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Let E be a separable symmetric space on (0, co) and E(.#) the corresponding noncommutative space. In this paper, we introduce a
kind of quasimartingale spaces which is like but bigger than E(.#) and obtain the following interpolation result: let E(.Z) be the
space of all bounded E(.#)-quasimartingales and 1< p < pr < gz < g < o00. Then, there exists a symmetric space F on (0, 00)

with nontrivial Boyd indices such that E(.#) = (fp(.% ), fq(/% )Ex-

1. Introduction

Let E be a symmetric space on (0, co) with the Fatou prop-
erty and 1 < p < pg < gy < q<o0o. Kalton and Montgomery-
Smith [1] proved that there exists a symmetric space F with
nontrivial Boyd indices such that E=(L,((0,00)),L,
((0,00)) - As is now well-known, the preceding interpola-
tion result can automatically lift to the noncommutative set-
ting (see [[2], Theorem 3.4]): let E be a symmetric space on
(0, 00) with the Fatou property and (., T) a semifinite von
Neumann algebra. Then, the following are equivalent:

(i) 1<p<pp<qp<g<oo.

(ii) There exists a symmetric space F on (0, co) with
nontrivial Boyd indices such that

In this paper, we replace the space E(/#) in (2) with a big-
ger and more complex space E(.#) (see Definition 3) and
obtain a generalized interpolation result. Our main result
can be stated as follows (see Section 2 for the unexplained
notations).

Theorem 1. Let E be a separable symmetric space on (0, 00)
with 1 <p < pp <qp <q<o00. Then, there exists a symmetric
Banach function space F on (0, 00) SSS with nontrivial Boyd
indices such that

B(ll) = (T (M), T, (M) 2)

2. Preliminaries

2.1. Noncommutative Spaces. Let / be a semifinite von Neu-
mann algebra equipped with a faithful normal semifinite
trace . We denote by L,(.#) the family of all T-measurable
operators. Note that y(A,00)(]x|) is the spectral projection
of x € Ly(.#) associated with the interval (A, 0o). For x € L,
(M), define its generalized singular number by

u,(x) = inf {}L >0 T(X(A)Oo)ﬂx‘)) < t}, £>0.  (3)

Note that the function ¢ - y,(x) from (0, co) into [0, c0)
is right continuous and nonincreasing. For the case that ./ is
the abelian von Neumann algebra L(0, co) with the trace
given by integration with respect to the Lebesgue measure,
Ly(A) is the space of all measurable functions, and u(f) is
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the decreasing rearrangement of the measurable function f
(see [3, 4]).

Recall that a Banach function space (E, ||-||z) on (0, 00) is
called symmetric if for any g € E and any measurable func-

tion f with u(f) < u(g), we have f < and f]|; < |l
The Kothe dual of E is the function space defined by setting

E*= {f € Ly(0,00): J:O|f(t)g(t)|dt<oo :Vge E} (4)

When equipped with the norm ||f]|p. = sup { [{°|f(t)
g(t)|dt - ||gl|p <1}, E* is a symmetric Banach function

space. For any s> 0, we define the dilation operator D, on
E by

(Df)(t)=f(tls),t>0,f €E. (5)
Define the lower and upper Boyd indices of E by

1
pp = lim _%8° nd Qg = lir(r)l+

log || D]

log s
gl
respectively. It is well-known that 1 <p, <q, <00, and we
shall say that E has nontrivial Boyd indices, whenever 1 <
Pp < qp < 00. We refer to [1, 5] for unexplained terminology
from function space theory.

For a given symmetric Banach function space (E, ||||)
on (0,00), we define the corresponding noncommutative
space by setting

E(Ml,7) ={x € Lo(M): p,(x) € E}, (7)
equipped with the norm
16l ey = Nl () - (8)

It is well-known that E(.#,7) is a Banach space and
is referred to as the noncommutative symmetric space
associated with (., 7) corresponding to the function
space (E, [|[| ). Note thatif 1 <p <ocoand E = L,(0, c0), then
E(M,v)=L,(M,7) is the usual noncommutative L,-space
associated with (4, ).

Recall that loo is a von Neumann algebra equipped with
the trace: y(a) = Ya,,a=(a,) €I’ (see [6]). Now, let N =
M ® I, be the von Neumann algebra tensor product and v
=7 ® the tensor trace. This gives rise to noncommutative
spaces E(/ ®1,,). Note that L,(.# ®1,) coincides with the

space L,(L,(4)).

2.2. Noncommutative Martingales. A noncommutative prob-
ability space is a couple (., T), where ./ is a finite von Neu-
mann algebra and 7 is a normal faithful trace with 7(1) =1.
Let (A,),, be an increasing sequence of von Neumann sub-
algebras of . such that the union of the ./, s is weak” dense

in . Let ¢, be the conditional expectation with respect to
M

ne
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Definition 2. A sequence x=(x,),.; in L (/) is called a
sequence of martingale differences if x,, € E(/,) for n>1
and if ¢,,(x,,,) =0 for all n> 0.

In this paper, we always consider noncommutative mar-
tingales associated with a noncommutative probability space
unless explicit explanation.

2.3. Interpolation. Let (X,,X;) be a compatible couple of
quasi-Banach space. Its K-functional is defined by
Ky (x5 X0, X,)
=inf { |5, + i, X =% +x,x € Xox, € X, ],
©)

for x € X, + X, and t > 0. Let E be a symmetric Banach space
n (0, 00). Set

K, (x: X5, X))
I

(10)

E

Then, the interpolation space (x )., is defined as
XX EK = {xeX,+X,: Hx||(X0’X1)E)K<oo} equipped with

the norm [|-f| x ). -

3. Main Result

The main result in this section is Theorem 1, which extends
the result of Kalton and Montgomery-Smith [1] to a E(.#)
-quasimartingale spaces. We first introduce the quasimartin-
gale spaces.

Definition 3. Let E be a symmetric Banach function space on
(0,00). A sequence x = (x,),., is called a E(./)-quasimar-
tingale with respect to (/,,),., if x, € E(/,) for n>1 and
(with & =0,x,=0)

OZO: €1 (dxn) ® €y

n=1

E(&])< oo. (11)

We set

i €1 (dxn) ® €n

n=1

E(U &),

1%l 2y = S‘:lPH)’nHE(m +
(12)

where y, = Y)_, (dx; — &_,(dx;)) and (e,)n>1 denote the
standard basic sequence of [ .

If ||x[|5 ) < 00, x is called a bounded E(.#)-quasimar-

tingale. The quasimartingale space E(.#) is defined as the
space of all bounded E(.#) -quasimartingales, equipped with
the norm [|'[|3( 4
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Remark 4.

(i) In the case E= L, for 1 < p < 0o, we have that E()
= f;(/%) and

(s8]

1/p
||x||fp(%> = SupHynHLP(ﬂ) + (Z |£n1(dxn)||€p(//l))

7 (13)

(ii) Let x = (x,),., be a bounded E(.#)-quasimartingale.
Set Zy = ZZ:I(%k—l(dxk)) and Yn=%n— Zn(n = 1)'
Then, z=(z,),, is a predicable E(.#)-quasimartin-
gale with z; =0, and y = (y,),.., is a bounded E ()
-martingale. Moreover, the decomposition,

X=y+2z, (14)
is unique (see Lemma 2.5, [7]).

The following lemma is the key ingredient of our proof of
Theorem 7.

Lemma 5. Let E be a separable symmetric space on (0, 00)
with 1< pp < qg < o00. Then,

(EN(M))* = EN(M), (15)
with equivalent norms.

Proof. Let y=(u,),., € EN(M) and x=(x,),., € E(A).
Let u =v,+w, and x, =y, +2,(,.,) be the decomposi-
tion of 4 and x as in (14). Then, y=(y,),., is a bounded
E(M)-martingale and v=(v,),., is a bounded E(./)
-martingale. Thus, there exist y € E() and v, € EX(/)
such that

M (Ml
v, }Lgyoo,v,1 M Voo (16)

Now, we define a linear functional on E(.Z) by

7(dw,dz,). (17)

Mg

L (%) = T(VooY oo ) +

=
Il
—

Then, by Holder’s inequality,

3
11,69 = Weoll gy Weoll sy
[ee] o
+T®y<Zdwn®enZdzn®en>
n=1 n=1
< Vool gty 1Y ool £t
(e8] (e8]
+ Zda)n@»en E(asly) Zdzn®en EY (M BI,)
n=1 n=1

< el gns oy 11X By -

(18)

Thus, [, (x) is continuous on E(M) and 1l < el e -

We pass to the converse inclusion. Let [ € (EA(.#))". Let
I, be the restriction of [ on E(.#). Noting that (E(.#))" =
E*(M), there exists an operator v € EX() and |[V||px(4) <
|l7]] such that

Li(a)=1(av),a € E (M). (19)

On the other hand, let Fy(M) be the space of all
sequences db = (db,,),., such that b= (b,),., is a predictable
E(M) -quasimartingale with b, = 0 equipped with the norm
146l g, .ar) = | 221D, ® e, || E( & loo). Define a functional

on Fg(#) by

L,(db) =1(b), db=(db,),., € Fg(M). (20)
Then, by the inequality
|L(db)] < |110llz.a) = N1 401l £, ) (21)

we have [, is a continuous linear functional on Fy(M) and
L1 < ||7]]- Note that Fg(M) is isometric to the subspace
of E(M®Ico). By the Hahn-Banach theorem, I, extends
to a functional on E(M & loo). Since (E(M ® lco)) * =E x
(M®&I,), the representation theorem allows us to find a

sequence (W)), ., € E(M®&1I,,) such that

n

5=
—
“
~—
1]
D18
<
~
—
S
o~
®
[

3
N
—
“

B
®
o
B
N—
N—

Il
Mg i
<
/N
g
=T~
“»
=
SN—
—~
i
S
~—
=
A
m
jes!
B
®
-
8
~
—
[\
\S)
~

=
Il
—

and

<[L|- (23)
EX(M@,,)

(ee)
!
Yuwee,
n=1

Set w, =0 and w, = Y}_ &, (w,)(n>2). For any db=
(db,),s, € Fg(M), noting that db = (db,,),., is predicable, it
follows from (22) that



(24)

It is easy to see that w = (w,,) ., is predictable with w, =0
and

(o)

[ee]
Z dw,®e, = Z €1 (wé) ®e,
n=1 B (aaly) 1= B (M8)

o0

!
<||Y e, <l
n=1 EX(Ml,)
(25)

Set y, =v, +w,(n>1), where v, =En(v)(n>1). Then,
H= (1) g € EN(M) and

164ll ey = 1V ) + <2[I]|-

o0
Z dw,®e,
n=1

EX(M&l,)
(26)

For any x = (x,,),., € E(M), let x, =y, +z,(n>1) be its
decomposition as in (14).

Noting that y=(y,)
and dz = (dz,))

.1 is a bounded E(M) martingale
€ Fp(M), it follows from (19) and (24) that

nx1

18

I(x)=1(y) +1(2) =T(You Veo) + ) T(dw,dz,). (27)

I
—_

n

The proof is completed.
The following lemma is about the duality theorem of
interpolation spaces.

Lemma 6 (see [2]). Let E be separable and (X, X,) be a cou-
ple of Banach spaces such that X, N X, is dense in both X ; and
X,. Then,

(XI’XZ);,K = (X5 X} )EX,K' (28)

Proof of Theorem 7. Let x € @P(%)’T“q(ﬂ))}"x and x =x°
+x' be a decomposition of x, where x° € L,(#), x" € L, (M).
Let xf =y* +z5(n>1) be the decomposition of x* (k=0,1)
as in (14). Then, y° is a bounded L,(M)-martingale, and y' is
a bounded L,(M)-martingale. Thus, there exist yJ, € L,(.)
and y, € L, (/) such that
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pleH)
HngHLP(/%) = SL:pHngLP(/%)’

=Slip||yil||LP(//Z)'

()

-1
yoo’

ool (29)

ke

Using Definition 3, we get that

HxOHip(/%) = HngHLP(//[) + HdZOHLP(//z@zm)’ leEP(/%)

(30)

= Hy(IX)HLq(ﬂ) + HdZIHLq(ﬂélm)'

Set y=y° +yL,,z=2"+z"Then, by the definition of K
-functionals and (30),

K, (y;Lp(,/%),Lq(./%)) +K, (dz;Lp(/%é loo)> Ly(M & l))

<

) T HdZOHLP(/mzm)

|ngHLP(/fZ) + t”y(l)OHLq(./%

+t|dz! HLq(/%élm) = HxOHEP(/%) +tx! ||iq</%)'

(31)

Thus, taking infimum over all decomposition of x, we obtain

K, (y5L,(M),L(M)) +K,(dz; L,(M®l,), L,(M®]I))
<K, (x;L,(M),L,(M)).

(32)

Therefore,  using  the  equality |lx[/x x )k =
I|K, (x5 Xo, X;)/t|| >, we have

54] (Lp(M).L ) EK Hdz||Lp(M®lm),Lq(M®lm))F,K (33)

<2||x] (L, (M).L,(M)) K"

It follows from the equality E(M) = (L,(M),L,(M))
that

F.K

%l zan) = 11711 £ary + ”dZHE(M@lw) = 2||x||(fp(M),fq(M))hK'

(34)

For any x € (EP(M), fq(M))
implies that

1 We obtain x € E(M) which

E(tt)> (L, (M), Ly(M)), - (35)

Similarly, we have

EN*(M) > (Eq,(/ﬂ),ip,(./%))”, (36)

where p' and q' denote the conjugate index of p and g. By
Lemma 5 and Lemma 6, we obtain that
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PR (37)
= (L), Ly(M))
Thus,
(M) = (L, (M), (M) , (38)
The proof is completed.
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