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In this paper, the classification of single traveling wave solutions to a special kind of space-time fractional Schrodinger type equation
with high-order nonlinearities is obtained by the complete discrimination system for polynomial method, where the fractional
derivative is defined by Atangana’s conformable definition. The descriptions of the method and the fractional derivative are
given, and the concrete procedure of the method is also presented in the paper. Especially, some new solutions such as
hyperelliptic functions solution could be found and all the existing results about traveling wave solutions to the equation could

also be seen. Moreover, concrete examples indicate that all the solutions obtained in the paper can be realized.

1. Introduction

In order to portray anomalous phenomena in science and
engineering, nonlinear equation with fractional order deriva-
tive is proposed and has been widely applied in the fields such
as anomalous diffusion [1, 2], and thus, finding exact solu-
tions to such a special kind of equation is an important and
significant task. And fractional derivative also has many def-
initions, for example, Caputo derivative [3] and Riemann-
Liouville derivative [4]. However, some of the definitions
are very complicated that it is too difficult to find expected
exact solutions to the corresponding equation and some def-
initions such as modified Riemann-Liouville derivative have
already been proved wrong [5, 6]. Recently, Atangana et al.
proposed a special kind of definition called Atangana’s frac-
tional derivative [7], which is easy to apply due to the reason
that it obeys almost all the properties satisfied by the conven-
tional Newtonian concept of derivative such as chain rules.

The definition of the derivative is given as follows:
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If the above limitation holds, then we would have the fol-
lowing properties [7].
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where ¢(t) and A(t) are the two f-differentiable functions
with B€(0,1]. Via this definition, many interesting and
important results have been proposed [8-10].

In this paper, we consider the following space-time frac-
tional resonance nonlinear Schrodinger type equation with
Atangana’s derivative [11].

iy D} u(z, t)y Dy + py Dy*u(z, £) + (aful + B|u?| + y|u*Yu(z, 1)
o D2 (|«])

+r
|ul

u(z,t)=0,

(3)

where z is the longitudinal coordinate along the optical fibers,
u(z, t) represents the normalized electric-field envelope, § D
and §D2* are the Atangana’s fractional derivative with
respect to t and z, r is the coefficient of resonant nonlinearity,
and a, 3, and y are the corresponding coefficients of high-
order nonlinearities. This equation is widely used in fluid
dynamics, especially the Madelung’s fluids in several nonlin-
ear systems [12-14]. And in other fields such as nonlinear
optics [15, 16] and plasma and nuclear physics [17-20], the
resonance nonlinear Schrodinger equation also plays a vital
role. In [11], Yepezmartinez and Gomezaguilar obtained sol-
iton solutions to some forms of deformation of Equation (3)
by the subequation method. His results are interesting.
Nowadays, many famous and important methods are
proposed to achieve the goal of finding the exact solutions
to the nonlinear fractional PDEs due to the significance of
them, for example, subequation method [21, 22], (G'1G)
expansion method [23, 24], and Sine-Gordon equation
expansion method [25, 26]. Other results about exact solu-
tions to nonlinear partial differential equations can be seen
in [27-31]. However, though the mentioned methods are
very powerful, they cannot find all the exact traveling wave
solutions to the expected equation, and some kinds of solu-
tions such as elliptic function double periodic solutions could
hardly be found. In order to overcome these difficulties, Liu
proposed a powerful method called complete discrimination
system for polynomial method [32-35]. This method could
not only be used to solve integer-order differential equations
[36-38] but can also get exact solutions to nonlinear
fractional-order equations [39-44]. Moreover, besides
obtaining the exact solutions, Kai et al. also find that this
method could be used to get qualitative properties to nonlin-
ear equations [45, 46]. So, in this paper, we firstly transform
Equation (3) into an ordinary differential equation by a spe-
cial kind of fractional complex traveling wave transformation
and then use the complete discrimination system for polyno-
mial method of 5th order to get the classification of the trav-
eling wave solutions to it. Some new solutions such as
hyperelliptic function solutions are given, and concrete
examples with concrete parameters are also presented to
ensure the existence of each solution obtained in the paper.
This indicates that the complete discrimination system for
polynomial method is efficient and powerful in handing the
nonlinear problems arising in mathematics and physics.
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The construction of the present paper is as follows. We
first give a brief introduction to the complete discrimination
system for polynomial method in Section 2, and then trans-
form the original equation into the ordinary differential
equation and solve it in Section 3. Moreover, concrete exam-
ples are also presented in this section. In the final, a conclu-
sion is drawn in Section 4.

2. Complete Discrimination System for
Polynomial Method

The main idea of the complete discrimination system for
polynomial method can be concluded as follows. When we
encounter with a nonlinear differential equation

=0, (4)

F(u, u,, uy, ty, -
then we need to take a traveling wave transformation
E=kx+wt, (5)

to transform it into
F(u,u',u",---) =0. (6)

If Equation (6) could be written into the following inte-
gral form,

du
E—fo:Jlmr (7)

where G(u) could be any type of function such as rational
function. Then, we can just obtain the classification of single
traveling wave solutions to the original equation by discuss-
ing the relationship between the roots and the parameters
of G(u). We can see it clearly that the steps of using complete
discrimination system for polynomial method can be given
as follows:

Step 1. Take the traveling wave transformation to transform
the original equation into the ordinary equation.

Step 2. Rewrite the equation into the integral form.

Step 3. Obtain the exact solutions to the original equation by
discussing the relationship between the roots and the
coefficients.

In the next section, we will use this method to obtain the
classification of traveling wave solutions to Equation (3).

3. The Classification of the Traveling Wave
Solutions to Equation (3)

To solve Equation (3), we first take the following fractional
complex transformation:

u(z 1) = F(E) exp (i6), (8)
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and 0, x, w, v, and k are all real constants. Then by
substituting Equation (9) into Equation (3), we can get the
following:

©)
f=—

IR

v =2kp, (10)

for the imaginary part and

~(Kp+w)F+aF* + BF +yF* + K (r+ p)F'' =0, (11)

for the real part. Multiplying both sides with F' and integrat-
ing it once yields

2 2 2
——(KPHU) F2+5F3+EF4+ XF5+7k (r+p) (F') =
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(12)

then we have the following:

2
(F') =asF° +a,F* + a,FP + a,F* +a,, (13)

where ag = —2y/5k*(r + p), a, = —pI2K*(r + p), a; = —2a/3k’
(r+p), ay=—(2p+w)/(kK*(r+p)), and a,=2c/k*(r + p).
Via the transformation

(r22).
P 5a; (14)
E = a5/5€

we can obtain the following equation:
2
(¢') =97 +bs0> +bag” + b+ b =Glp),  (15)

where b, =-2/5a3a;"® + a;az;>", b, = 4/25a3a;"*"° + a,az*>,
b, = -3/125a3a;'%" + a,a; 2’5, and b, = 4/3125a}az° + 1/25a,
a3as* + a,. Thus, we can get the following:

=+ — = d(P
+-80)= [, (16

and then the corresponding complete discrimination system
is given as follows:

D, =-bs,

D, = 40b, by — 12b] — 4503,
D, = —4b3b; + 12b,b; + 117b,b5b; — 88b7b5
— 40b,b,b2 - 27b3b3 — 300b,b, b, + 16007,

D5 =—1600b,b,b; — 3750b,b,b; + 2000b;bb?
— 4b2b3b3 + 16b,b3b; — 900b, bib3 + 825bb3b3
+ 144b;b3b] + 2250b, bgb; + 16b;b; + 108byb;
—128b}b3 — 27b7b; + 108b,b; + 256b] + 3125b;
—72b0b, b,b3 + 560b,b,bb3 — 630b;b,b,b3,

E, = 160b7b3 + 900b% b3 — 48b, b;
+60b, b5b3 + 1500b,b, by b, + 16b5b;
—1100byb, bs + 625b5b3 — 3375b,b3,

F, =3b5 - 8b,b;. (17)

Now we can apply the complete discrimination system
for polynomial method to get the classification of single trav-
eling wave solutions to the original equation, and twelve
cases need to be discussed here. What has to be illustrated
here is that the values of parameters are not from literature;
they are just estimated to show the corresponding solutions
directly.

Case1.D, >0,D,=0,Ds; =0,and E, # 0. G(¢) is given as fol-
lows:

=(9)= (- B)* (¢~ B,) (9-Bs)» (18)

where 3, f3,, and 3, are the corresponding three roots satis-
fying 23, + 23, + 3, = 0. Then, the solutions in different con-
ditions to the original equation shall be shown as follows:

ﬁ —-&) =1/B;5— B, arctan L [;3
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and
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For example, whenk=1,k=1,r=-2,p=1,y=5a=-9
, =0, w=-5, and ¢=0, namely, b;=-3, b, =2, and b, =
by =0, then we have 3, =0, 3, = 1, and 3, = -2 and the solu-
tion is as follows:

(E-E) PrZova 1 Vo2V
o) M erzevE 23 |Verz+ il
(23)

Case 2. D, +0,D;=0,D,=0, D; =0, and F, # 0. Then,

G(g) = (9B (9= B,)% (24)

where 3, and f3, satisfy the relation 3, + 28, =0. We have
the following:

+:82 _ﬁl _ —_ 1
- 2 (51 60) \/(;‘_‘ﬁz
B

Bi-B

“"'—2(/31 >B,),

-/ B, — B, arctan

(25)
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For instance, when k=1, k=10, r=-2,p=1,y=5,a=
-15, f=-20, w=-10, and ¢ =108, namely, b, =-15, b, =
10, b, =60, and b, = =72, then we have 3, =2, 8, =3, and
the following solution:

1 -2
N 5 arctan — (27)

Case 3. When D, #0, D; =0, D, =0, D; =0, and F, =0, we
have the following:

5
£2(E-8)=

F(9)=(¢-B)" (- By)s (28)

where 3, and f3, are the two different real constants satisfying
4B, + f3,=0. Then, the solution of Equation (3) can be
shown as follows:

sPrbrg gy VeTh 1
T2 b 2(p-By) 4B - B,
) \/‘P‘ﬁz‘\/ﬁl_ﬁZ
Vo B JBR| PR
(29)
+M(f _E):_\/q)—ﬁz_ ! arctan
T2 b 2(p-By) 2/B, - B
2Py <p)
(30)

Take the concrete parameters k=1, k=0, r=-2, p=1,
y=5,a=0, =20, w=0,and c =0 as an illustrative example,
which yields by =-10, b=20, b, =-15, and b, =4. Thus,
when 8, =1 and 3, = —4, then we can get the following:

¢+4

Vod
mn\/m+\/§.

291

5
J—rzz(E—Eo):_

Case 4. D, = D; =D, = Dy = 0. Then,
F(g)=¢’. (32)

This leads to the following:

(81— &) = _3’2, (33)
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which yields

o-[e-0)] (54)

For example, when k=0,r=-2, p=1,and k=y=a=f§
=w=c=0, then the corresponding solution is given by
Equation (34).

Case 5. D; <0,D, =0, D; = 0,and E, = 0. G(¢) is given as fol-
lows:

G(@)=(p-PB)(¢*+ B+ Bs)’, (35)

where 3, 3,, and 3, are the three different roots satisfying
B> —4p; <0 and 2B, = B,; thus, we have the following:

(& +&) = N (cos & arctan M ”(p_zﬁl
NCR i
sm(S1 o-pB - 2pc058\/w>
2 o-B,—p*+2pcosd\/p- B,
(36)
where  p= (B2 + B, + ﬁ3)1/4 and  §=-1/2 arctan

\/4Bs - 312, + B

Take the concrete parameters k=1, k=1, r=-2, p=1,
y =5, a=87/16, =0, w=21/8, and ¢ =—1/8 as an illustra-
tive example; then, b; = -29/16, b, =—-17/32, b, =0, and b,
=-1/8; thus, 8, =1/2 and B, =, = 1/4; then, we can get
the following:

8 2p sin 0/ —1/2
tE-&))=-—= (cos d arctan M
pV17 p-12-p
+sin6 ngo—1/2—p2—2pcos8\/(p—1/2
2 @—1/2-p2+2pcos8/9p—1/2)’

(37)
where p = (5/8)"* and & = —1/2 arctan /17/5.
Case 6. When D, > 0 and D, = 0, we have the following:

G(p) = (=B (9= B)(@—Bs)(@—-By)>  (38)

where 8,(i = 1,2, 3, 4) are the four distinct real roots satisfy-
ing 23, + 3, + 5 + B, = 0. Thus, we can get the following:

2

(B, —/33)\/13 ~ By

AR = (=l

(39)

+(& - &) =-

5
where
l d;/l
F(n,1 =J — 40
.9 04/1 -1 sin’y (40)
gl d;zl
NN =J . 41
[LenmD o (1+nsin’*n)\/1- P sin’y (41)

For instance, when k=1, x=—-4,r=0, p=-2, =5, a
=-21, =0, w=4, and ¢ =0, we have b, =-7, b, =6, and
b, =b,=0; thus, 8, =0, B,=1, B,=2, and 8, =-3; then,
we can attain the solution to the original equation as follows:

dsv

2
CEDCEE N

E-t)= |

The explicit form of the solution could not be represented
by any common function including the Jacobian elliptic
function, so we only are given its integral expression here.

Case 7. D; <0 and D, = D; = E, = 0. Then, we have the fol-
lowing:

G(9)=(p—B1)’[(9—B)" + B3], (43)

where 3, f3,, and 3; are the corresponding three roots satis-
fying 38, + 23, =0.

Thus, the solution of Equation (3) can be obtained as
follows:

tan 6 + cot 6

F >
2(B, tan 6 - B, — B,)+/B;/sin®20 n:5)
B; tan 6 + f3; cot 0 tan 0+ 3, + f3,
) Bs cot 0+ B, + B, X{(ﬁs cotf+p, - ) sinn

U= v+ E (D) = E(9) (B, # By + Ba),
(44)

(& -&)=

(5 -&)= \/% E arcsin (s sin ) - F(n, s):| (By=B,+B5)s

(45)

where F(#, s) is defined by Equation (40), tan 20 = 3,/(8, —
B,),s=sin 6(0 <0 <m/2), and

s) = JZ\/ 1 -2 sin?¢d(. (46)

For instance, when k=1,x=0,r=0, p=-2,y=0, a =3,
B=0, w=0, and ¢=0, then b;=1 and b,=b, =b, =0,
namely, B, = 3, =0 and 3, = 1; thus, we have the following:

+(E-E&) = 7d¢
e P e (47)



Case 8. When D, < 0 and D; = 0, we have the following:

G(p)=(p-B)*(¢-B,)[(9—Bs) +Bi],  (48)

where 8,(i= 1,2, 3, 4) are the real numbers satisfying 23, +
23, + 3, = 0. So, we have the following solutions:

tan 6 + cot

+(& -§) = F(n,1
¢ ) 2(B; tan 0 - B, - B,)/B,/sin’20 ol
_/33tan9+,83c0t9><{ tan 0+ B, + 3,
B; cot 0+ B, + 3, (B; cot 0+ B, —B,) siny

- \/1 —s*sin’n+ F(n, 1) —E(n,s)}
“(By# By = By tan 6, B, # By + B, cot 0),

(49)
sin®20[1 . )
i(fl - Eo) = 4—[))2{5 arcsin (l sin n7) — F(#, 5)} (50)
(B =P;5 - P, tan 0),
sin320 1
+(& - &) = 4—/32{F(11, s)— Vi In
'\/1—52 sin211+\/1—5231n;7] (51)
cos

(B =B; + By cot 0),

where F(#,1) is also defined by (40), tan 20 = 3,/(f3, — 3,), s
=sin 6(0 < 0 < 71/2), and E(#, s) is given by Equation (46).

For instance, when k=1,x=0,r=0, p=-2,y=5,a=0,
B=0,w=38, and c=0, then b;=0, b, =—4, and b, =b, =0,

namely, 3, =0, 3, =2, 3, =-1, and f3, = 1; thus, we can get
the following solution:

E-E)= j% (52)

Case 9. Dy >0 and D, = D; = E, = 0. G(¢) is given as follows:

G(@)=(9-B)’(¢-B,)(®~Bs)> (53)

where f3,, B,, and f3, satisfy the relation of 33, + 3, + 3, =0.
Then, the solution shall be given as follows:

+(E. — — 1 arcsin ﬁl_ﬁS ﬁz_/%
== ﬁl—ﬁ3E< \/¢—ﬁ3’/31—/33>
(54)
_ - P
(P-B)e-B,)

where E is defined by Equation (46).
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For instance, whenk=1,x=0,r=0,p=-2,y=5a=-3
, B=0, w=0, and ¢=0, then b;=-1 and b, =b, =b, =0,
namely, 8, =0, B, = -1, and f3; = 1; thus, we have the follow-
ing:

d
w8 | (53)

Case 10. D,, D5, Dy, Ds > 0. F(¢) can be written as follows:

Flo)=(p-B)(@-B)(@-B:)(¢-B)(®—B5) (56)

where 8,(i=1,2, ---, 5) are the different real constants satis-

fying ¥> | B; = 0. Then, the solution in hyperelliptic function
form is given as follows:

e de :
(& &) \/(¢_ﬁl)(go—ﬁz)(QD_ﬁ3)(§0—ﬁ4)(§0—ﬁ5)

(57)

Forinstance, whenk=1,k=1,r=-2,p=1,y=5a=-3
, B=-76/5, =2, and ¢ =—36/5, then f, = 6/25p3, = 31/25
B, =—44/258, = —49/25, and f3; = 56/25; thus, we have the
following:

e 3125dg
-t = | V&= 6)(p—31)(g+H)(p+9)(p-56)

(58)

Case 11. When D,, D5, D,, D5 > 0, we have the following:

E(9)=(9-B)(@-B)@-PB)[(p—B) + 5], (59)

where 8,(i=1,2,---,5) are the constants satisfying 8, + 3,
+B,+2B,=0 and B, #,#B;. Then, the hyperelliptic
function type solution is given as follows:

L(E, - §) - e .
V@-B)@-B)@-B) (9~ B +B]

(60)

Forinstance, whenk=1,k=1,r=-2,p=1,y=5a=-3
, B=-76/5,w=-2,and c = —36/5, then 3, = 8/15, 8, = 23/15
, B3 =-17/15, B, =-7/15, and f3; = 1, so the solution to the
original equation is given as follows:

— = d(P
i(f—fo)— J\/(P5_7(P4/3+(p3—(p2+4/3. (61)

Case 12. Dy >0A (D, <0VD; <0VD, <0), where A means
“and” and V means “or”. We have the following:

Gp)=(p-B)[(9-B)* + K] [(9-B)* + 5], (62)
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(a)

(®)

FIGURE 1: (a) The 3D graph of rational function solutions (Equation (34)) when a = 0.5. (b) The corresponding 2D plot.

where f,(i=1,2,---,5) are the roots satisfying 8, + 23, + 2
B, =0. Then, we can get the following hyperelliptic functions
solution:

-8 | & -
V@-B)[(9-B.) +B] (- B+ B

(63)
For instance, when k=1,x=1,r=-2,p=1,y=5,a=3,

B=-4, w=-3, and c=2, then 3, =-6/5, §, =-1/5, B, =1,
B, =—4/5, and B = 1, so we have the following solution:

-6 | %

/95 + 39315 + 369225 + 62¢/125 + 6396/3125

(64)

From the results above, we can see that all the single trav-
eling wave solutions, namely, the classification of single trav-
eling wave solutions, are obtained. Besides the implicit
solutions, Equation (34) is the rational function solution,
and Equations (57), (61), and (64) are the hyperelliptic func-
tion solutions. Some of the results are new (i.e., Equation
(61)), which shows the novelty of the present paper. How-
ever, we only show the single traveling wave solutions to
Equation (3); other kinds of solutions such as multisoliton
solution need to be further studied. Moreover, qualitative
analysis to this equation should also be a future direction.

4. Graphical Representations

In this section, we give graphical representations to the solu-
tions above. Since almost all solutions are implicit except
Equation (34), and we really do not know how to present
implicit function, thus we only show Equation (34) here.

From the figures above, we can see that the solutions
given in the paper could be truly realized. From Figure 1,
we can see that the amplitude increases with the time and
the direction. Thus, the modulus becomes larger and larger
with the process of evolution.

5. Conclusion

In this paper, the space-time fractional resonance nonlinear
Schrédinger type equation with Atangana’s derivative is con-
sidered by the complete discrimination system for polyno-
mial method, and the present work would enrich the results
of the fractional derivative, due to the reason that to the best
of our knowledge, this is the first time that the hyperelliptic
function solutions are obtained to the nonlinear fractional
Schrédinger type equation. And this special kind of solution
could hardly be obtained by other methods, which means
new solutions are found. Moreover, the results presented in
this paper show that the space-time fractional resonance
nonlinear Schrédinger equation also has triangle function
type periodic solutions and rational function type solutions.
For each solution obtained in the paper, we have constructed
concrete examples with concrete parameters so that it can be
seen clearly that all the solutions given in the paper could be
realized and the correctness of the results is also proved. Fur-
thermore, considering the significance of the equation, our
results would have practical applications in many scientific
fields such as fluid dynamics.
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