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In the present paper, we define J-cone metric spaces over a Banach algebra which is a generalization of G,, -metric space (G, -MS)
and cone metric space (CMS) over a Banach algebra. We give new fixed-point theorems assuring generalized contractive and

expansive maps without continuity. Examples and an application are given at the end to support the usability of our results.

1. Introduction

The notion of a generalized partial b-metric (for short, a G,

-metric) space was introduced by Hussain et al. [1] in 2014 by
generalizing the notions of a G-metric space (G-MS) and a
partial b-metric space. They studied the related topological
properties and provided fixed point theorems for some
contractive maps.

Huang and Zhang [2] generalized the notion of metric
spaces to a CMS. Later, the interesting concept of a cone
metric space over a Banach algebra (for short, CMS over a
BA) was proposed by Liu and Xu [3], by replacing a CMS
with a CMS over a BA. Motivated by these ideas, many
authors further considered a CMS over a BA (see [4, 5]).
Also, in [6], the authors introduced the concept of cone b,
-metric space over Banach algebras which generalizes the
notions of b,-metric space and cone metric spaces over
Banach algebra. There are some very recent references (such
as [7, 8]), where it is shown that the fixed point theory
continues to provide useful tools for studying problems of
Mathematical Physics.

The present paper is organized as follows. In Section 2,
we recall some definitions. In Section 3, we generalize the
concepts of a G, -metric space and a CMS over a Banach

algebra by introducing a J-CMS over a Banach algebra (for
short, J-CMS over a BA) with some examples. Section 4 is
devoted to define generalized contractive and expansive
maps. Finally, in Section 5 and Section 6, we prove some fixed
point theorems for such certain contractive and expansive
maps in the framework of a J-CMS over a BA. Our work
generalizes and extends some interesting results of [9]. Two
examples and an application are given to verify the strength
of our main results.

2. Preliminaries

We start with some known concepts. Denote by Y a real
Banach algebra (for short, BA). From now on, assume that
there is a unit element e€ Y. An element we Y is called
invertible if there is 7 € Y so that wm = 7w = e. We denote
by w™! the inverse of w. For more related details, one may
check [10].
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Proposition 1 [10]. Assume that the spectral radius @R (w)
of an element w € Y is less than 1, that is,

GR(w) = lim ||w"[|"" =inf ||"||"" < I, (1)
n—~oo

then e — w is invertible, where e € Y is unit. In addition,
o) .
(e-w)'= Zw’. (2)

Remark 2 ([11]). If @R (w) < 1, then [|w"||—0 as n — oo.

A set € C Y is said to be a cone if

(1) €+, closed and € + {0}
(2) aC+pECcCforala,pf>0
(3) C*=6CcC

4) (-C)n€={6},

where 0 is the null of Y. The partial ordering on Y is given as
w=m iff m — w € €. We write w < 7 to indicate w=<rm, but w # m,
while w <« 77 stands for 7 — w € int € (here, int € is the inte-
rior of €).

Definition 3 ([2, 3]). Let .4 be a nonempty set. If d : M x
M — Y verifies

(1) 6<d(w, 7) for all w, w € M and d(w, ) =0 if 0 =7
(2) d(w, ) =d(m, w) for all w, € M
(3) d(w, m)<d(w, ®) + d(@, ) for all w, 1, @ € M

then d is named as a cone metric on .#, and (/,d) is
said to be a CMS over the BA Y.

Definition 4 ([1]). Let . be a nonempty set and s> 1.
Assume that the function G, : M X M x M — R" is s0
that:

(G hw=n=a if G, (w,7m,0)=G, (®,a,a)=G, (m
m, ) =G, (0, w, w)

(Gy,2)G,, (w, w,w) <G, (w, w, ) <G, (w,m,@) for all
w, T, D € M With @ # 7

(G, 3)G,, (w, m, @) = G, (p{w, 7, ®}), where p is any per-
mutation of w, 7 and @ (symmetry in all three variables)

(Gy,4)G,, (w, 7, @) <5[G, (w,a,a) + G, (a,7, @) - G, (a
sa,a)] +((1-5)13)[G,, (0, w,w) + G, (m,7,7) + G, (@, @, @

)] for all w, 7, @, a € M (rectangle inequality).

Then, GP

a G, -metric space.

is named as a G, -metric and (4, G, ) is called
b b b
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Using (pr 4) and s > 1, we have

G, (0,7, @) <5|G, (w,a,a) + G, (a,7,0) - G, (a, a, a)} .
(3)

The G, -metric space G, is called symmetric if G, (w,
b Py by
w, ) = G, (w,,7) holds for all w, 7w € /. Otherwise, G, is
an asymmetric G, — metric.

Example 5 [1]. Let M =[0,00) and let G, : M x M x M
— R" be given by G, (w,7, @) = [max {w,m, @}]? where
p> 1

Obviously, (#,G,,) is a symmetric G, -metric space,
b Py
which is not a G-metric space. In fact, if 0 =7 =@ > 0, then

Gy, (w, 7, @) =P >0. It is easy to see that G, 1 -G, 4 are

satisfied.

3. A J-CMS over a Banach Algebra

Here, we introduce the notion of a J-CMS over the BA Y, asa
generalization of a generalized partial b-CMS and a CMS
over the BA'Y.

Definition 6. Let // be a nonempty set and s > 1. Suppose that
J:Mx Mx M—>Y so that:

(])1) w=m=dif J(o,71,0)=] (@@, @) =](rmmmr)=](w
, W, W

(J,) J(w, w, w)<](w, w, 7)< (w, 7, @) for all w, 7, € M
with @ # 7

(J3) J(w, 1, @) = J(p{w, 7w, ®}), where p is any permuta-
tion of w, m and @ (symmetry in all three variables)

(Jp J(w, 7, @)<s[J(w, a,a) + J(a, 7, @) - J(a,a,a)] + ((1
-9)13)[J(w, w, ) + J(m, 7w, ) + J(®, @, @)] for all w, 7, ®,a
€ M (rectangle inequality).

Then, J is called a J-cone metric and (., ]) is called a |
-CMS over the BA Y.
Since s > 1, from (J,), we have

J(w, 7, @)<s[] (w, a, a) + ] (a, 71, @) — J(a, a,a)].  (4)

The J-CMS J is said to be symmetric if J(w, w, ) = J(w
,7,7) holds for all w, w € . Otherwise, ] is asymmetric.
We now present some examples.

Example 7. Let Y = Cy[0,00) which is endowed with the
norm ||w|| = |||, + llw'll,. Under the pointwise multiplica-
tion, Y is a real Banach algebra with unit e= 1. Let € = {(w,
1)€Y : w(t), 7(t) = 0Vt € [0,00) }. Moreover, P is not normal
(see [12]).

Let G, : [0,00)> — R* be given by Gy, (w, 1, @) =
[max {w, 77, @})f where p>1. Let J: M x M x M —> Y?
be given by
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J(w, 7, @)(t) = (pr (w,71,@), aG, (@, 7, (D)) e. (5

Obviously, (., G, ) is not a G-metric space. But (., J)
is a J-CMS over the BA Y. Indeed, if w=7m=® >0, then
J(w, 7, @)(t) = (0, awP)e' > 0. Hence, (J;) — (J5) are satis-
fied. Now, we show that (J,) holds. For all w,7,®,a € 4,
we have

[max {w, 77, @}]Pe'<s([max {w, a}}’ + [max {a, 7, @}’ - a’)e’
+ -9 ;S) (o + 7P + e,
(6)

(by Example 12 in [1]). Therefore,

J(w, 7, @)<s[](w, a,a) + J(a,m,®) — ] (a, a,a)]
+((1=5)/3)[J(w, w, w) + J(m, 70, ) + ] (@, @, )],
(7)

for all w, 1, @, a € A (rectangle inequality).
The following examples show that a J-CMS over a BA
need not be a G,-CMS ([13]).

Example 8. Let # =[0,1] and Y be the set of all real-valued
continuously differentiable functions on .# with the norm
|w|| = |||y, + |||, Define the multiplication in the usual
way. Let €={we Y :w(t)>0,te M} Clearly, € is a non-
normal cone and Y is a BA with a unit e=1. Consider
J:M< M<M—Y as

J(w, 7, @)(t) = ((max {w, 7'[}2) + (max {m, (D}z) + (max {@, w}z))et

(®)

for all w, 7w, @ € A. Thus, (M, ]) is a J-CMS over the BA Y,
but it is not a G,-CMS since J(w, w, w)(t) = 3w?e’ # 6.

Example 9. Let Y = Cy[0, 1] and consider a norm on Y as ||
@[ = [|w[|, + |l@'||, for all w € Y. Let the multiplication on
Y be the pointwise multiplication. Then, Y is a real unit BA
with unite=1.Set € ={w €Y : w>0} which is a cone in Y.
Let .4 = [0,00) and a > 0 be any constant. Consider J : /# x
M M—Y as

J(w, 7, @)(t) = ([max {w, 7, ®})* +a), 9)

forallw, 77, @ € A. This (M, ]) is a J-CMS over the BA Y, but
it is not a G,-CMS since J(w, w, w)(t) = (0 + a)e’ # 6.

Example 10. Let Y = C[a, b] be the set of all continuous func-
tions on [a, b] with the norm ||w|| = ||wl|, + ||’ ||.,. Taking
the usual multiplication, then Y is a BA with a unit 1. Set €
={weY:w(t)>0,te[a b]} and 4 =R". Consider ] :
X M x M —> Y by

J(w, 7, @)(t) = ([max {w, 7, (D}]z +]w - n\z +|m - (Z)|2 +|@- w|2)et,
(10)

for all w, 7w, ® € A. Then, (M, ]) is a J-CMS over the BA Y.
But it is not a G,-CMS, because J(w, w, w)(t) = w?e’ + 6.

In the following, (., ]) is assumed to be a J-CMS over
the BA'Y.

Lemma 11. (a) If J(w, 7, ®) =0, then w =11 = Q.
(b) If w # 7, then J(w, , ) > 6.

Definition 12. For an w € # and ¢ > 0, the J-ball with center
w and radius ¢ > 0 is

Bj(w,c)={me: J(w w )< ]J(w,w,w)+c}. (11)
The 0-Cauchyness and convergence are given as follows.

Definition 13. A sequence {w, } in (., ]) converges to w € M
, whenever for each ¢ > 0, there is an integer N so that J(w,
,w,w) < cforalln>N.

Definition 14. A sequence {w,} in / is called a 6-Cauchy
sequence in (4, J) if for every ¢ > 0 there is n, € N such that
J(w,,w,, w,,) < cforall n,m=>n,.

Definition 15. M is said to be 0-complete if every 8-Cauchy
sequence {w,} in (/,]) is convergent to w € .4 so that
J(w, w, w) =06.

Definition 16. Let (', ]') and (', ]") be two J-CMS over
the BA Y. Then, a function f : # — ' is called continu-
ous at w € / iff for each convergent sequence {w, } to w, we
have {fw,} is convergent to f(w).

4. Generalized Contractive and Expansive Maps

In this section, we consider contractive and expansive maps
in a J-CMS over a BA. Some examples are also presented.

Definiton 17. Let (.#, J) be a J-CMS over the BA Y and € be
aconein Y. A map x : /4 — M is named as a generalized
contractive mapping if there is k € € (with @R (k) < 1) so
that for all w, 7w, ® € A,

J(xw, xm, x@)<k] (w, 7, @). (12)

Example 18. Let Y be a BA and € be a cone (as in Example 8)
and let # = R*. Define a mapping | : M x M x M — Y by

J(w, 7, @)(t) = ([max {w, 7, A +|w-n + |7 - @ + “D_w|2)et)
(13)

for all w, 7, ® € M. Then, (M, ]) is a J-CMS over the BA Y.
Take y: M — M by y(w)=In(1+(w/2)). In view of
In (1 + u) < u for each u > 0, we have for all w, 7, @ € A,



T (xw, ym, x@)(t) = ([max {m (1 + g),ln (1+ g),ln <1+ g) HZ
+‘ln <1+%) —In (1+g)‘2+’ln (1+g>
~In <1+§> 2+ In <1+§> ~In (1+;) z)e’
L(IEES R R
1
4

T®

2 2

2 2

2
ef

(14)

where k = 1/4. Obviously, y is a generalized contractive
map on /.

Definition 19. Let (M, ]) be a J-CMS over the BA Y and € be
aconein Y. A map x : # — M is said to be an expansive
mapping if for all w, 77, @ € A,

J(xw, xm, x®) * k] (w, 7, @), (15)

where k, k' € € and are called generalized contractive con-
stants with @R (k') < 1.

Example 20. Let Y be a BA and € be a cone (as given in
Example 9) and let ./# =R*. As in Example 18, (/,]) is a
J-CMS over the BA Y. Define yw = 3w + w? for all w.

J(xw, xm, x@)(t) = K[max {3w+ @, 3w+ 7,30 + (DZ}]Z
+H(Bw+w?) - B+ ) [ +|(3n+7?) - 3o +@*)|*
+|(30+ @) - 3o+ a?)[")] ¢
= ([max {3w+w2,3n+n2, 3(D+(2)2H2
+3(w~-m) + (w—7r)(w+71)|2
+[3(m- @)+ (- @) (7 + @)
+|3(a)—w)+(¢D—a))(<D+w)\2)e’
= ([max {3w+ w37+ 7%, 3(D+(Dz}}2
+lw-n* 3+ (w+ 7)) + |7 - P |3+ (m+ @)
+|c07w\2|3+(@+w)|2)et
> ([max {3w, 37, 30}]* + 9|w - 7|
+9|m - + 9@ - w*)e
= 9([max {w, 7, A +lo-nf+|m-af + \&)—w|2)e’

=9J(w, 7, ®)(1),
(16)
where k =9. Clearly, x is an expansive map in /.
Definition 21 ([14]). Let € be a solid cone in a Banach space

&. A sequence {u, } ¢ € is said to be a c-sequence if for every
¢ > 0 there is an integer N so that u,, < c for all n> N.

Advances in Mathematical Physics

Lemma 22 ([5]). If & is a real Banach space with a solid cone
G, then {u, } is a c-sequence whenever {u, } C € be a sequence
with ||u, || — 0(c0).

Lemma 23 ([10]). Let Y be a BA with a unite and k € Y. Then,
lim||k"||"" exists, and the spectral radius @R (k) verifies

SR (k) = lim||k"||"" = inf ||K"||"". (17)

Then, (e—k) is invertible in Y provided that @R (k)
<|{|. Moreover,

i

(le—k) "= i k

= ci+1

(18)

where the constant { is complex.

Lemma 24 ([10]). Let Y be a BA with a unit e and 9, € Y.

Then,

SR+ 0) <SRV + SR(2), SR (I0) < @R (9)SNR (@),
(19)

provided that 9 commutes with ®.

Lemma 25 ([12]). Let & be a real Banach space with a solid
cone €. Then,

(1) 9<k if9<o<xk
(2) 9=0, if 9 < « for every k>0

Lemma 26 ([11]). Let € be a solid cone in the BA' Y and
suppose that k € €. Then, {ku,} is a c-sequence provided that
{u,} be a c-sequence in G.

Lemma 27 ([5]). Let Y be a BA with a unit e and let ke Y.
Then,

» 1
@m((ce—k) ) S I oR@’ (20)

where ( is a complex constant with @R (k) < |{].

Lemma 28 ([5]). Let € be a solid cone in the BA Y with a unit
eand let 9, k, 1 € € so that I<k and 9<I9. Then, 9= 0 provided
that @R (k) < 1.

In this paper, we prove some fixed-point theorems for
generalized contractive and expansive maps in the setting
of a J-CMS over a BA.

5. Main Results
Theorem 29. Let (M, ]) be a 8-complete symmetric J-CMS

over the BA'Y and x : M — M be a mapping so that for
all w,me M
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J(xw, xmv, xm)=k] (w, 7T, 1), (21)
where @R (k) < 1/s. Then, x admits a unique fixed point.

Proof. Let w, be an arbitrary point in .#. Define a sequence
{w,} in M by w, = x"w,. By (21), we have

](wn’ Wyi1> wn+1) = ](Xwn—l’ Xwn’ Xwn)sk](wnfl’ Wy» wn)'

(22)

Continuing in the same argument, we will get
J(@ps @15 @y ) 3K T (@0 @), @) ). (23)

Moreover, for all n,m € N ; n < m, we have

](wn’ Wi wm)<s[](wn’ Wiy wn+l) + ](wwrl’ Wy wm) - ](wn+1> Wyi1> wn+l)]
<S](wn’ Wpi1> wnﬂ) + S](wnﬂ’ Wy wm)
<Sj(ww Wpyi1> erl) + 52 U(wnﬂ’ Wpyip> wn+2)
+ ](wn+2’ Wps wm) - ](wn+2’ Wpips wn+2)]
<5](wn’ Wpyi1> wn+1) + Szj(wrwl’ Wpyi2> wvx+2) + SZ](""rH—Z’ Wy wm)
45]((1)“, Wpyi1> wn+l) + Szj(wwrl’ Wpip> wn+2) T
+ 5" (W15 @ 0,,,) <5k T (g, @y, 1)
+ K™ (g, 0y, ;) + o+ + S"K T (w0, 0y, ;)
=sk"[e+ sk + (sk)> + - + (sk)" "1 (wp, @y, wy)
o0
<sk” (Z (sk)i> J(wy, wy, ;) = (e~ sk)_lsk"](wo, Wy, w,).
i=0

(24)

In view of Remark 2, ||sk"J(w,, w;, w,) ||<]|K" || ||] (wy, w;,
w,)|| — 0(0c0), by Lemma 22, we have {sk"J(w,, w;,w;)}
is a c-sequence. Using Lemma 25 and Lemma 26, {w,} is a
0-Cauchy sequence in .. By the 08-completeness of ., there
is p € A so that

lim](wn’ 0 Q) = . nyl_nm](w"’ W, wm) = ](Q) Q, Q) =0. (25)
Furthermore, one has

J(@ X XQ)=T(@ x> X@,) + ST (X0 XQ> XQ) = ST (X0> X@p> X0y)
<5J(Q X@p> X0n) + 5] (x0,> X0 xQ)
<5J(Q Wyt @ni1) + 5K (@, @415 Q)
(26)
Hence, {J(Q wyi1,@yi1)} and {J(w,, @,,1,0)} are ¢
-sequences, then by using Lemma 25 and Lemma 26, we get

that yo = 0. Thus, @ is a fixed point of x. If ¢ =, then one
writes

J(@:0. Q) =T(xe x0 x¢) =k (e, @, 0)- (27)
That is,

(e~ k)J(00.0)<b. (28)

The multiplication by
S} .
(e-k)"'= )Y K=>0, (29)
yields that J(@, @, ¢)<6. Thus, J(0,0,{) =6, so @=¢, a
contradiction. Hence, the fixed point is unique.
Corollary 30. Let (,]) be a 0-complete symmetric J-CMS

over the BA'Y and y : M — M be a mapping so that for
alw,m,0 € M

J(xw, xm, x@)<a ] (w, yw, @) + b J(w, yw, ), (30)
where @R (a + b) < 1/s. Then, x has a unique fixed point.

Proof. In view of the proof of Theorem 29, we get the required
result.

Theorem 31. Let (M, ]) be a 6-complete symmetric J-CMS
over the BA'Y and y : M — M be a mapping so that for
allw,me M,

J (xw, xm, x’m)<a ] (w, xw, x’) +b] (7, xm, x’7)
+cJ(w, yw, xm) +d ] (1, xm, x’w),
(31)

where s@R(a+c)+ ©R(b+d) <1 and SSR(c+d) +
SR (bs) < 1. Then, x admits a unique fixed point.

Proof. Take w, € 4. We construct {w, } in ./ so that
Wy =Xwn,fora11n=0,1,2,..._ (32)

'+, for some integer n’, then there
is a fixed point. Suppose that w, # w,,, for all n € N. That is,

Notice thatif w,» =,/

n+l
](wn’wn+l’wn+2) >0. (33)
From (31), with w = w,,_; and 7 = w,, we have

](Xwnfl’ XWy> szn)<a](wn71’ X@p1> sznfl) +b ](wn’ X@p> szn)
+ C](wnfl’ X@p1> Xwn) + d](wn’ XWps X?,wnfl)’
(34)
which implies that
](wn’ W1 wn+2)<a ](wnfl’ Wy wn+l) + h](wn’ W1 wn+2)
+ C](wn—l’ Wy» wn+1) + d](wn’ W1 wn+2)’

= (a + C)](wnfl’ Wy wn+1) + (b + d)](wn’ Wyi1> wn+2)'

(35)
Thus,

(e - b - d)](wn’ c")n+1’ wn+2)<(a + C)](wn—l’ wn’ wn+1)' (36)



Since s@R(a+c)+SR(b+d) <1 leads to ©@R(b+d)
<1, by Lemma 23, (e — b - d) is invertible. So

](wn’ Wyi1> wn+2)<(e -b- d)71 (Cl + C)]<wn—1’ Wy wn+1)'
(37)
Putk=(e—b-d) ' (a+c). Hence,

](wn’ W1 wn+2)<k ](wn—b Wy wn+1)<' : '<kn](w0’ Wy, wz)-

(38)
By Lemma 24 and Lemma 27, we have
GR(k)=GR[(e-b- d)y~(a+ c)]

<@R((e-b-d)")SR(a+c) (39)

©R(a+c) < 1

T1-GR(b+d) s
Thus, (e - sk) is invertible, so ||(sk)"|| — 0(c0). Due to

(J2),

](wn’ Wy wn+1) ](w Wyyi1> wn+2)’ (40)

with w, # w,,,,, and by the symmetry property

](wn+1> wn+1’ wn) = ](wn+1’ ww wn) = ](wn’ Wy wn+1)' (41)

Then, by (38) and (41), we have J(w,,;> @, > @, )<k"
J(wy, w;, w,). Moreover, for all n,m € N;n<m, we have

J(w,, @, w,,)

n> V> Ym

<s [ (w Wpy1> wnﬂ) + ](wnﬂ Wy @, ) ](wnH’ Wpy1> wnﬂ)]
s ](w Wy wnH) + S]( n1> @p> @ )
s ](w Wy wﬂ+1 [ n+1> P2 wn+2) + I( n+2> @ wm)

(@
](wn+2 Wypi2> Wyip $ w > Wpi1s wn+1)
)

+ ST (@1 Wiz W) + 5T (W10 Wpo @)
] (W @115 W) + ( i @nizs @) + 000+ 5" (@ p @, @,)
<sk"J (w, W,) + K (wg, @), @) + o+ + S"TK T (W, wy, w,)
=sk"[ k+ (sk)? +(sk)" "] T (wps @y, @;)

Mz

<sk” (

In view of Remark 2, ||sk"J(wg, w;, w,)||<|[sk"[|||J(w,,
wy, w,)|| — 0(c0); by Lemma 22, we have {sk"J(w,, w;,
w,)} is a c-sequence. Next, by using Lemma 25 and
Lemma 26, w, is a 0-Cauchy sequence in .#. By the 0
-completeness of ., there is @ € #/ so that

(sk) )K“’o’ 01, ;) =5k (e = k)] (g, @1, @,)-

T
)

(42)

lim/(w,, ®, @)= lim J(w, w,,,)=

n,m—00

J(@, @, @) =6.

(43)
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To see that @ is a fixed point of y, we have

J(@ x@ x* @) [J(@: 0y x0,) + T (x02 X@: °@) = J (X012 X0y X0,
= 5] (@, Xw,» xw,) + 5] (X, @, X*@)
<J(@, yw,, xw,) +s[a] (w, xw,, X'w,) +b] (@ x@, x*®)
+cJ(w,, xw,, x®) + d](@) x®, Xswn”.

(44)
Then,
]((D’ X(D, XZ(D) 45]((0, wn+1’ wn+1) + S[(Il ](wn’ wn+1’ wn+2)
+ b]((D, @ XZ(D) +cJ (W, W1y X@)
+ 4]0 X0, 0,0)
<sb ]((D, X XZ(D) +csJ(@, @, x@)

+5d J(@, x@, @),

(45)

which implies that
(e— bs)](tD, x®, XZ(D) <s(c+d)] (@, @, x@). (46)

Since @R (c+d)+SR(bs) <1 leads to SR(bs) <1,
it follows by Lemma 23 that (e — bs) is invertible. So, J(®,
x@, x’@)<(e — bs) 's(c+ d)J (@, @, x@). Put h = (e - bs) 's(c
+d). Then

J(@, x@, x’@)<h ] (@, @, x@). (47)
Note that by Lemma 24 and Lemma 27,

SR(h) =GR [(e —bs) ™ (sc + sd)]
<@R((e—bs)) 'SR (sc+sd)
SR(sc+sd) 1
L——— < —
1-©R(bs) s

(48)

In view of (47), there is a arise 2 cases.
Case . If y@ = x*@, then
J(@, x@, x@)<h ] (@, @, x®)

<h (@, y@, x®)
(e=h)J (@, x@, x@)<0.

(by symmetry) (49)

We multiply by

to get /(@, x@, x@) = 0, which implies that @ = y®@. Hence, ®
is the fixed point of y.
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Case II. If x@ # x*@, then

J (@, x@, x’@)<h ] (@, @, x@)

<h](@, x@, y®) (by symmetry) (s1)
51
<J (@ x@, x’@) (by]2)
(e—h)] (@, x@, x’@) <6.
Again, we multiply by
(e-h)1= (h) >0, (52)

to have J(@, x®@, x*®) = 0. So, ® = y® = x*®. Hence, @ is a
fixed point of y. Suppose that w(# @) is such that yw = w.
One writes

J(@ @, @) =](x@, x@, x@)
=J(x@, yw, yw)(by symmetry)
=] (x@, yw, x’w)
<a] (@, x@, x’®) + b ] (w, xw, x’w) + c J(@, @, yw) +d ] (w, yw, x’@)
LaJ(®@,®, @) +bJ(w, w, w) +cJ (@, ®, w) +dJ(w, w, @)

<a](®®,@) +bJ(w,w,w)+c](@ a,w)+d](ww,d)[by(],)]
(53)

Hence,
J(@, @, w)z(b+c+d)] (@@, w). (54)

Since ©@R(b+c+d)<s’@R(c+d)+GR(bs)<1, by
Lemma 28, we acquire that J(®@, @, w) = 0, that is, ® = w.

6. Fixed-Point Results of Expansive Maps

Here, the case of expansive mappings in the setting of a |
-CMS over a BA is studied.

Theorem 32. Let (M, ]) be a 8-complete J-CMS over the BA
Y and y : M —> M be an onto mapping so that for all w, 7w
€M,

] (xw, x’w, x) = aJ (w, yw, ), (55)
where @R (a!) < 1/s. Then, x possesses a unique fixed point.

Proof. Let w, € /. Since x is onto, there is w, € ./ so that
w, = xw;. By continuing this process, we get w, = yw,,,,, for
al neNU{0}. If w, =w, = for some n, € NU{0}, then
w, is a fixed point of y. Assume that w, # w,,, for all n €

ny n+l
N. From (55), with w = w,,,; and 7 = w,,, we have

](wn’ Wy_1> wn—l) = ]<Xwn+l’ szn+1> Xwn)
Fo ](wn+1’ Xwn+1’ wn) (56)

=a ](wn+1’ Wy wn)
which implies that

<h"](w, @y, wy),

(57)

](wnﬂ’ Wy wn)ﬁh ]<wn> Wy_1> wnfl)ﬁn

where h = a~!. Note that

1
SR(h)=SR(a) < -, (58)
50 (e—sh)™' =¥ (sh') and ||sh"|| — 0(c0). Following the
lines of the proof of Theorem 29, we derive that {w,} isa 0

-Cauchy sequence. Since (4, J) is 0-complete, there is @ €
A so that w, — @, that is,

lim/(w,, ® @)= lim J(w, w,,w,)=](® o 0)=0.

n,m—00

(59)

Since y is onto, there is w € . so that @ = yw. From (55)
with w=w,,; and m = w, we have

](wn’ Wy_1> (D) = ](Xwnﬂ’ sznﬂ’ Xw) = i“](wnﬂ’ XWpi1> w)
= “](wm-l’ wn’ w)'

(60)

SO’ ](wn+1’ wn’ w)ﬁh ](wn’ wn—l’ (D)'

Now, {J(w,,w,_;,®)} is a c-sequence; then, by using
Lemma 25 and Lemma 26, it follows that (@, @, w) = 6. That
is, ®=w. Then, @ = yw= y®. To prove the uniqueness,
assume that @ # u so that yu =« and y® = @. Now, by

J(@, @, u) =] (x@, x’@, xu) > aJ (@, Y@, u)
>af (@, @, u) > J(@,d,u),

(61)

which is a contradiction. Hence, @ = u.

Theorem 33. Let (M, ]) be a 0-complete J-CMS over the BA
Y and y : M — M be so that for all w, 7w € M,

] (xw, xm, x°1) = & ] (0, o, x’w), (62)
where @R (a™!) < 1/s. Then, x admits a unique fixed point.
Proof. Let w, € /. Since y is onto, there is w; € # so that
wy = xw;. Let w, = w,, for all n € NU{0}. In case w, =
w

n,,, for some ng € NU {0}, then w, is a fixed point of y.

Suppose that w, # w,,; for all n € N. From (62) with w =
w,,; and 77 = w,,, we have

](Xwn+1’ X@p> szn) za ](wn+1’ XWyi1> szrﬁ—l)’ (63)



which implies that

J (@ 01 @) & 4] (@415 0> @, 1) (64)
or

J (@12 @ @, 1) =07 ] (@, @15 @, 5)- (65)

Put h=a ', It is evident that

J( @115 @y @,y )3H ] (@) 0,15 @,,5), (66)
where @R (h) < 1/s. By the mimic of the proof of Theorem
36, we can show that w, is a 6-Cauchy sequence. Since (.,

J) is a O-complete J-CMS over a BA, there is @ € . such that

lim/(w,, @ @)= lim J(0,w,,w,)=](® 0,0)=0. (67)

n,m—

Since y is onto, there is w € ./ so that ® = yw. From (62),

we have for w=w and 7= w,,;,

J(w, m, @)(t) = {

be a J-CMS over a BA on /. Define y : M — M by yw
= (w/5) sin (w/5). We have

N
3
)
=
—N
/N
ol €
~—
. (8]
N
Gy
SN—
o 8]
Yy
vl g
~—
—
wﬁ
I
=]
1
el
—~
IS
'N
|
S
——
mw

(70)

Therefore, J(xw, ym, xm)(t)=(1/25)](w, w, m)(t). Then,
the contractive condition (21) holds, and 8 is the unique fixed
point of y. That is, the conditions of Theorem 36 hold.

Example 35. Let Y be a BA and € be a cone (the same ones as
those in Example 8), and let .# =R*. Consider ] : M4 x M
X M —> Y as in Example 8. Then, (/,]) is a J-CMS over
the BA Y. Define y : #4 — M by yw =2w. Choose « =4,
then all the conditions of Theorem 6 hold and 0 is the unique
fixed point of y. Indeed,

] (xw, X', xm)(t) = ((max {xw, sz}2> + (max {Xw, XTT}2>

+ (max {y7, Xw}z)) ¢
= ((max {2w, 4w}2) + (max {4w, 27'[}2)
+ (max {27, 20}7))e'
= (16w’ + 4(max {2w,7})* + 4(max {w,7})*)e’

=4(40” + (max {20, })* + (max {w, })*)¢’,

0 Jfw=nr=0 {6

(max {w,m, d)}ze‘) , otherwise
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J(@ @ @0, 1) = ] (X0 XOpi15 X 011) = ] (w5 Y0, XPw).
(68)

So, J(w, yw, Y*w)<h (@, w,, w,_,),

where h=a!. Since {J(®, w,, w,_,)} is a c-sequence, by
using Lemma 25 and Lemma 26, it follows that J(@, yw, x*
w) = 6. That is, w = yw = y*w.

7. Examples

The following examples demonstrate the results obtained in a
J-CMS over Banach algebra Y.

Example 34. Take on Y = Cy[0, 1] the norm [jw|| = |||/, +
|||, for @ € Y. Consider in Y a just pointwise multiplica-
tion. Then, Y is a real unit BA with unit e = 1. Set the cone

C={weY:w>0} in Y. Moreover, € is not normal (see
[12]). Let M =[0,00). Take ] : M x M X M —> Y as

Jifw=r=0

(max {wz, 7, @ }et) , otherwise

J(w, xw, )(t) = ((max {w, Xw}z) + (max {xw, 71}2)
+ (max {m, w}z))et,
= ((max {w, Zw}z) + (max {20, n}z)
+ (max {7, w}?))e’,
= (4w” + (max {2, m})? + (max {w, ﬂ})z)et,

(71)

and so, J(xw, x*w, x)(t) > 4] (w, yw, m)(t).

8. Application to the Existence of a Solution of
Integral Equations

Denote by €([0, T], R) the class of all continuous functions
on [0, T] (where T > 0).

Let Y=C[0, T] be considered with the norm |w| =
@l + ll@']|o. Take the usual multiplication, then Y is a
BA with the unit 1. Set € ={we Y : w(t) >0, € [a, b]}.

Let J be the J-cone metric given as

I(p,@,0)(t) = sup. (Ie(t) = ()| +[a(t) = a(t)]* + |p(t) — (1) *) €',

(72)

for all p, 0,0 € ([0, T], R). Note that (€([0, T],R),]) is a
complete J-CMS over BA €([0, T], R).
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Theorem 36. Let K, f, and a be continuous mappings so that:

(i) supyeory | K(t,s) | =M < 1/\/T, where K € 6([0, T|
x [0, T], R)

(ii) ac %([0, T], R)
(iii) f € ([0, T] x R, R)
() |f (s, p(s)) = f (s, p(s))[ < Clp(s) —@ls)

for all p,oe€([0, T|,R),t €0, T|, where { €10, 1/s). Then,
the integral equation

p(t) = j K(ts)(f(s p(s))ds+a(t), t€[0.T],  (73)

0

admits a unique solution in € ([0, T], R).

Proof. Let F : €([0, T], R) — ([0, T], R) be defined by

T

(P)(1) = j K(L5)f(s p(s)ds+a(t)y,  (74)

0

N

for all t € [0, T]. We have

te[0,T]
~FpO)F)¢ =2 sup (1Fp(0) - (1))
-2 sup (Km(a (5 p(5) 5, p(5) ) s )

<M*T (2 sup {|p(s) - P(5)|2> ¢'={J(p.2 Q).

5€[0,T]

(75)

Then, all the conditions of Theorem 29 hold, and hence,
there is a unique fixed point of #. So, (73) has a unique
solution.
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