

Research Article *Z* Boson Production via *p*-*p* and Pb-Pb Collisions at $\sqrt{s_{pp}}$ = 5.02 TeV

Leonard S. Kisslinger \mathbf{D}^1 \mathbf{D}^1 and Debasish Das \mathbf{D}^2 \mathbf{D}^2

¹Department of Physics, Carnegie Mellon University, Pittsburgh PA 15213, USA ²Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata 700064, India

Correspondence should be addressed to Leonard S. Kisslinger; kissling@andrew.cmu.edu

Received 10 May 2020; Accepted 13 August 2020; Published 24 September 2020

Academic Editor: Grégory Moreau

Copyright © 2020 Leonard S. Kisslinger and Debasish Das. This is an open access article distributed under the [Creative Commons](https://creativecommons.org/licenses/by/4.0/) [Attribution License,](https://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP³.

We estimate the production of *Z^a* bosons, with *a* as the component of a *Z* vector boson, via *p*-*p* collisions using previous work on J/Ψ , $\Psi(2S)$ production in *p-p* collisions, with the new aspect being the creation of Z^a bosons via quark interactions. We then estimate the production of *Z^a* bosons via Pb-Pb collisions using modification factors from previous publications.

1. Introduction

This is an extension of our recent work on heavy quark state production via Xe-Xe collisions at $\sqrt{s_{pp}}$ = 5.44 TeV [\[1](#page-4-0)] and heavy quark state production in Pb-Pb collisions at $\sqrt{s_{pp}}$ = 5*:*02 TeV [[2\]](#page-4-0). More than three decades ago, *W* and *Z* bosons were observed at CERN via proton-antiproton experiments at $\sqrt{s_{pp}}$ = 540 GeV [[3\]](#page-4-0). CMS experiments on electroweak boson production via relativistic heavy ion collisions (RHIC) are related to our present research [\[4](#page-4-0)].

As the photon is the quantum of electromagnetic interactions, a *Z* boson is a quantum of weak interactions with no electric charge. The *Z* boson with mass $M_Z \approx 91$ GeV is a vector boson with quantum spin 1 [\[5](#page-4-0)]. Therefore, a *Z* boson has three components, Z^a , with $a = -1$, 0, and 1.

Our present estimate of the production of *Z^a* bosons, via Pb-Pb collisions, is motivated by the fact that since *Z* bosons have only a weak interaction [\[5\]](#page-4-0), they have little interaction with the nuclear medium and by ALICE experiments that measured *Z* boson production in Pb-Pb collisions [[6\]](#page-4-0) and in *p*-Pb collisions [\[7, 8\]](#page-4-0) at $\sqrt{s_{NN}}$ = 5.02 TeV. The estimate of *Z* boson production via Pb-Pb collisions makes use of

Ref [\[9](#page-4-0)], which was based estimates of heavy quark state production in *p*-*p* collisions [\[10\]](#page-4-0). Note that when the final calculation and results are presented in Sections [3](#page-1-0) and [4,](#page-4-0) the momentum $p^a \rightarrow p_Z$, the momentum of the *Z* boson produced by Pb-Pb collisions at $\sqrt{s_{pp}} = 5.02 \text{ TeV}$, and $Z^a \rightarrow Z$, a *Z* boson.

Our present work is also related to an estimate of $\Psi(2S)$ to J/Ψ decay to π mesons [[11](#page-4-0)] except the quarks have a vertex with *Z* bosons rather than pions and there is no gluon-*Z* ver-tex. Also, it was shown [[12](#page-5-0)] that the $\Psi(2S)$ state is approximately a 50%-50% mixture of a standard charmonium and hybrid charmonium state:

$$
|\Psi(2S) > \simeq -0.7|\bar{cc}(2S) > +\sqrt{1 - 0.5}|\bar{ccg}(2S) > , \qquad (1)
$$

while J/Ψ is essentially a standard $q\bar{q}$ state $|J/\Psi(1S) \rangle \approx |c\bar{c}(1S)|$ *S* $)$ >, which we use in our estimate of Z^a boson production via *^Ψ*ð2*S*^Þ [→] *^J*/*Ψ*ð1*S*^Þ ⁺ *^Z^a* . Having a hybrid component, *cc g*, is important for *Z* boson production from *Ψ*(2*S*) decay as the active gluon component of *Ψ*(2*S*) produces a *Z* boson, as shown in Figure [1](#page-1-0) (Section [2\)](#page-1-0).

FIGURE 1: *Ψ*(2*S*), a hybrid component, to *J*/psi(1*S*) + *Z^a*.

2. $J/\Psi + Z$ Production in p - p Collisions with $\sqrt{s_{pp}}$ = 5.02 TeV

The cross section for $pp \rightarrow \Psi(2S) \rightarrow J/\Psi(1S) + Z^a$ in terms of f_q [[10](#page-4-0), [13\]](#page-5-0), the quark distribution function, is

$$
\sigma_{pp \to \Psi(2S) \to \frac{J}{\Psi(1S)} + Z^a} = f_q(\bar{x}(y), 2m) f_q\left(\frac{a}{\bar{x}(y)}, 2m\right) \sigma_{\Psi(2S) \to \frac{J}{\Psi(1S)} + Z^a},\tag{2}
$$

where *y* is the rapidity, $a = 4 \text{ m}^2/\text{s} = 3.6 \times 10^{-7}$, and $\bar{x}(y) =$ 1.058 $x(y)$. We take $y = 0$ in the present work, so $\bar{x}(0) \approx$ 6.4×10^{-4} .

For $\sqrt{s} = 5.02$ TeV, the quark distribution functions f_q [\[10](#page-4-0), [13](#page-5-0)] are

$$
f_q(\bar{x}(0), 2m) \approx 82.37 - 63582.36x(0) \approx 41.6,
$$

$$
f_q\left(\frac{a}{\bar{x}(0)}, 2m\right) \approx 82.37 - \frac{a}{\bar{x}(0)} \approx 82.4.
$$
 (3)

Therefore, from equations [\(30\)](#page-4-0), (2), and (3),

$$
\sigma_{\text{PbPb} \to \Psi(2S) \to \frac{J}{\Psi(1S)} + Z^a} \simeq 4.46 \times 10^5 \sigma_{pp \to \Psi(2S) \to \frac{J}{\Psi(1S)} + Z^a}.
$$
 (4)

We use the following notation:

$$
\sigma_{pp \to \Psi(2S) \to \frac{1}{\Psi(1S)} + Z^a} \equiv \sigma_{HHZ}(p) = g^{\mu \nu} \left(\prod_{HZ^a}^{\mu \nu} (p) + \prod_{HHZ^a}^{\mu \nu} (p) \right),\tag{5}
$$

with $\Pi_{HZ^a}^{\mu\nu}(p)$ and $\Pi_{HHZ^a}^{\mu\nu}(p)$ defined below.

The normal $|c\bar{c}(2S)$ > component of $\Psi(2S)$ decaying to $|c\bar{c}(1S)$ > with Z^a production via quark-*Z* coupling is shown in Figure 2.

In Figure 1, Z^a production with the hybrid $|c\bar{c}g(2S)$ > component of $\Psi(2S)$ is shown.

Figure [3](#page-2-0) shows the coupling processes needed for Figures 1 and 2.

FIGURE 2: $\Psi(2S)$, a standard component, to $J/\text{psi}(1S) + Z^a$.

In Figure [3\(a\),](#page-2-0) the operator giving the gluon sigma coupling is

gluon-quark coupling
$$
=\frac{1}{4}S_{\kappa\delta}^G(k)G^{\kappa\delta}(0)
$$
,
\n
$$
S_{\kappa\delta}^G(k) = [\sigma_{\kappa\delta}, S(k)]_+ = \sigma_{\kappa\delta}S(k) + S(k)\sigma_{\kappa\delta},
$$
\n(6)

where $\sigma_{\kappa\delta} = i(\gamma_{\kappa}\gamma_{\delta} - g^{\kappa\delta})$ and $G^{\kappa\delta}$ is the gluon field.

In Figure [3\(b\)](#page-2-0), with *Z^a* with *a* as the component of the vector *Z* boson and defining $g_c \equiv g_c^V \approx 0.25$ [[5\]](#page-4-0), the *ccZ^α* coupling is [\[14](#page-5-0)]

$$
S_{Z^a} = \gamma^a (g_c - g_c^A \gamma^5). \tag{7}
$$

As shown in Section [3.2,](#page-2-0) the $\gamma^a \gamma^5$ term does not contribute to $\sigma_{HHZ}(p)$, so we define $g_c^A = g_c$.

3. $\Psi(2S)$ Decay to $J/\Psi + Z^a$

In this section, we estimate the decay of $|\Psi(2S) \rangle$ to $|J/\Psi(1) \rangle$ S > + Z^a for both the standard and hybrid components of *|Ψ*(2*S*) > as shown in Figures 1 and 2.

3.1. *^Ψ*ð*2S*^Þ Decay to *^J*/*^Ψ* ⁺ *^Z^a* via the Standard Component of *Ψ*(2S). As in Ref [\[11\]](#page-4-0), the correlator corresponding to Figure 2 is

$$
\prod_{HZ^a}^{\mu\nu}(p) = \sum_{ab} g^2 \int \frac{d^4k}{(2\pi)^4} Tr[S(k)\gamma^\mu S_{Z^a} S(p-k)\gamma^\nu], \quad (8)
$$

where the quark propagator $S(k) = (k + M)/(k^2 - M^2)$, *M* is the mass of a charm quark (M_c) , $k = \sum_{\mu} k^{\mu} \gamma^{\mu}$, and $g^2 = 4\pi \alpha_s$ \simeq 1.49 [\[5](#page-4-0)]. Since $Tr[S(k)\gamma^{\mu}S_{Z^a}(k)S(p-k)\gamma^{\nu}]$ is independent of color, $\sum_{ab} = 3$.

Thus, the correlator for $\psi(2S)_{\text{normal}}$ decay to $J/\psi(1S) + Z$ is

$$
\prod_{HZ^a}^{\mu\nu}(p) = 3g^2 g_c \int \frac{d^4k}{(2\pi)^4} Tr[S(k)\gamma^\mu\gamma^a(1-\gamma^5)S(p-k)\gamma^\nu].
$$
\n(9)

Figure 3: (a) Gluon-quark coupling and (b) *^c*-*^Z* coupling.

The trace in equation [\(9](#page-1-0)) is

$$
Tr\left[S(k)\gamma^{\mu}\gamma^{a}(1-\gamma^{5})S(p-k)\gamma^{\nu}\right]
$$

=
$$
\frac{Tr\left[(k+M)\gamma^{\mu}\gamma^{a}(1-\gamma^{5})[(p-k)+M)\gamma^{\nu}\right]}{(k^{2}-M^{2})[(k-p)^{2}-M^{2}]}.
$$
 (10)

Using the fact that the trace of an odd number of *γ*s vanishes and $Tr[\gamma^5 \gamma^\alpha \gamma^\beta \gamma^\delta \gamma^\lambda] = -4i\epsilon^{\alpha\beta\delta\lambda}$,

$$
Tr[(k+M)\gamma^{\mu}\gamma^{a}(1-\gamma^{5})[(p-k)+M)\gamma^{\nu}]
$$

= $4M[p_{\nu}g^{a\mu}+p_{a}g^{\mu\nu}-p_{\mu}g^{a\nu}+ie^{\mu a\alpha\nu}+2k_{\mu}g^{a\nu}$ (11)
 $-2k_{a}g^{\mu\nu}-2ik_{\alpha}\varepsilon^{a\mu a\nu}].$

Therefore,

$$
\prod_{HZ^{a}}^{\\\mu\nu}(p) = 12g^{2}g_{c}M \int \frac{d^{4}k}{(4\pi)^{4}}
$$
\n
$$
P_{\nu}g^{a\mu} + P_{a}g^{\mu\nu} - P_{\mu}g^{a\nu} + ip_{\alpha}\varepsilon^{\mu a\alpha\nu} + 2k_{\mu}g^{a\nu} - 2k_{a}g^{\mu\nu} - 2ik_{\alpha}\varepsilon^{\alpha\mu a\nu}
$$
\n
$$
(k^{2} - M^{2}) [(k-p)^{2} - M^{2}]
$$
\n(12)

Using

$$
\int \frac{d^4k}{(4\pi)^4} \frac{1}{(k^2 - M^2) \left[(k - p)^2 - M^2 \right]} = \frac{(2M^2 - p^2/2)}{(4\pi)^2} I_0(p),
$$

$$
\int \frac{d^4k}{(4\pi)^4} \frac{k^{\mu}}{(k^2 - M^2) \left[(k - p)^2 - M^2 \right]} = \frac{p^{\mu} \left((2M^2 - p^2)/2 \right)}{(4\pi)^2} I_1(p),
$$
(13)

one finds

$$
\prod_{HZ^{a}}^{\mu\nu}(p) = AM \frac{(2M^{2} - p^{2})/2}{(4\pi)^{2}} \left[\left(p_{\nu} g^{a\mu} - p_{\mu} g^{a\nu} + i p_{\alpha} \varepsilon^{\mu a a \nu} \right) I_{0}(p) + \left(2 p_{\mu} g^{a\nu} - 2 p_{a} g^{\mu\nu} - 2 i p_{\alpha} \varepsilon^{\mu a a \nu} \right) I_{1}(p) \right] A = 12 g^{2} g_{c},
$$
\n(14)

with

$$
I_0(p) = \int_0^1 d\alpha \frac{1}{p^2(\alpha - \alpha^2) - M^2},
$$

\n
$$
I_1(p) = \int_0^1 d\alpha \frac{\alpha}{p^2(\alpha - \alpha^2) - M^2}.
$$
\n(15)

3.2. Ψ(2S) Decay to *J*/Ψ + Z^a via the Hybrid Component of *Ψ*(2*S*). The two-point correlator for the hybrid $\overline{\Psi(2S)}$ -*J*/*Ψ*, corresponding to Figure [1](#page-1-0), without the gluon-*Z* or quark-*Z* coupling is [[12](#page-5-0)] (see equation (18))

$$
\prod_{HH}^{\mu\nu}(p) = \frac{3g^2}{4} \int \frac{d^4k}{(2\pi)^4} Tr \left[[\sigma_{\kappa\delta} S(k)]_+ \gamma_\lambda S(p-k) \gamma_\mu \right] \tag{16}
$$
\n
$$
Tr \left[G^{\nu\lambda}(0) G^{\kappa\delta}(0) \right].
$$

The correlator *Πμν HHqqZ^a* , obtained from Figure [1](#page-1-0), is

$$
\prod_{H H Z^a}^{\mu \nu} (p) = \frac{3g^2}{4} \int \frac{d^4 k}{(2\pi)^4} Tr \left[[\sigma_{\kappa \delta} S(k)]_+ \gamma_\lambda S_{Z^a} S(p-k) \gamma_\mu \right] \cdot Tr \left[G^{\nu \lambda}(0) G^{\kappa \delta}(0) \right].
$$
\n(17)

Note that [\[15\]](#page-5-0) (with $\langle G^2 \rangle = 0.476 \text{ GeV}^2$)

$$
Tr\left[G^{\nu\lambda}(0)G^{\kappa\delta}(0)\right] = (2\pi)^4 \frac{12}{96} \langle G^2 \rangle \left(g^{\nu\kappa}g^{\lambda\delta} - g^{\nu\delta}g^{\kappa\lambda}\right),\tag{18}
$$

$$
\left[\sigma_{\kappa\delta}S(k)\right]_{+} = \frac{i\left[-2g^{\kappa\delta}(k+M) + 2M\gamma^{\kappa}\gamma^{\delta} + k_{\alpha}\left(\gamma^{\kappa}\gamma^{\delta}\gamma^{\alpha} + \gamma^{\alpha}\gamma^{\kappa}\gamma^{\delta}\right)\right]}{k^{2} - M^{2}}.
$$
\n(19)

Therefore,

$$
\prod_{HHZ^a}^{mu\nu}(p) = B \int \frac{d^4k}{(2\pi)^4} \frac{i}{(k^2 - M^2) [(p - k)^2 - M^2]} \cdot \left(g^{\nu\kappa} g^{\lambda\delta} - g^{\nu\delta} g^{\lambda\kappa} \right) Tr^{A1}, M^2B = \frac{3g^2 g_c}{4} (2\pi)^4 \frac{12}{96} \langle G^2 \rangle \approx 25.87 \text{ GeV}^2, \quad (20)
$$

FIGURE 4: $\sigma_{pp \to \Psi(2S) \to J/\Psi(1S) + Z^a}$ with $p_Z =$ (a) 1, (b) 2, and (c) 3 MeV.

with

$$
Tr^{A1} \equiv Tr \left[\left(k_{\alpha} \left(\gamma^{\kappa} \gamma^{\delta} \gamma^{\alpha} + \gamma^{\alpha} \gamma^{\kappa} \gamma^{\delta} \right) \gamma^a (1 - \gamma_5) \gamma^{\lambda} ((p - k) + M) \gamma^{\mu} \right. \right. \\ \left. \left. - \left[-2 g^{\kappa \delta} (k + M) + 2 M \gamma^{\kappa} \gamma^{\delta} \right] \gamma^{\lambda} \gamma^a (1 - \gamma_5) ((p - k) + M) \gamma^{\mu} \right]. \right. \tag{21}
$$

Note that $(g^{v\kappa}g^{\lambda\delta} - g^{v\delta}g^{\lambda\kappa})g^{\kappa\delta} = 0.0$, so the $g^{\kappa\delta}$ term in equation (21) vanishes. Therefore, from equation (21),

$$
\left(g^{\nu\kappa}g^{\lambda\delta} - g^{\nu\delta}g^{\lambda\kappa}\right)Tr^{A1} = 2Tr\left[\left[(k_{\alpha}\left(\gamma^{\nu}\gamma^{\lambda}\gamma^{\alpha} + \gamma^{\alpha}\gamma^{\nu}\gamma^{\lambda} - 2g^{\lambda\nu}\gamma^{\alpha}\right) \right. \\ \left. \cdot \left. \gamma^{a}(1 - \gamma_{5})\gamma^{\lambda} + 4M\left(\gamma^{\nu} - \gamma^{\lambda}\right)\gamma^{a}(1 - \gamma_{5})\right] \right. \\ \left. \cdot \left. \left((p - k) + M\right)\gamma^{\mu}\right].\right. \tag{22}
$$

Since $Tr[\text{odd number of } \gamma s] = 0$,

$$
\left(g^{\nu\kappa}g^{\lambda\delta} - g^{\nu\delta}g^{\lambda\kappa}\right)Tr^{A1}
$$

= $2MTr\left[\left(k_{\alpha}\left(\gamma^{\nu}\gamma^{\lambda}\gamma^{\alpha} + \gamma^{\alpha}\gamma^{\nu}\gamma^{\lambda} - 2g^{\lambda\nu}\gamma^{\alpha}\right)\gamma^a(1-\gamma_5)\gamma^{\lambda}\gamma^{\mu}\right] + 4\left(p_{\beta} - k_{\beta}\right)\left(\gamma^{\nu} - \gamma^{\lambda}\right)\gamma^a(1-\gamma_5)\gamma^{\beta}\gamma^{\mu}\right].$ (23)

As in equation [\(11\)](#page-2-0), using $\varepsilon^{\alpha\beta\lambda\lambda} = 0$, one obtains for the $4 - \gamma$ terms

$$
2MTr \left[-2k_{\alpha} g^{\lambda \nu} \gamma^{\alpha} \gamma^{\alpha} (1 - \gamma_{5}) \gamma^{\lambda} \gamma^{\mu} \right.+ 4 \left(p_{\beta} - k_{\beta} \right) \left(\gamma^{\nu} - \gamma^{\lambda} \right) \gamma^{\alpha} (1 - \gamma_{5}) \gamma^{\beta} \gamma^{\mu} \right]= 16M \left[-\left(k_{a} g^{\mu \nu} + k_{\mu} g^{\alpha \nu} - k_{\nu} g^{\alpha \mu} \right) + i k_{\alpha} \epsilon^{\alpha \alpha \nu \mu} \right)+ 2 \left[\left(p_{\mu} - k_{\mu} \right) g^{\nu a} + \left(p_{a} - k_{a} \right) g^{\nu \mu} - \left(p_{\nu} - k_{\nu} \right) g^{\mu a} \right]- \left(p_{\mu} - k_{\mu} \right) g^{\nu a} - \left(p_{a} - k_{a} \right) g^{\nu \mu} + \left(p_{\nu} - k_{\nu} \right) g^{\mu a}+ 2i \left(p_{\beta} - k_{\beta} \right) \left(\epsilon^{\nu a \beta \mu} - \epsilon^{\nu a \beta \mu} \right) \right]. \tag{2}
$$

For the $6 - \gamma$ terms in equation (22),

$$
Tr\left[\gamma^{\alpha}\gamma^{\beta}\gamma^{\delta}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu}\right] = 4\left(g^{\alpha\beta}Tr\left[\gamma^{\delta}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu}\right] + g^{\alpha\delta}Tr\left[\gamma^{\beta}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu}\right] + g^{\alpha\lambda}Tr\left[\gamma^{\beta}\gamma^{\delta}\gamma^{\mu}\gamma^{\nu}\right] + g^{\alpha\mu}Tr\left[\gamma^{\beta}\gamma^{\delta}\gamma^{\lambda}\gamma^{\nu}\right] + g^{\alpha\nu}Tr\left[\gamma^{\beta}\gamma^{\delta}\gamma^{\lambda}\gamma^{\mu}\right],
$$
\n
$$
+ g^{\alpha\nu}Tr\left[\gamma^{\beta}\gamma^{\delta}\gamma^{\lambda}\gamma^{\mu}\right],
$$
\n(25)

$$
Tr\left[\gamma^{\alpha}\gamma^{\beta}\gamma^{\delta}\gamma^{\lambda}\gamma^{\mu}\gamma^{\nu}\gamma_{5}\right] = -16i\left(g^{\alpha\beta}\varepsilon^{\delta\lambda\mu\nu} + g^{\alpha\delta}\varepsilon^{\beta\lambda\mu\nu} + g^{\alpha\lambda}\varepsilon^{\beta\delta\mu\nu} + \cdots\right). \tag{26}
$$

From equations (22), (25), and (26) and using $\varepsilon^{\beta\beta\mu\nu} = 0$, the $6 - \gamma$ terms in equation (22) are

$$
2MTr[(k_{\alpha}(\gamma^{\nu}\gamma^{\lambda}\gamma^{\alpha}+\gamma^{\alpha}\gamma^{\nu}\gamma^{\lambda})\gamma^{\alpha}(1-\gamma_{5})\gamma^{\beta}\gamma^{\mu}]
$$

=4M(3k_{a}g^{\nu\mu}+k_{\mu}g^{a\nu}+k_{\nu}g^{a\mu}). (27)

 $Defining \Pi^{\mu\nu}_{Z}(p) = \Pi^{\mu\nu}_{HZ^a}(p) + \Pi^{\mu\nu}_{HHZ^a}(p)$, with p_Z as the *Z* boson momentum, from equations [\(14\)](#page-2-0), (22), (23), (24), (27), and [\(13\)](#page-2-0),

$$
\prod_{Z}^{\mu\nu}(p) = M \frac{(2M^2 - p^2)/2}{(4\pi)^2} \left[\left(A \left(p_v g^{a\mu} - p_\mu g^{a\nu} + i p_\alpha \varepsilon^{\mu a a \nu} \right) \right. \right. \\ \left. + B \left(3 \left(p_\mu g^{va} + p_Z g^{\nu\mu} - p_v g^{\mu a} - p_\mu g^{\nu a} - p_Z g^{\nu\mu} \right. \right. \\ \left. + p_\lambda g^{\mu a} + p_\lambda g^{\mu a} \right) \right) I_0(p) + \left(A \left(2 p_\mu g^{a\nu} - 2 p_Z g^{\mu\nu} - 2 i p_\alpha \varepsilon^{\mu a a \nu} \right) \right. \\ \left. - 32B \left(p_Z g^{\nu\mu} + p_\mu g^{a\nu} - p_\nu g^{a\mu} - p_Z g^{\mu\nu} - p_\mu g^{a\nu} + p_\mu g^{a\nu} \right) \right. \\ \left. + i p_\alpha \varepsilon^{a a \nu\mu} \right) - 2 \left(p_\mu g^{\nu a} + p_Z g^{\nu\mu} - p_\nu g^{\mu a} + p_\mu \right) g^{\nu a} - p_Z \right) g^{\nu\mu} \\ \left. + p_\nu g^{\mu a} \right) I_1(p). \tag{28}
$$

$$
(24)
$$

From equations [\(5](#page-1-0)) and [\(20\)](#page-2-0), taking the μ sum with $g^{\mu\nu}$,

$$
\sigma_{HHZ}(p) = 4.46 \times 10^5 M \frac{(2M^2 - p^2)/2}{(4\pi)^2} B p_Z(I_0(p) + I_1(p))
$$

= 7.4 × 10⁴ GeV⁻² × $p_Z \frac{(2M^2 - p^2)/2}{M}$ ($I_0(p) + I_1(p)$), (29)

with the *Z* boson momentum $p_Z \approx 1 - 3$ MeV, so $p_z \ll p$ as *p* ≃ 2 – 3 GeV in our calculation.

4. Calculation of $\sigma_{pp\to\Psi(2S)} \to \Psi(1S) + Z^a$ via **Calculation of** $\sigma_{HHZ}^2(p)$ for $p \simeq M_c \simeq 1.27 \text{ GeV}$

Carrying out the integrals for $I_0(p)$, $I_1(p)$ shown in equation [\(15](#page-2-0)), one obtains from equation (29) the values of $\sigma_{HHZ}(p)$, with $p_z = 1, 2, 3 \text{ MeV} = 0.001, 0.002, 0.003 \text{ GeV}$, which from equation ([5\)](#page-1-0) is the cross section $\sigma_{pp\to\Psi(2S)\to J/\Psi(1S)+Z^a}$ with the proton-proton energy = 5*:*02 TeV, shown in Figure [4](#page-3-0).

Note that [5] the units for a cross section are $nb \propto hc$ GeV⁻². As it is customary, we take $h = c = 1$.

5. *J*/*Ψ* + *Z* Production in Pb-Pb Collisions with $\sqrt{s_{pp}}$ = 5.02 TeV

The cross section for the production of a heavy quark state *Φ* with helicity $\lambda = 0$ (for unpolarized collisions [10]) in the color octet model in Pb-Pb collisions is given by [9]

$$
\sigma_{\text{PbPb}\to\phi} = R_{\text{PbPb}}^{E} N_{\text{bin}}^{\text{PbPb}} \sigma_{\text{pp}\to\phi},\tag{30}
$$

where $N_{\text{bin}}^{\text{PbPb}}$ is the number of binary collisions, R_{PbPb}^E is the nuclear modification factor, and *E* is the total energy in Pb-Pb collisions.

From [2], $R_{\text{PbPb}}^E N_{\text{bin}}^{\text{PbPb}} \approx 130$. Therefore,

$$
\sigma_{\text{Pb-Pb}\to\text{Y}(2S)\to\frac{J}{\text{Y}(1S)}+Z^a} \simeq 130 \times \sigma_{pp \to \text{Y}(2S)\to\frac{J}{\text{Y}(1S)}+Z^a},\tag{31}
$$

or *σ*Pb‐Pb→*Ψ*ð2*S*Þ→*J*/*Ψ*ð1*S*Þ+*Z^a* is approximately 130 times the results shown in Figure [4](#page-3-0).

6. Conclusions

Using the relationship between the cross sections $\sigma_{PbPb \to \Psi(2S) \to J/\Psi(1S) + Z}$ and $\sigma_{pp \to \Psi(2S) \to J/\Psi(1S) + Z}$ shown in equation (30) and $\Psi(2S)$ decay to $J/\Psi + Z$ for both the standard and hybrid components of $\Psi(2S)$, the cross section σ_{HHZ} $(p) \equiv \sigma_{\text{PbPb} \rightarrow \Psi(2S) \rightarrow J/\Psi(1S) + Z}$ was estimated for $\sqrt{s_{pp}} = 5.02$ TeV and the *Z* boson momentum $p_Z = 1$, 2, and 3 MeV, as shown in the figure. This should be useful for the experimental measurement of *Z* boson production via Pb-Pb collisions at $\sqrt{s_{pp}}$ = 5.02 TeV. For simplicity, we

assumed that the rapidity = $y = 0$, where $y = \ln((E + p_L)/E)$ $(E - p_L)$) with p_L as the longitudinal momentum. Current experiments [6] measure *Z* boson production via Pb-Pb collisions at $\sqrt{s_{pp}}$ = 5.02 TeV at large rapidities.

Data Availability

All data for our article can be found in the references, especially Refs [4–6, [12, 15](#page-5-0)], as is stated in our article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Author D. Das. acknowledges the facilities of Saha Institute of Nuclear Physics, Kolkata, India. Author L.S. Kisslinger acknowledges support in part as a visitor at the Los Alamos National Laboratory, Group P25. The authors thank Bijit Singha for helpful suggestions.

References

- [1] L. S. Kisslinger and D. Das, "Heavy quark state production and suppression via Xe-Xe collisions at $\sqrt{s_{pp}}$ = 5.44TeV," [https://](https://arxiv.org/abs/1801.03826) arxiv.org/abs/1801.03826.
- [2] L. S. Kisslinger and D. Das, "Heavy quark state production in Pb-Pb collisions at $\sqrt{s_{pp}}$ = 5.02 TeV," *Journal of High Energy* Physics, vol. 105, 2017.
- [3] UA1 Collaboration, G. Arnison, A. Astbury et al., "Experimental observation of lepton pairs of invariant mass around 95 GeV/ c^2 at the CERN SPS collider," Physics Letters B, vol. 126, no. 5, pp. 398–410, 1983.
- [4] CMS Collaboration, "Study of Z boson production in PbPb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV," *Physical Review Letters*, vol. 106, no. 21, article 212301, 2011.
- [5] Particle Data Group, "On the Particle Data Group evaluation of *χ^c* and *ψ*′ branching ratios," Physical Review D, vol. 98, article 030001, 2018.
- [6] ALICE Collaboration, "Measurement of Z 0-boson production at large rapidities in Pb–Pb collisions," Physics Letters B, vol. 780, pp. 372–383, 2018.
- [7] ALICE Collaboration, "Z-boson production in p–Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV and Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV," <https://arxiv.org/pdf/2005.11126.pdf>.
- [8] ALICE collaboration, "W and Z boson production in p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02TeV," *Journal of High Energy Physics*, vol. 2017, no. 2, p. 77, 2017.
- [9] L. S. Kisslinger, M. X. Liu, and P. McGaughey, "Heavy-quarkstate production in A-A collisions at $\sqrt{s_{pp}}$ = 200GeV," *Physical* Review C, vol. 89, no. 2, article 024914, 2014.
- [10] L. S. Kisslinger, M. X. Liu, and P. McGaughey, "Heavy-quarkstate production in p−p collisions," Physical Review D, vol. 84, no. 11, p. 114020, 2011.
- [11] L. S. Kisslinger, Z. Li-juan, W.-x. Ma, and P. Shen, "*Ψ*(2S) decay to J/ $\Psi(1S)$ + 2π or J/ $\Psi(1S)$ + σ + 2π ," International Journal of Theoretical Physics, vol. 56, no. 3, pp. 942–947, 2017.
- [12] L. S. Kisslinger, "Mixed heavy quark hybrid mesons, decay puzzles, and RHIC," Physical Review D, vol. 79, no. 11, p. 114026, 2009.
- [13] "CTEQ6," [http://hep.pa.msu.edu/cteq/public/cteq6.html.](http://hep.pa.msu.edu/cteq/public/cteq6.html)
- [14] D. Wackeroth and W. Hollik, "Electroweak radiative correc` tions to resonant charged gauge boson production," Physical Review D, vol. 55, pp. 6788–6818, 1997.
- [15] L. S. Kisslinger, D. Parno, and S. Riordan, "Hybrid Charmonium and the $\rho - \pi$ Puzzle," Advances in High Energy Physics, vol. 2008, Article ID 982341, 16 pages, 2008.