � = 	 −

��

��
 

 

(� + ���)
���

���
+ �

���

���
+ 2�

���

����
= −��� �

��

��
+ �

��

��
�			(20) 

 

��� = 	
��

��
∗

��

��
−

��

��
∗

��

��
																														(21) 

 

��� = �� �
��

��
∗

��

��
−

��

��
∗

��

��
�																				(22) 

 

a°) Hydrodynamic boundary conditions  
 

�

∗ ��	��������	�����

� = 	 ∓ 	
�

2
	,				� = 0		, � = 0

∗ ��	ℎ���������	�����

� = 	 ∓ 	
�

2
	,				� = 0		, � = 0⎭

⎪
⎬

⎪
⎫

																	 (23) 

b°)  Thermal conditions 

 

�

∗ ��	��������	�����

� = 	 ∓ 	
�

2
	,				� = 0		, � = 0

∗ ��	ℎ���������	�����

� = 	 ∓ 	
�

2
	,				� = 0		, � = 0⎭

⎪
⎬

⎪
⎫

																		(24) 

 
c°) The thermal and mass boundary 

conditions 

 
When fluxes are applied to vertical and horizontal 
walls, 

 

�

���	� = 	 ∓ 	
�

2
	,

��

��
= 	

��

��
= 0

���	� = 	 ∓ 	
�

2
	,

��

��
= 	

��

��
= −1

���ℎ	� = 	
�

�
	����������	�ℎ�	������	�����	��	�ℎ�	������⎭

⎪
⎬

⎪
⎫

							(25) 

 

2.1 Method of Solution 
 
In this part, let us consider the flow motion in the 
central region of the cavity : 

 

 
 
��  and �  are the characteristic scales of the 
variables x and y in the central region of the 
cavity : 
 

�~ 	�				; 		�	~ 	��  

 
According to the analysis on the basis of 
equation (21) we can write 

 
�

�
~

��

�
		so		

�

��

~
�

�	
	and	since	A =

�

�
≪ 1	and		L > ��		��	

�

�	
≫

��

�	
		where	

�

�
≫ 1																						(26) 

 
From the above, we infer that the flow in the central region of the cavity is developed in the horizontal 
Ox region as has been discussed in detail in the past by Cormack et al. [10], Vasseur et al. [11]. So 
we have :  

 

u = u(y) ; v = 0 ; T = T(y), C= C(y) et  = 0  (y) 
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2.1.1 Expression of current function, flow 
velocity, and temperature and 
concentration profiles 

 

(� + ���)
���

���
= −��� �

��

��
+ �

��

��
�									 (27) 

 
��

��
∗

��

��
= 	

���

���
																																																			(28) 

 
��

��
∗

��

��
=

1

��

���

���
																																														(29) 

 
The temperature and concentration profiles are 
then given by the sum of a term defining a linear 
longitudinal variation and another term giving the 
transverse distribution: 
 
The temperature and concentration profiles are 
defined as follows 
 

�(�,�) = 	 ��� +	 ��(�)																																				(30) 
 
and  
 

�(�,�) = 	 ��� + 	��(�)																																					(31) 
 
where CT and Cs are coefficients expressing the 
temperature and concentration gradients; �� and  
��  are dimensionless temperatures and 
concentrations. So we have 
 

(� + ���)
���

���
= 	 −��� (�� + ���)												(32) 

 
����

���
= 	 ��

��	

��
																																																				(33) 

 
����

���
= 	 ����

��

��
																																																	(34) 

 
By referring to the hydrodynamic boundary 
conditions we obtain the expression of the 
current function :  
 

� = 	 ��(1 − 4��)																																															(35) 
 

with  
 

�� = 	
���

8

�� + ���

(� +	 ���)
																																							(36) 

 
 In addition, the flow velocity of the following fluid 
is written therein : 
 

� = 	 −8���																																																										(37) 

As for the temperature and concentration 
profiles, we have:  
 

�(�,�) = 	 ��� +	
��.	��

3
(3� − 4��) − �					(38) 

 
And 
 

�(�,�) = 	 ��� +	
��. ��. ��

3
(3� − 4��) − �									(39) 

 

Temperature and concentration gradients TC  et 

SC  write 

 

	�� = 	
4���

3(2� + ��
�)

	���		��	�

4�����

3(2� + �����
�)

with 			� =
15

16
			(40) 

 
By combining the equation of the current function 
at the center of gravity with the terms of the 
temperature and concentration gradients we 
have 
 

�� =
���

8(� + ���)
�

4���

3�2� + ��
��

+ �
4�����

3�2� + �����
��

�								(41) 

 
From (40) we get a fifth order equation in terms 

of the stream function  0 , 

 

��(�����
� − 2������

��� − ���� = 0								(42) 
 

�

�� =
1

(� + ���)
�
���

12
��(� + ��) − (� + ���)(1 + ���)�

�� =
1

(� + ���)
�
���

3
���(1 + ���) − 	4���(� + ���)�

6(� + ���)

���
	 ≠ 0 ⎭

⎪⎪
⎬

⎪⎪
⎫

		(43) 

 
Equation (42) indicates a possibility of five 
solutions, one of which is zero, the zero solution 
corresponds to the state of the fluid at rest 
 

�� = 0																																																																				(44) 
 
The other four roots of Equation (42) are written : 
 

�� = 	 ∓
� �

��
���			 ∓ 	 � ��

� + ���

�
�

																				(45) 

 

The signs (  ) on the outside of the hook 
indicate the counterclockwise or clockwise 
direction of the convective flow while the signs  (
 ) inside the hook indicate the two possible 
convective solutions of our flow. As shown by 
Mamou [12] the sign  (+) in our solution indicates 
that the flow is stable and the sign  (-) 
corresponds to an unstable solution. 
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2.2 Heat and Mass Transfer Rates 
 
The thermal and mass transfers are expressed 
respectively by the number of Nusselt and 
Sherwood 

 
2.2.1 Nusselt number 

 

�� =
1

∆�
with 				∆� = � �0,−

1

2
� − � �0 −

1

2
���				�

= 0						(46) 
 
One obtains    
 

�� = 	
6(��

� + 2�	)

��
� + 12�

																																															

 
2.2.2 Sherwood  number 
	

�ℎ =
1

∆�
with 				∆� = � �0,−

1

2
�− � �0 −

1

2
���				�

= 0				(48) 
 
One obtains    

 

Sh = 	
6(	Ψ �

� + 2β	)

Ψ�
�	Le� + 12β

																																											(49) 

 

3. RESULTS AND DISCUSSION 
 
Buoyancy-induced convection in a fluid saturated 
porous medium is of considerable interest, owing 
to several geophysical and engineering 
applications. Prominent among these are 
insulation techniques, flows in soils aquifers, 
petroleum extraction, storage of agricultural 
products, underground diffusion of contarninants 
and porous material regenerative heat 
exchanger. Anisotropy, which is generally a 
consequence of a preferential orientation or 
asymmetric geometry of the grain or fibers, is in 
fact encountered in alI those applications in 
industry and nature. 

 
In all those subjects, the choice of a simple 
rectangular geometry is due to the cornplexity of 
the physical phenomenon and the inclusion of 
more physical realism in the matrix properties of 
the medium for the accurate modeling of that 
latter. 
 
In order to describe the heat transfer and 
contaminants diffusion phenomenon through the 
soil, the latter is, considered as a porous medium 
saturated by a binary fluid since the underground 
water is a mixture of liquid and pollutants.  

Because of the preferential orientation or 
asymmetric geometry of the grain or fibers 
encountered in porous matrix in many industrial 
applications and nature, in fact, as consequence 
porous media are generally anisotropic in 
permeability. Also, analyzing the flow field, we 
take into account the magnetic earth's field which 
is assumed constant and oriented in a direction 
which is parallel to gravity. 

 
The influence of these parameters and of the 
magnetic field is analyzed by solving analytically 
the system of nonlinear ordinary differential 
equations thanks to the "MATHALAB version 
15.0" calculation software. 
 
Fig. 2. shows the behavior of the binary fluid in 
flow theme under different values of Ha. 
 
The influence of Hartman number Ha on the 
stream function Ψ  , is presented in Fig.2 when 
Ra = 50; Le = 2; N = 0.5; � = 45°, �∗ = 1. 
 

Curves plotted in Fig.2. reveal a gradual 
attenuation of the convective flow as the 
application of the magnetic field becomes 
significant. We conclude that the magnetic field 
considerably reduces the intensity of the flow. 
The stream function increases to a maximum on 
the cavity centerline, the position of which 
depends upon the value of Ha and drops back to 
zero at the opposite wall. The maximum value 
reached when Ha = 0 is Ψ0 = 2.8648. A similar 
result has been reported by Mamou [12], Ouazaa 
[6] and Kalla [3] while studying the natural 
thermosolutal convection in an a rectangular 
enclosure. 
 

Fig 3 shows the influence of the anisotropy ratio 
on the flow intensity. We find that the more the 
anisotropy ratio increases, the less the flow 
intensity decreases. We can then conclude that 
the permeability anisotropy significantly affects 
the flow of the fluid. 
 

Fig.3 indicates that the velocity which is zero at 
the wall, because according to the hydrodynamic 
boundary conditions imposed, increases to a 
maximum on the channel centerline, the position 
of which depends upon the value of �∗  and 
drops back to zero at the opposite wall, because 
of the reason explained earlier. Fig. 4 shows that 
the intensity of the convective flow is promoted 
with respect to that of an isotropic porous 
medium corresponding to �∗ = 1 , when the 
permeability ratio �∗  is made smaller than one 
(i.e., �∗ = 1 4⁄ ). This is expected, because for a 
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given value ��, a value of �∗smaller than unity, 
corresponds to an increase of the permeability 
�� in the horizontal direction, thus promoting the 
convective circulation within the cavity. Naturally, 
the reverse trend is achieved when �∗ is made 
large than unity (i.e., �∗ = 4).  
 
Fig. 4 illustrates the temperature and 
concentration profiles in the median plane (x = 0) 

of the cavity for Ra = 50 ; N = 2; Le = 2; Ha = 0; 
1; 2.5. It can be seen that the heat and mass 
transfer is zero at the center of the cavity and it is 
also symmetrical. The first curve (T (Ha = 0), C 
(Ha = 0)) is the reference Ouazaa [6]. As the 
Hartmann number is varied, heat and mass 
transfers also change. We deduce from this fact 
that the magnetic field favors the heat and mass 
transfer. 

 

 
 

Fig. 2.  Variation of the stream function (Ψ) as a function of y for different value of Ha 
 

 
 

Fig. 3. Influence of permeability anisotropy on binary fluid flow 
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Fig. 4. Temperature and concentration profiles at x = 0 for different values of Ha 
 
Fig. 5 shows us the influence of the Rayleigh number on the flow for different values of volume forces. 
The cavity being subjected to a constant and differential heat flow on the horizontal face we therefore 
have: 
 

 
 

Fig. 5. Bifurcation diagram Ψ0 (Ra) for Le = 2 ; N = 0 ; N = 0.4 and N = -0.4 
 
* when N = 0, the solutal volume force is zero, which means that the flow within this cavity is 
controlled by the flow of heat. Thus we notice a fork-type bifurcation which occurred for a critical 
Rayleigh number 12, a gold value already predicted by Nield [13] based on the theory of linear 
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stability. This is the value from which the convection is started. For Ra <12 we are in the case of pure 
conduction and for Ra > 12 the intensity of the flow increases with possibilities of two opposite 
convective motions. 
 
* When N = -0.4, the thermal and solutal volume forces act contrary, which means that the convection 
is opposite.  
 
Fig.6 shows the influence of the Rayleigh number on the heat transfer rate for different values of the 
volume ratio 
 

 
 

Fig. 6. Influence of the Rayleigh number on Nu for different aspect ratio value with A= 4, Le = 2 
 
Here we examine the influence of Ra on the flow 
according to whether the volume forces are 
purely thermal (N = 0); cooperating (N> 0) or 
opposing (N <0). As well  Rasup

TC (N=0.4) = 6.7 ;  
Ra

sup
TC (N=0)  = 12 et  Ra

sup
TC (N=-0.4)  = 

29.5  represents the supercritical Rayleigh 
number, value of the Rayleigh number for 
constant Nu. We find that for all volume forces 
whose Rayleigh number is less than the 
supercritical Rayleigh  (Ra<  Ra

sup
TC ) the heat 

transfer rate is equal to 1 (Nu = 1), which means 
that we are in the presence of pure conduction. 
On the other hand, for Ra greater than 
supercritical Ra, the transfer rate increases until 
it reaches an asymptote value that can be 
deduced from equation (47)  
 
Fig. 7. shows the variation of the Nusselt number 
as a function of the Rayleigh number for different 
Hartmann number.  
 
For a fixed number of  Ra, we notice that when 
Ha increases, the heat transfer rate decreases. 

It is concluded that the application of a relatively 
large magnetic field value reduces  the heat 
transfer rate. 
 
Fig 8 illustrates the evolution of Sherwood 
number versus ��  for �� = 2 , � = 45°, � = 0.4 
and various values of �∗.  
 
From Fig. 8 it is clear that for a fixed Rayleigh 
number Ra, when �∗  is made larger, the mass 
transfer rate decreases as K* is made larger than 
unity. This follows from the fact that an increase 
in �∗  corresponds to a decrease in the 
permeability  �� when other parameters are held 
contant ( ��,�. e., �� ).  Thus we deduce that 
anisotropy greatly influences the mass transfer 
rate. 
 
Figs 9 and 10 show us the behavior of the heat 
transfer rate and the current function at the 
center in the center of the cavity in the presence 
of tilt angle under different various Rayleigh 
numbers and ratio of anisotropy. 
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Fig. 7. Influence of the Rayleigh number on Nu for different value of Ha 
 

 
 

Fig. 8. Influence of the Rayleigh number on Sherwood number for different values of � ∗	when 
�� = �, � = ��°, � = �. � 

 
From the analysis of Fig. 9 and 10, we notice that 
the heat transfer rate is maximum for � = 90 ° 
and is minimum for � = 180 ° for K * = 1/4  which 
means that the permeability is maximum in the 
vertical direction and minimum in the horizontal 
direction. The opposite effect is observed for K * 

= 4, where the intensity of the unicellular 
convective motion and the resulting heat transfer 
are minimum at � = 90° and maximum at � = 0° 
and 180 °. The fact that for K *> 1 (K * <1) Nu is 
maximal (minimal) at � = 0 ° and 180 ° and 
minimal (maximal) at � = 90 .From Similar results 
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have been reported in the past by Zhang [14] 
when this author studied natural convection in a 
laterally heated rectangular cavity . In all these 
studies, it is observed that a maximum 
(minimum) of heat transfer by natural convection 
is obtained when the orientation of the main axis 

of the anisotropic porous medium with the 
highest permeability is parallel (perpendicular) to 
the gravitational field. We then conclude that the 
rate of heat and the intensity of the flow all 
depend on the angle of orientation of the porous 
medium. 

 

 
 

Fig. 9.  Effects of the angle of inclination � and of the Rayleigh number for K * = 4 and K * = 1/4 
on the current function at the center of the cavity 

 

 
 

Fig. 10. Effects of the angle of inclination � and of the Rayleigh number for K * = 4 and K * = 1/4 
on the Nusselt number 
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Moreover, considering the same conditions (Ra = 
50; Le = 2; N = 0.5;  � = 45 ° and Ha = 0) Mamou 
[12] found Nu = 4.008 and Sh = 4.519; Kalla [3] 
found Nu = 4.062 and Sh = 4.658; Ouazaa [6] 
obtained Nu = 4.109 and Sh = 4.723 and for our 
present study we obtained Nu = 3.1090 and Sh = 
4.7239. Thus we notice a satisfactory agreement 
with just small differences. 
 

4. CONCLUSION 
 

Our study focused on natural thermosolutal 
convection in a rectangular cavity confined by an 
anisotropic porous medium, saturated by a 
binary fluid and subjected to the effect of the 
transverse magnetic field. It emerges from this 
study that: 
 

1) The intensity of the convective flow 
reflected by the stream function is greatly 
influenced on the one hand by the effect of 
the transverse magnetic field and on the 
other anisotropic parameters in 
permeability of the porous layer.  

2) The increase in the anisotropic parameter 
of permeability ratio K* reduces and 
regulates the heat and mass transfer rate. 
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